SymBisect:
Accurate Bisection for Fuzzer-Exposed Vulnerabilities

Zheng Zhang', Yu Hao', Weiteng Chen?, Xiaochen Zou’, Xingyu Li’,
Haonan Li', Yizhuo Zhai', Zhiyun Qian', Billy Lau?
'UC Riverside, 2Google Inc, *Microsoft Research

Thousands of bugs reported with fuzzers

/\ > 6000 bugs reported to Linux kernel Mainline by Syzbot*
D
260 Il KASAN KMSAN [l KCSAN [l mem safety [mem leak [locking [hangs/stalls % DoS [l other projected

160

240
220
200
i I | | |
140 i l = I I
| HEl l |
Ii H B I I
il I !i i : H
|

100

80 I :
60 I
40 I

]| .|
IN N

INEE 3z

B
20 i

N D O 20 2° AR A S AT A AT
N QoY v

d AT AT AD AD AR AD AD AD AQ A9 A9 S A9 20 N L Al 9t Ak At 9t D 9> 9d P> A Ak ok
R R R R P R A MRS B B BB B PP BT o

~ NP W b ot o byt e B e Ees
(GRS LN AR SR AN R L B Sl N AN C S

* Syzbot: 7 years of continuous kernel fuzzing- Aleksandr Nogikh, Google, 2023
Figure by Dmitry Vyukov 2

Bug Bisection

» Automating analysis of fuzzer-exposed bugs.
* Bisection: identifying the commit that introduces the bug.

* Benefits:

1. Accelerate bug analysis and patch development.
With bisection: 39% addressed in 45 days.
Without bisection: 19% addressed in 45 days.[1]
2. ldentify vulnerable software versions.
Inform users about whether they need to worry about updating their software. [2]

[1] Syzbot: 7 years of continuous kernel fuzzing
[2] V-szz: automatic identification of version ranges affected by CVE vulnerabilities

Bisection with PoC: Limitations

* Many kernel versions do not build/boot with syzbot config.

* Bug reproducers (PoC) are not always reliable.
« Single reproducer might trigger unrelated bugs.

* Only 50% accuracy in a previous study conducted by the syzbot team.

Bisection with Patch: Limitations

* Require the patch.

* Bug-inducing commit may not change the patch functions.

* Rely on heuristics which are inherently imprecise.
e.g., deleted line in the patch exists in target version => vulnerable

Motivating example

The Bug-inducing Commit:

static struct bpf_map *htab_map_alloc(...)
1 - cost = S1*C1 + S2*S3;

2 - cost += S2*C2
3 - err = bpf_map_charge_init(..., cost);
4 - if (err)
- goto free_htab;
5 err = prealloc_init(...);

6 if (size >= U32_MAX - PAGE_SIZE)
return -E2BIG;

Symbolic execution trace (partly):

-> htab_map_alloc() -> bpf_map_charge_init()
-> prealloc_init() ->

Before inducing commit:

Line1
Line2
Line6
Line7

Assignment: cost = S1*C1 + S2*S3

Assignment: cost += S2*(C2

Constraint S1*C1 + S2(S3+C2) < U32_Max - 4096
Overflow condition: S2(S3+C2) > U32_Max

Not solvable => Not vulnerable

After inducing commit (before patch):

The Patch:

Line8

Overflow condition: S2(S3+C2) > U32_Max

Solvable => Vulnerable

static int prealloc_init(...)
S3 = S3 + C2;
7 - htab->elems =bpf_map_area_alloc(S2*S3,
8 + htab->elems =bpf_map_area_alloc((u64)S2*S3,

S1: (u64)htab->n_buckets
S2: (ub4)htab->elem_size
S3: htab->map.max_entries

C1: sizeof(struct bucket)
C2: num_possible_cpus()

* Bisection with PoC: trigger an unrelated bug.

* Bisection with Patch: bug-inducing commit does not
alter the patch function.

» Symbolic execution: succeed.

Challenge: Scalability

* Path explosion
The number of forked states may grow exponentially as the execution progresses.

Especially serious in complex programs such as Linux kernel.

* Key Observations
Leverage fine-grained trace-level information about how the vulnerability is triggered.

Such coverage information can help prioritize relevant execution paths.

System Architecture

Program

(ref version) PoC
v
s N
Guidance =
Generator —» Vulnerable
1 versions
[
Guidance Bug-inducing
Programs — | Transformer > commit
(target versions)
l 11
Symbolic Non-vulnerable
Detector versions
. Detector

Guidance Generation

Coverage Priority
of Poc Guidance
(ref) (target)

1->2->5->7 [9]

Raw priority CFG Refined priority CFG Refined priority CFG
(ref kernel) (ref kernel) (target kernel)

‘:l Highest Priority |:| High-priority I:I unprioritized I:J Low-priority - Lowest-priority

« Call Stack Guidance: highest/lowest priority
« Path Guidance: high/low priority

Implementation

* Guidance Generator/Transformer.
4726 LoC Python.

» Symbolic Detector. (Based on KLEE)

Modifications to KLEE to better handle symbolic variables (symbolic addresses, symbolic
sizes, etc.)
4347 LoC C++.

10

Evaluation: Accuracy

Tools TP FP TN FN Accuracy Precision Recall F-1 Score
SYMBISECT 237 29 348 31 90.7% 89.1% 88.4% 88.7%
Syzbot(PoC) 146 27 350 122 76.9% 84.4% 54.5% 66.2%

VOFinder 1383 0 377 130 79.8% 100.0% 51.5% 68.0%

VSZZ 250 145 232 18 74.7% 63.4% 93.3% 75.4%

Table 1: The results of vulnerable versions detection

Tools Correct Incorrect Accuracy
SYMBISECT 24 8 75%
Syzbot 16 16 50%
VOFinder 11 21 34.375%
VSZZ 18 14 56.25%

Table 2: The results of bug-inducing commit identification

11

Evaluation: Performance

1.0

0.8

0.6

CDF

0.4

0.2

0.0

— SymBisect

——

- Pure Exploration
- Pure Re-tracing
Stack

/ s
4B e
"

10! 102 103

Execution time until reach target line
in seconds(Log-Scaled)

12

Q&A

Thanks for your attention!

13

