π -Jack: Physical-World Adversarial Attack on Monocular Depth Estimation with Perspective Hijacking

Tianyue Zheng¹, Jingzhi Hu², Rui Tan², Yinqing Zhang¹, Ying He², and Jun Luo²

¹ School of Computer Science and Engineering, SUSTech, China

² School of Computer Science and Engineering, Nanyang Technological University, Singapore

August, 2024

Motivation and Background

- Monocular depth estimation (MDE) estimates pixel-wise distances from a single RGB image.
- MDE is adopted by both academia and industry (e.g., Tesla, Waymo, and Toyota).
- Deficiencies in MDE could lead to AVs generating low-quality models of their surroundings.

Motivation and Background

We then use the saliency map to understand what the depth estimation model focuses on

when performing MDE, it turns out that MDE rely on perspective cues for depth inference.

Overview of π-Jack

High-level idea of π -Jack: by strategically placing an attack vector (a clump of grass), MDE for a target object (a tree) can be hijacked.

Workflow of π–Jack's Attack Strategy

- 3-D object selection
- Setting the stage for
 3-D object placement
- Object placement and rendering
- Robust design and analysis

3-D Object Selection

- the 3-D object should possess structures similar to the target
- the 3-D object should exhibit a texture akin to the target
- the 3-D object should have an extended shape
- the object should be ordinary and inconspicuous

	Barrier pole	Flag	Grass	Ladder	Safety	Garbage	Traffic	Roadblock	Hydrant
			clump		sign	bin	sign		post
Structural	Tree trunk,	Tree trunk,	Tree,	Scaffolding,	Vehicle,	Vehicle,	Lamp post	Vehicle	Tree trunk,
similarity	window	window	bush	fire escape	tree	building	signs		lamp post
Texture	Metallic	Glossy	Leafy	Wooden	Plastic	Glossy	Glossy	Coarse	Metallic
Extensibility	Good	Good	Fair	Good	Poor	Fair	Good	Fair	Fair
Typical height×width	0.20m ²	$0.92 \mathrm{m}^2$	0.43 m ²	1.20 m ²	0.56m ²	1.4m ²	$0.52 \mathrm{m}^2$	0.73 m ²	0.142m ²
Stealthiness	Good	Fair	Good	Fair	Fair	Good	Fair	Fair	Fair

Properties of the selected 3-D objects.

Setting the stage for 3-D object placement

$$\mathbf{I}_{s}^{*}, \boldsymbol{\omega}^{*}, \boldsymbol{\tau}^{*} = \arg\min_{\mathbf{I}_{s}, \boldsymbol{\omega}, \boldsymbol{\tau}} \sum_{q} \left(Q(q) - \boldsymbol{\omega}g_{\text{RGB}}\left(\mathbf{I}_{q}, \boldsymbol{\tau}, \mathbf{I}_{s}\right) \right)^{2}$$
$$L_{z}^{*} = \arg\min_{L_{z}} \sum_{q} \left(Q(q) - \boldsymbol{\omega}g_{\text{RGB}}\left(\mathbf{I}_{q}, L_{z}\right) \right)^{2}$$

Illumination estimation

Setting the stage for 3-D object placement

$$S' = \sum_{(u_t, v_t) \in T} |\Theta(I)(u_t, v_t) - \Theta(\chi(I \odot B))(u_t, v_t)|$$
$$\mathcal{F}_{sal}(u, v) = \mathbb{I}\left[(G * S')(u, v) > \mathcal{T}\right]$$
$$\mathcal{F}(u, v) = \mathcal{F}_{sal}(u, v) \cap \mathcal{F}_{val}(u, v)$$

Feasible region identification

Object Placement and Rendering

Example estimated depth maps before and after π -Jack attack

SINGAPORE

Evaluation with real-world scenes and attack vectors

Example scenes from AWSIM and Autoware.

Conclusion and Future Work

- The first physical adversarial attack on AV-MDE systems utilizing perspective hijacking
- Exploiting ordinary 3-D objects as attack vectors, π-Jack offers superior effectiveness, robustness, accessibility, and inconspicuity.
- Experiments validate the high attack success rate and large depth difference achieved by π-Jack, demonstrating its successful application in both composited and real-world AV scenes.

Thank you!

