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Motivation

• The White House published an executive order for safe 
Generative AI; Watermarking is highlighted in it for
authenticating and detecting LLM generated content.



Watermarking Global Flow

• Watermark Insertion
– The LLM-generated content is watermarked with owner’s signature

before sending to local user.

• Watermark Extraction
– The LLM owner claims his ownership by decoding the signature from 

the watermarked content. 



Challenges for Text Watermarking

• Sparsity
– LLM-generated texts usually have a few thousand tokens.
– 256 × 256 pixel Images have 65k potential pixels for wm insertion

• Sensitivity
– Minor changes in texts’ tokens can distort its meanings and fluency.
– Such changes in images are more imperceptible.

• Vulnerability



REMARK-LLM Overview

• Watermark Insertion
– The backbone is a Seq2Seq model 

(T5) takes original LLM-generated 
text and signature as input, and 
generates watermarked text 

• Watermark Extraction
– The transformer-based extractor 

decodes watermark signatures  
from the watermarked texts &
malicious transformed wm texts.



End-to-End Training

• Training Objectives
– Semantic Loss
• Minimize the cross-entropy loss between input texts and the watermarked

texts distributions.

– Message Recovery Loss
• Minimize the L1 loss between input message and decoded message
• Minimize the L1 loss between input message and malicious transformations’

decoded messages.

𝐿!"!#$ = 𝐿%& 𝑇, 𝑆 𝑇 +𝑀 + 𝐿$' 𝑀,𝑀( + 𝐿$' 𝑀,𝑀!
(

Semantic Loss Message Recovery Loss



Watermark Insertion

• The watermark insertion module leverages an optimized beam
search module to decode readable texts from the watermarked
distribution 𝑆(𝑇 +𝑀).



Watermark Extraction

• The messages are decoded via watermark extraction module.
• The encoded messages 𝑀 and decoded 𝑀( are compared to

calculate watermarking strength (z-score) and claim ownership.
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𝑁 − 𝜇
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N-bit matches between 𝑀 and 𝑀(

Variance: 𝜎) = 𝑀 ×𝑝×(1 − 𝑝)
Mean: 𝜇 = 𝑀 ×𝑝



Experiment Setup

• Metrics
– BERT Score:  Semantic preservation between the original and 

watermarked texts.
– BLUE-4: The coherence between the original and watermarked texts.
– WER: The percentage of decoded message matches inserted ones

• Baselines
– KGW & EXP: Inference-based watermarking
– AWT: Neural-based watermarking
– CATER: Rule-based watermarking



Long Sequence Watermarking (640 token)

• High Watermark Extraction Rates:  
95%+ WER when decoding 64 bit 
signatures from 640 token texts.

• High Semantic preservation: ~0.9 
BERT-S between watermarked and 
original texts.

• High transferability: REMARK-LLM is
trained on HC3, and successfully 
watermark three new datasets 
without additional fine-tuning.



Watermarking Strength

• REMARK-LLM successfully provides strong signature insertions 
without compromising the watermarked texts’ semantics.

Prior work demonstrates very sensitive
trade-offs between semantic
preservation (BERT-S) and
watermarking strength (z-score)!



Watermarking Transferability

• REMARK-LLM is agnostic to texts generated by different LLM 
architectures or prompts sources.
– We select 2k instruction prompts from Alpaca Dataset, and 

watermark the outputs generated by different LLMs.

Model WER(%) BERT-S BLUE-4

OPT-2.7B 93.42 0.91 0.34

OpenOrca-7B 93.70 0.92 0.35

LLaMA-2-7B 91.18 0.91 0.39



Watermarking Examples

• REMARK-LLM learns to (1) replace the words with their
synonyms and (2) edit contents to ensure coherence.



Watermark Detection Attack

• By comparing the original and watermarked texts, the
adversarial cannot detect if the content is watermarked or not.

Detection with word distribution analysis
Detection with machine learning-based models



Watermark Removal Attack

• REMARK-LLM maintains high AUC under text edits, rephrase,
and re-watermark attacks.
– The robustness is maintained all while preserving the watermarking

fidelity.



Conclusions

• Introduction of REMARK-LLM, a watermarking framework that
has high capacity, high transferability, and robustness.

• Extensive evaluations on various LLM-generated and human-
written benchmarks demonstrate the effectiveness of
REMARK-LLM.

• Checkout our paper & code👇
Paper: https://arxiv.org/abs/2310.12362
Code: https://github.com/ruisizhang123/REMARK-LLM

https://arxiv.org/abs/2310.12362
https://github.com/ruisizhang123/REMARK-LLM

