Splitting the Difference on
Adversarial Training

Matan Levi — Phd. Student @ Department of CS, BGU | Staff Research Scientist, GenAl @ IBM Research

Prof. Aryeh Kontorovich — Full Profersor @ Department of CS, BGU



Background - Adversarial Examples

 Deep Neural Networks were shown to be extremely vulnerable to
small crafted perturbations to their inputs

* These examples are called adversarial examples
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Background - Adversarial Training

Adversarial Training is one of the most
effective methods to enhance a model’s
robustness

The basic idea — models are trained with
the adv. examples alongside original data
Adversarial examples are assigned the

same label as the original class
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Problem — The Natural-Robust Tradeoff

- Tsipras et al. argued that
robustness may be at odds
with natural accuracy, and

usually trade-off is inherent




Research Question

In Adversarial Training, How
Can One Avoid Significant
Natural Accuracy
Degradation While Still

Achieving Significant

Robustness?




Motivation

We argue that this tradeoff indeed What will happen if we
usually happens when adv. examples completely separate the
are assigned to the same class as the adversarial and original

natural ones classes?
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Our Approach

Double Boundary
Adversarial Training (DBAT)

(a) (b) (c) (d)



DBAT — High Level Overview

1. Given atrainingset S = {(x;,y;)};=; with CclassesY = {0,1, ...,C — 1}

2. we define a new class space Yz, ={1,2,...,C—1,C,C+1,..,2C — 1}

3. During the adversarial training process, our goal is to learn additional classes, one
for each in the original class set:
« Foreach natural example (x;,y;), we generate an adversarial example

and the corresponding adversarial class (x;,y; + C) using Targeted-PGD



Our Approach — DBAT Algorithm

Generate Adversarial
examples with targeted
PGD

Save the adversarial
example with its specific
adversarial class label

—)
—)

Algorithm 1 DBAT Training

Input: S = {(x;,y:)}._; with C classes, and model fy
Parameters: Batch size m, perturbation size €, attack step
size T, current iteration index k (zero-initialized), and learn-
ing rate o

repeat

Fetch mini-batch X, = {xj}j," Y= {‘r;}m

Initialize X = {},¥Y = {}
for j = 1 to m (in parallel) do
# Generate an adv. example
\, = Select random label uniformly from {0,1,...,C—
IC LC2—1}Y/{j,j+C}
X —targeted PGD(x;,Y',€,7, fo)

# Sme the adv. example with the adv. class label

X' =x'u{x}
Y =Y U{y;+C}
end for
0=0—0a Vel(X,UX Y,UY")
o -k+6
k+1
k=k+1
until stopping criterion is met

I __

10



DBAT - Inference

At inference time, the model will output a probability vector v of size |v|=2-C
The dataset originally has only C classes
The final class prediction is taken as the class with the maximum probability

If this class is one of the adversarial classes, we return its natural counterpart

v = (max(vo,v¢e),...,max(ve—1,va.c—-1)), (D

predicted class = argmaxv; .
0<i<C
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lllustrating DBAT’s Decision
Boundaries
using a Synthetic Dataset

(a) Isotropic Gauss. blobs (boundary x; = 0) (b) Standard AT decision boundary (c) DBAT decision boundaries

Figure 2: Synthetic dataset viz. on 2-classes dataset (a) of two 2D features each. Adversary: 6-step £..-PGD, € = 1.2, 6 = 0.2.




Results .

visualizing DBAT
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(c) DBAT logits for both natural and adv.
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(b) DBAT logits for adv. examples on
newly generated adv. classes
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(d) DBAT logits in two colors for natural
(blue) and adv. examples (orange).



METHOD NATURAL AcCC. PGD AA

RESUItS DBAT 27.22 18.17
AT 56.73 28.45 24.12

TRADES 58.24 29.70 24,90
LBGAT 60.64 34.84 29.33
GENERALIST 29.49 2396
~ h ° b HAT 58.73 27.92 23.34
W |te- OX PG D UIAT 59.55 30.81 2573
CAT 62.84 - 16.82
NATURAL 79.30 0 0
* AutoAttack
Uuto aC
METHOD NATURAL AcCC. PGD AA
DBAT (OURS) 54.61 40.08
Adversary Robust Accuracy AT 85.10 54.46 51.52
F t KLD 85.0 TRADES 84.92 55.56 53.08
e a U re I, Logit Matching 84.5 LBGAT 88.22 54.31 52.86
Feature Adversary [60] 86.8 GENERALIST 56.92 52.91
HAT 84.86 52.30 48.85
° Feature adversaries CIFAR-10 UIAT 85.01 54.63  49.11
Adve rsa rIES CAT 89.61 73.38 34.78
NATURAL 95.43 0 0
CIFAR-10
METHOD NATURAL ACC. PGD AA
DBAT 4931 40.49
AT 89.90 49.45 45.25
TRADES 90.35 54.13 49.50
LBGAT 01.80 63.38 40.83
GENERALIST 55.29 4541
HAT 92.06 57.35 52.06
UIAT 03.28 58.18 52.45
CAT - - -
NATURAL 96.85 0 0

SVHN



Results

Natural Corruptions:

1. CIFAR100C:

2. CIFAR-10C:

— Statistics compared to the second best approach
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Number of attack steps

(d) £,-DeepFool
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Results — Clean vs. Robust
Tradeoff NE
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DBAT's clean
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Figure 9: Natural and AutoAttack robust accuracy trade-off,
for DBAT and TRADES on CIFAR-10, as we vary the hyper-
parameter A that controls the weight we put on the natural
and adversarial classes. The numbers on the graph represent
the value of A for the specific trade-off.




Discussion
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