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Embedded Systems

• Embedded systems are typically installed on different types of IoT devices and 

network devices, the number of devices in use is expected to reach 27.1 billion by 

2025[1].

• According to recent statistics[2], weekly attacks on IoT devices have increased by 

41% per organization in the first two months of 2023 compared to 2022. 

[1] https://iot-analytics.com/number-connected-iot-devices/

[2] https://blog.checkpoint.com/security/the-tipping-point-exploring-the-surge-in-iot-

cyberattacks-plaguing-the-education-sector/
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Existing Methods

• Dynamic solutions

• Black-box fuzzing and fuzzing based on emulator 

• Limited by code coverage and simulation success rates

• Only focus on memory-related vulnerabilities

• Static methods

• Taint analysis and Symbolic Execution

• Static analysis is more applicable, but the problem of false positives and false 

negatives still needs to be solved!!!



Motivating Example



Motivating Example

• SaTC (sec21) fails to find the sources for both CVE-A and CVE-B

• CVE-A: incomplete redefined rules for extracting source from the frontend

• CVE-B: lack of support for extracting hidden data



Observation

• User input entries can be categorized as URIs or keys. 

• Some URIs and keys are non-hidden and some are hidden.

• Different URIs and keys shares same handing codes.



Findings

• Finding 1: User input entries can be categorized as URIs or keys. Identifying their 

corresponding handling codes and relationships can help to identify both hidden and 

non-hidden user input entries and locate the taint sources.

• relationships between URIs and keys

• Non-hidden URIs and non-hidden keys

• Non-hidden URIs and hidden keys

• hidden URIs and hidden keys

• the keys do not have any related URIs



Findings

• Finding 1: User input entries can be categorized as URIs or keys. Identifying their 

corresponding handling codes and relationships can help to identify both hidden and 

non-hidden user input entries and locate the taint sources.

• Challenge 1: the key problem in converting it into methodology is how to identify the 

backend URI and key handling codes.

• Intuitively, we can conclude some patterns to identify these codes to address this 

challenge. 

• Some non-hidden URIs and keys —> corresponding handling codes —> other hidden 

and non-hidden URIs and keys 



Findings

• the semantic information in the backend code can facilitate more precise pattern-

based static analysis, such as inferring the purpose of a function. 

• key time —>  key handing function websGetVar

• key time —>  key handing function strncmp ✗

• Challenge 2: Effectively perform semantic-based analysis and combine it with 

pattern-based analysis is another challenge.



Findings

• Finding 2: Due to the better understanding of code semantics provided by LLM and 

the differences in false positive sources between LLM-aided analysis and pattern-

based static analysis, LLM-aided analysis effectively enhances the identification of 

more accurate sources. 

• False positives in pattern-based static analysis are caused by code patterns, while 

false positives in LLM-aided analysis are due to misleading code semantics, such as 

symbolic data. 

• Pattern-based FP: websXMLBodyResponse

• LLM-aided FP: websGetResponseData



Lara | Architecture

• Source Extraction: Pattern-based Static Analysis  && LLM-aided Analysis

• Sink Extraction

• Taint Analysis



Lara | Source Extraction

• ①-②: use the URIs extracted from the frontend to identify the URI handling code

• ③: enrich the URI pool with URIs not included or found in the front-end

• ①-④: uses the keys extracted from the frontend to identify the key handling code

• ⑤: enrich the key pool with keys not included or found in the front-end

• ⑥: uses the mapping between URIs and keys to filter out unreachable key handling 

code



Lara | Pattern-based Static Analysis

• We studied the backend programs of mainstream firmware and found that the code 

to bind URIs with URI handling codes can be categorized into three types.

• URI —> URI binding code —> URIs and URI handing functions



Lara | Pattern-based Static Analysis

• When the program parses the HTTP request body, the function that handles these 

data extracts the value corresponding to the key. 

• To make sure the extracted key is associated with the HTTP request, Lara checks if 

the parameters of the key handling function and the URI handling function have an 

intersection.

• key —> key handing function

—> corresponding  keys for every URI



Lara | LLM-aided Analysis

• We designed corresponding LLM interaction models for extracting URIs and keys 

based on the LMQL(PLDI2023), enabling LLM-aided analysis to produce valid results 

without manual interactions.

• Prompt Design

• Merge Operation



Lara | LLM-aided Analysis

• LLM-aided analysis can identify more URI registration functions for URI binding code 

type I.

• LLM contributes more on reducing FPs when extracting key handling functions.



Lara | Sink Extraction

• Function-call sinks

• standard library function, like strcpy()、system().

• wrapper function, like save_encrypted_data() from shared libraries wraps popen().

• Non-function-call sinks

• direct variable operations, which may affect the contents of variable values, the positions of 

array reads, the number of controlled loop iterations, and so on.



Lara | Taint Analysis

• Source: taint source is the variable to which the value corresponding to the key is 

assigned. This variable can be an argument or a return value of the function.

• Taint Analysis: Taint analysis begins at the URI handling function where the 

processing of the HTTP request body begins. And the taint analysis engine is based 

on IDAPython, including intra-function and inter-function propagation.

• Vulnerability Detection: Non-function-call sink models and dangerous standard library function 

sink models are predefined. Wrapper function models are extended based on the results of 

wrapper function extraction. Lara checks constraints when tainted data reaches a sink.



Evaluation

• RQ1: How is the performance of Lara comparing with the state-of-the-art tools?

• RQ2: How effective each part of Lara is for discovering vulnerabilities?

• RQ3: Can Lara discover previously unknown real-world vulnerabilities in firmware?



Evaluation | Dataset

• Firmware Dataset: 

The dataset comprises 203 firmware samples from 21 vendors, including 10 

different device types, covering 80 Routers, 37 APs, 20 Switches, 19 IPCameras, 17 

Firewalls, 11 Range Extenders, 6 VPNs, 6 Modems, 4 Bridges, 3 NAS. 

• Known Vulnerability Dataset

To have a fair ground truth, we collected all known buffer overflow vulnerabilities 

and command injection vulnerabilities that exist in these firmware samples from CVE 

records, while filtering out vulnerabilities without detailed information. we totally 

collected 646 known vulnerabilities.



Evaluation | Baselines

• Karonte focuses on vulnerabilities caused by interactions between multiple binaries.

• SaTC uses sources extracted from the frontend, and sinks are predefined functions.

• EmTaint utilizes on-demand alias analysis to enhance taint tracking.

• various variants of Lara.



RQ1: Comparison with the SOTA tools

• Compared with SaTC, Lara detected 556 more vulnerabilities and incurred 65.5% 

less time overhead.

• Compared with Karonte, Lara detected 602 more vulnerabilities and incurred 63.1% 

less time overhead.



RQ1: Comparison with the SOTA tools

• Lara extracted a total of 27,781 URIs and 102,905 keys from the dataset with a 

precision of 99.8% and 99.7%, including 9,299 hidden URIs and 15,411 hidden keys. 

• SaTC identified 5,201 URIs and 34,081 keys with a precision of 83.2% and 52.7%.



RQ1: Comparison with the SOTA tools

• With more sources and sinks from Lara, EmTaint could detect 245 more vulnerabilities.

• FP Analysis for Lara: 105 false positives occurred due to LARA disregarding critical 

key operations between the source and sink, incorrect identification of sinks leads to 

37 false positives.

• FN Analysis for Lara: 8 vulnerabilities were not detected due to either the complex 

inter-process communication (IPC) method or problems with the disassembly engines 

itself. 



RQ2: Ablation Study

• Contribution of Source Extraction. 

• Lara-Combined (with the same sink) detected additional 422 vulnerabilities, thus 

achieving a 58.8% and 65.3% improvement in precision and recall, respectively.

• This can be attributed to the fact that Lara-Combined extracted 23,385 more 

URIs and 84,638 more keys than SaTC while maintaining a higher precision rate.



RQ2: Ablation Study

• Contribution of LLM-aided Analysis

• LLM-aided analysis contributes more on reducing the FPs than reducing the FNs.

• Compared with Lara-Pattern, Lara-Combined reduces the FPR of vulnerability detection by 

10.9%, the FPR of URI registration function identification by 57.9%, the FPR of key handling 

function identification by 61.6%, and the FPR of keys by 33.9%.

• Meanwhile, Lara-Combined reduces the FNs by detecting 6 more vulnerabilities, 52 more 

URI registration functions, 2,745 more URIs, and 164 more keys.



RQ2: Ablation Study

• Contribution of Sink Extraction

• Lara-Sink has identified 86 additional vulnerabilities in comparison to SaTC.

• Lara has identified 134 more vulnerabilities compared to Lara-Combined.



RQ3: Real-world Vulnerabilities

• Lara uncovered 245 previously unknown vulnerabilities, and 162 of them have been 

assigned CVE IDs following responsible disclosure.

• 32 were due to hidden data, and 52 were caused by dangerous wrapper functions.



Summary

• Lara can capture sources with low false positive and false negative rates and thus 

can detect more vulnerabilities.

• Lara can significantly outperform the state-of-the-art IoT static analysis techniques 

by detecting more vulnerabilities with fewer false positives.

• We discovered 245 0-day vulnerabilities in 57 devices from 13 vendors, 162 of them 

have been assigned CVE IDs.

Code and Dataset:

https://sites.google.com/view/lara-data/

https://sites.google.com/view/lara-data/


Q&A

Thanks for your listening!

Contact me by email: zhaojiaxu@iie.ac.cn

Semantic Relations: Code and Code, Code and Data, Data and Data

More sources and more sinks make more vulnerabilities!
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