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Background: collaborative perception

● Connected and autonomous vehicles share (processed) sensor data to do 
perception jointly, which enhances perception capability.

○ We focus on Vehicle-to-Vehicle (V2V) sharing of LiDAR data.
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Background: the normal workflow of collaborative perception
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● Normal AI inference in each LiDAR cycle
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Prior AI adversarial attack
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● Attacked AI inference
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Tu, James, et al. "Adversarial attacks on multi-agent communication." Proceedings of the IEEE/CVF International 
Conference on Computer Vision. 2021.



Our design of new attacks and countermeasures

● A new attack
○ New realistic stealthy attacks to spoof/remove objects at a selected location in collaborative 

perception
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● An anomaly detection method
○ The anomaly detection leverages the collaboration of multiple vehicles to combat against the 

new threat.

● Our experiments cover both simulation and real-world scenes.



Prior AI adversarial attack is unrealistic
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● Attacked AI inference
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Tu, James, et al. "Adversarial attacks on multi-agent 
communication." Proceedings of the IEEE/CVF International 
Conference on Computer Vision. 2021.



Prior AI adversarial attack is unrealistic

● Need to consider data transmission latencies and temporal ordering of events.
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Data flow of our proposed attack scheduling
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Reuse optimization results in consecutive frames for efficiency

● Strong optimization requires multiple iterations which is still hard to complete 
in one cycle time (100 ms).
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● We can use the optimization results from the last frame to initialize new 
optimization. One step of optimization for each frame.
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Optimization problem for a stealthy targeted attack
● Optimizing a perturbation on the attacker’s feature map.
● Maximizing attack impact (spoof or remove an object) in perception results in 

a specific targeted region
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Tu, James, et al. "Adversarial attacks on multi-agent communication."
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

Loss function:



Anomaly detection as a mitigation to data fabrication attacks

● Attacked perception results 
have conflicts with the 
knowledge of benign CAVs.

● Using occupancy maps to 
reveal spatial conflicts

○ Detected object on free areas? ⇒ 
potential spoofing

○ No detected object on an occupied 
area? ⇒ potential removal
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Evaluation on simulation dataset

● The evaluation is on 300 randomly selected attack scenarios from 
OPV2V dataset [1]

[1] Xu, Runsheng, et al. "Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication." 2022 International 
Conference on Robotics and Automation (ICRA). IEEE, 2022.



Real-world experiment in MCity testbed
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Real-world experiment in MCity testbed
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Conclusions

● Realizability of attacks on autonomous vehicles is greatly affected by temporal and 

spatial constraints of real systems.

● It is a severe vulnerability for vehicles to depend critical perception on untrusted 

data.

● Future effort in improving security and reliability of collaborative perception is 

required.



Artifact: https://github.com/zqzqz/AdvCollaborativePerception 
EMail: qzzhang@umich.edu

Thank you!

https://github.com/zqzqz/AdvCollaborativePerception

