
SymBisect:
Accurate Bisection for Fuzzer-Exposed Vulnerabilities

Zheng Zhang¹, Yu Hao¹, Weiteng Chen3, Xiaochen Zou¹, Xingyu Li¹,
Haonan Li¹, Yizhuo Zhai¹, Zhiyun Qian¹, Billy Lau²

¹UC Riverside, ²Google Inc, 3Microsoft Research

Thousands of bugs reported with fuzzers

> 6000 bugs reported to Linux kernel Mainline by Syzbot*

* Syzbot: 7 years of continuous kernel fuzzing- Aleksandr Nogikh, Google, 2023
Figure by Dmitry Vyukov 2

Bug Bisection

3

• Automating analysis of fuzzer-exposed bugs.
• Bisection: identifying the commit that introduces the bug.

• Benefits:
1. Accelerate bug analysis and patch development.

With bisection: 39% addressed in 45 days.
Without bisection: 19% addressed in 45 days.[1]

2. Identify vulnerable software versions.
Inform users about whether they need to worry about updating their software. [2]

[1] Syzbot: 7 years of continuous kernel fuzzing
[2] V-szz: automatic identification of version ranges affected by CVE vulnerabilities

 Bisection with PoC: Limitations

4

• Many kernel versions do not build/boot with syzbot config.

• Bug reproducers (PoC) are not always reliable.

• Single reproducer might trigger unrelated bugs.

• Only 50% accuracy in a previous study conducted by the syzbot team.

Bisection with Patch: Limitations

5

• Require the patch.

• Bug-inducing commit may not change the patch functions.

• Rely on heuristics which are inherently imprecise.
e.g., deleted line in the patch exists in target version => vulnerable

Motivating example

6

• Bisection with PoC: trigger an unrelated bug.
• Bisection with Patch: bug-inducing commit does not
alter the patch function.

• Symbolic execution: succeed.

Challenge: Scalability

7

• Path explosion
The number of forked states may grow exponentially as the execution progresses.
Especially serious in complex programs such as Linux kernel.

• Key Observations
Leverage fine-grained trace-level information about how the vulnerability is triggered.
Such coverage information can help prioritize relevant execution paths.

System Architecture

8

Guidance Generation

• Call Stack Guidance: highest/lowest priority
• Path Guidance: high/low priority

9

1->2->5->7

Implementation

10

• Guidance Generator/Transformer.
4726 LoC Python.

• Symbolic Detector. (Based on KLEE)
Modifications to KLEE to better handle symbolic variables (symbolic addresses, symbolic

sizes, etc.)
4347 LoC C++.

Evaluation: Accuracy

11

Evaluation: Performance

12

Q&A

 Thanks for your attention!

13

