
Alternative (ab)uses for HTTP Alternative Services

Trishita Tiwari
trtiwari@bu.edu

Boston University

Ari Trachtenberg
trachten@bu.edu
Boston University

Abstract
The HTTP Alternative Services header (Alt-Svc) was intro-
duced in 2013 in a bid to streamline load balancing, protocol
optimizations, and client segmentation, and it has since been
subsequently implemented in almost all mobile and desktop
browsers. We show that the major implementations of the
header are independently susceptible to a variety of stealthy
abuse. Indeed, we demonstrate how Alternative Services may
be leveraged to scan ports blacklisted by browsers, probe fire-
walled hosts, and mount Distributed Denial of Service attacks.
These services may also be misused to bypass popular phish-
ing and malware protection services like Safe Browsing, and
also online site checkers like VirusTotal, URLVoid, Sucuri
and IPVoid. In the privacy realm, the Alt-Svc header may
be abused for user tracking: at the network layer by Internet
Service Providers (ISPs), and at the application layer by first
and third party websites (where we bypass third-party track-
ing protections on Firefox, Chrome and Brave). In a similar
manner, the header may be used by transiently connected ISPs
to exfiltrate parts of a victim’s browser history. Our attacks
work, to varying extents, on Firefox, Tor, Chrome, and Brave
browser, and have been disclosed accordingly–so far, one of
our vulnerabilities been patched by Mozilla as CVE-2019-
11728. We conclude with proposed mitigations for some of
these abuses.

1 Introduction

HyperText Transfer Protocol (HTTP) headers date back to the
very earliest web servers, providing an out-of-band mech-
anism for clients and servers to exchange metadata. Early
headers included basic information about the HTTP request
context, like the domain name of the server or the name of the
client’s browser. However, as web content grew in complexity,
so did the the the scope of HTTP headers, expanding to include
expiration dates, user-side cached data (cookies), and control
options for connection reuse. Accompanying this growth in
header complexity was a proliferation of attacks to the privacy
and security of user data, and corresponding mitigations [43].

The web community now has almost thirty years of experi-
ence with the HTTP protocol, and mature browser development
teams span a multitude of companies, some with market capi-
talizations approaching one billion dollars each [10]. And yet,
despite all this knowledge and experience, we aim to show
that it is still extremely difficult to introduce even simple
improvements to the HTTP protocol without introducing a
variety of security vulnerabilities.

Specifically, in this work we evaluate HTTP Alternative Ser-
vices header (Alt-Svc), a simple optimization introduced
in 2013 with three potential use-cases in mind: streamlin-
ing server load-balancing without the need for fine-grained
Domain-Name-Service (DNS) maintenance, readily making
clients aware of endpoints supporting newer protocols (e.g.,
HTTP/2 or QUIC), when available, and segmenting clients
into groups with prescribed capabilities [26]. We show that,
though well-intentioned and apparently straightforward, this
new header may be leveraged for a variety of less innocuous
purposes, including third-party network reconnaissance and
service denial, bypassing phishing and malware protections,
and user tracking. Indeed, the fundamental reason behind all
these attacks is that the Alt-Svc header introduces unchecked
background connection attempts from the victim’s browser to
attacker specified endpoints. Worse yet, these endpoints may
also be cached to enable automatic future connections.

1.1 Overview of abuse

Network reconnaissance is one of the first steps in many elec-
tronic attacks, and it is often initiated with a scan of accessible
ports on the target. Defenders typically impede port scans in a
number of ways, including (i) using an anomaly detection sys-
tem to recognize scans coming from a common startpoint, and
(ii) placing hosts behind firewalls or Network Address Trans-
lators (NATs). Unfortunately, the current implementations of
Alt-Svc allow attackers to instigate stealthy distributed port
scans from a web server under their control. The scans are
initiated by victim machines that connect to the controlled
server, and thus are both distributed across many startpoints



and able to target any machine visible from the victim, even if
the victim is behind a firewall. Unlike known JavaScript ver-
sions of this attack, the victim sees no indication of the attack
within her browser, and the attack can target ports that are
otherwise blocked by the browser due to security concerns.

Indeed, this scanning ability can also be translated into
a Distributed Denial of Service (DDoS) attack, wherein an
Alt-Svc connection from a browser opens long-lasting con-
nections on a target server, or a short client message leads
to a much larger server response against an intended target.
Unlike existing DDoS approaches [6,28,29,36,53], our meth-
ods allow an attacker to target any arbitrary port of the target
host by means of client web browsers. The distributed nature
of such attacks, coming from a variety of seemingly unre-
lated and otherwise typical clients, make them very hard to
attribute to a root cause or mitigate; indeed, distributed attack
mitigation has become the expertise of niche providers such
as Cloudflare [1]. The same scanning ability also carries the
potential of confusing Intrusion Detection Systems by trigger-
ing anomalies that are tied to unusual patterns of IP or port
accesses.

Another potential abuse of Alt-Svc that we highlight in
this work relates to user tracking. Privacy concerns have
also lead to a proliferation of client-side blocking tools such
as AdBlock, Ghoster, Disconnect, Privacy-Badger and other
tracker/advertisement blockers [18]. Indeed, most modern
browsers either block third-party trackers by default, or offer
the option to do so [37]. Furthermore, a number of security-
focused browsers have been introduced from both industry
and academia, including Tor, Brave Browser, FuzzyFox [38]
and DeterFox [17]. On the network layer, privacy protections
include web traffic encryption (HTTPS), MAC address random-
ization [3, 12], and elimination of other trackable network
identifiers (for instance, TLS resumption cache isolation in
Tor [4]). Unfortunately, Alt-Svc can be abused to circumvent
a variety of these protections, allowing, for example, tracking
by first- and third-party websites, network-layer tracking, and
bypass of some standard third-party blocking mechanisms in
common use [37].

Similar Alternative Service attacks can be used to perform
network-layer browser history exfiltration. Unlike most prior
works based on third-party websites [14,46,56], our approach
for this attack targets a network-level adversary (e.g., an In-
ternet Service Provider or an owner of a Wifi router) that
exfiltrates a user’s browser history, including web accesses
performed outside the observation window of the attacker.

Finally, Alternative Services also provide a mechanism for
bypassing browser defenses against phishing. The prevalence
and damage of phishing sites, which impersonate well-known
company sites for the purpose of gathering sensitive personal
user data [9, 45, 47], has led browsers to implement a vari-
ety of blocking filters [15, 41], which, for example, display
conspicuous warnings if the user navigates to a suspicious
website, or even a clean website that draws some content from

a suspicious site. Indeed, various online tools like VirusTotal,
URLVoid, Sucuri and IPVoid also help to identify unsafe web-
sites [35, 48, 50, 54]. The general approach of these blocking
mechanisms is to check website domains against an inde-
pendently generated blacklist of suspicious content. Unfor-
tunately, this domain checking can be rather simply evaded
with the use of the Alt-Svc header.

Main Contributions The main browser-based attacks pre-
sented in this work are thus:

1. Distributed TCP and UDP port scanning;

2. Bypass of malware and phishing protections;

3. Distributed Denial of Service of generic services; and,

4. Tracking and history exfiltration.

We note that different browsers are affected to varying extents
by these different attacks. Further, most of these attacks have
direct impact to modern browsers, but others serve as caution-
ary threats toward future adoption of full Alternative Services
functionality.

Our attacks have been disclosed to Firefox, Tor, Chrome,
and Brave browser development teams.

Roadmap The remainder of this paper is organized as
follows: in Section 2 we discuss the background of the
Alt-Svc header. We then discuss prior works that relate to
our contributions in Section 3. Section 4 describes our various
Alt-Svc header attacks, together with potential mitigations
for some of them. Finally we conclude in Section 5.

2 Background

We next provide some historic and current context for the
Alternative Services header.

2.1 Why Alt-Svc?
Under the older HTTP/1.1 regimen, servers would typically
load balance their clients by means of short-lifetime DNS query
responses; as one server would get loaded, the DNS responses
would shift toward a different, less busy, server. This worked
well because HTTP/1.1 involved many short-lived TCP con-
nections, each with individual HTTP/1.1-requests. However,
HTTP/2 introduced various optimizations, most notably the
use of longer TCP connections to multiplex multiple HTTP/2
requests. In these cases, clients could bind to DNS queries for
longer periods of time, thereby complicating load-balancing
efforts among servers.

The Alternative Services HTTP-header (Alt-Svc) was de-
signed, in part, to help alleviate this problem by allowing a
server to specify alternative endpoints for client loads [26].



For example, a client loading a page from www.example.com
could receive a server response specifying an Alt-Svc header
pointing to another endpoint, say other.example.com. For
subsequent requests, the browser may choose from which
domain to load the page (i.e., the primary or one of the al-
ternates). It could also cache the header values for a period
of time (specified via the ma parameter). By default, these
cached values are supposed to be invalidated when the client
machine changes network, unless the persist parameter is
set. A typical header thus looks as follows:

Alt-Svc: http/1.1="other.example.com:443";
ma=2928333;
persist=1

The header here suggests that an alternate endpoint for the
HTTP/1.1 protocol (specified via the http/1.1 keyword)
is available at other.example.com. This endpoint is valid
for 2928333 seconds and should be persisted across network
changes. Indeed, the ma parameter could even be as short
as a few seconds. This makes Alt-Svc extremely flexible–
websites can conveniently advertise new endpoints and re-
move existing ones very quickly – more so than other load
balancing approaches such as DNS Round Robin, where such
on-the-fly changes may be more limited.

Websites may also choose to advertise endpoints for pro-
tocols other than HTTP/1.1, such as HTTP/2 over TLS (h2),
HTTP/2-over plain text (h2c), QUIC (quic), SPDY (spdy), and
the like. This enables gradual adoption of new protocols, and
is in fact the main reason why browsers today support the
Alt-Svc header. Note that the Alt-Svc header is not used
to upgrade a browser’s connection to a newer protocol–that
happens lower on the network stack, during protocol negotia-
tion. The Alt-Svc header is used merely to make the client
browser aware of new endpoints that support other protocols.

2.2 Browser implementation
The typical function of browsers that support Alternative Ser-
vices (such as Firefox, Tor, Brave and Chrome), when en-
countering a page or an iframe that presents an Alt-Svc
header, follows the scheme in Figure 1: the browser attempts
to connect to the endpoint specified in the header, in the back-
ground, while the content of the page continues to load in
the foreground. When the background connection to the al-
ternate endpoint succeeds, the client browser validates the
alternate site’s certificate against the original domain end-
point. If validation succeeds, the client proceeds to load some
of the site content from the alternate endpoint. Note that the
reason for this cross-validation of the alternate certificate
against the original domain is to establish the original web
server’s control over the alternate endpoint (i.e. maintaining
the “same-origin” policy [26]).

However, the mere fact that the browser initiates a connec-
tion to any specified endpoint (whether or not the endpoint

is eventually deemed as valid) is ripe for exploitation, as we
demonstrate in Sections 4.1 and 4.3. When the endpoint spec-
ified has been validated, most browsers cache the endpoint
for future visits, and this too can be exploited for tracking and
history exfiltration (Sections 4.4 and 4.5).

Note that the user has no control over or browser-based
visibility into this alternative services behavior. Worse yet,
Alt-Svc header adherence is enabled by default on all four
browsers (Firefox, Chrome, Tor, and Brave), making these
attacks both more insidious and stealthy.

2.3 Uses in the wild

Alternative Services have grown in their use-cases over the
years. On the server-side, Google services (the search en-
gine, Gmail, etc) advertise an alternate endpoint for serving
content over their own UDP-based QUIC protocol. Other web-
sites, like Facebook, detect Tor client browsers and use the
Alt-Svc header to advertise onion hidden service endpoints.
Websites may also use the header to enable opportunistic en-
cryption, "opportunistically" loading some content over an en-
crypted channel without committing to site-wide HTTPS [27].

On the client side, Chrome and Brave Browser have
supported QUIC-based alternative endpoints since 2015 [7]
(where support for the QUIC protocol is, for now, denoted as
an experimental feature and is gated by a preference flag).
Firefox and Tor browsers, in turn, have supported HTTP/2-
based Alt-Svc connections since 2015 [8]. In fact, most of
these browsers aggressively adhere to the Alt-Svc header
for the protocol each supports, loading all content from the
alternative endpoint for all subsequent requests when the orig-
inal endpoint did not already serve content over the more
advanced HTTP/2 or QUIC protocol. The lone exception is
the Tor browser, which tends to be more conservative with
Alt-Svc endpoints and only uses them some, not all, of the
times.

alternate.comClient
Browser

original.com

https://original.com/iframe.html

Alt­Svc: alternate.com:443 
 

1

2

TLS Client Hello

TLS Server Hello, Certificate

3

4

Figure 1: Typical functioning of Alt-Svc.



3 Related Work

There have been numerous works that demonstrate how a ma-
licious website can force a browser to scan target TCP ports
from the context of users that visit the website [30,33,34,57].
Such third-party scanning enables the attacker to remain hid-
den from the target, since the scanning is done by the victim’s
browser. It also allows attackers to scan hosts that are only
accessible to the victim (e.g., machines on a private network).
However, the potential for cross protocol scripting attacks [49]
has led major modern browsers prohibit access to certain
ports [22, 44]. This port blacklist includes most interesting or
privileged ports, and this limits the effectiveness of existing
browser-based port scanning solutions. A different approach
by Heralla [33] claims to leverage features such as WebRTC to
perform the port scan; however, the author insists that this at-
tack only works against a dedicated server, and not against any
arbitrary target of the attacker’s choice. Instead, we present a
method for scanning any TCP port on any host visible to the
victim (including hosts on a private subnet) by using Firefox
and Tor’s implementation of the Alt-Svc header.

Our approach also works for UDP-port scanning through
the Chrome and Brave browsers, albeit only for ports that
are not blacklisted because Chrome and Brave’s Alt-Svc
implementation strictly adheres to the port blacklist [44]. To
the best of our knowledge, this is a new attack capability,
since the existing approaches generally leverage TCP-based
HTTP-requests for their activities. Herrala [34] does claim a
technique for UDP scanning, but, by his own report, it suffers
from the same limitations as in the TCP case, namely that it
cannot be used against an arbitrary target.

Today, there are many services that protect Internet users
from malicious websites. Some of these are browser based,
such as built-in features in Chrome, Firefox, and Brave [15,
41]. Others are online tools that evaluate any given website
or URL [35, 48, 50, 54]. These scanners operate by blacklist-
ing domain names known to be associated with malicious
content. Chrome and Brave will typically display conspic-
uous warnings if a user directly visits a suspicious website,
or even a white-listed website loads some content from a
blacklisted domain (see Figure 4). Firefox will also display a
similar warning page when a user directly visits a malicious
website, and it refuses to load and render third-party content
from blacklisted domains, throwing a security error visible in
the JavaScript Console. The online scanners like VirusTotal,
IPVoid, URLVoid, Sucuri, etc. [35, 48, 50, 54], on the other
hand, maintain independent evaluations of most websites, and
will appraise user-specified sites against their database for
safety. In this work, we show how we can use Alt-Svc to
bypass these blacklists.

There has also been prior work on browser based BotNets
used for DDoS attacks [29, 36, 53]. However, since attackers
are operating typically through HTML and JavaScript, they
are limited to attacking services on TCP ports that are not

on the browser blacklist, and thus typically only attack other
web servers. However, our techniques on Firefox and Tor
allow attackers to flood any port with packets, thus allowing
attacks on other services (e.g., e-mail servers) from within the
confines of a browser.

There has also been much work done on browser-based
user tracking [11, 16]. Prior literature has shown how various
browser caches can be used for tracking users, for example:
the HTTP 301 redirect cache [55], the HTTP authentication
cache [31], the HSTS cache [32] and DNS caches [24]. There
has also been work that demonstrates the ability of several
identifiers such as Etag and Last-Modified header values
to be used for tracking [5, 13]. More recent independent (and
concurrent published) work briefly discussed some of the
concerns with tracking using Alt-Svc [51]. Device finger-
printing presents another class of techniques to statelessly
track a user. Various attributes such as the User-Agent string,
HTML5 canvas fingerprinting, screen-size, resolution, list of
installed plugins, and the like have been shown to reveal iden-
tifying information about users [23]. Other identifying infor-
mation can be obtained through JavaScript performance and
conformance tests [40, 42], mobile sensors [21] and font enu-
meration [25]. In this work, we present yet another technique
for user tracking using the Alt-Svc header. Our techniques
bypass third-party tracker blocking options instituted in most
browsers today [37].

Further, in addition to browser based tracking, there have
also been techniques for network-based tracking and finger-
printing [39, 52, 58]. The technique widely used for this is
MAC address tracking, which is why most companies today ran-
domize their MAC addresses [3, 12]. To overcome these chal-
lenges in tracking, we present a new technique for network-
local adversaries to track a particular user using Alt-Svc.
This can be done without the need to install any third-party
cookies or known trackers, thus presenting a convenient way
to track using network traffic data.

Finally, we also show how the Alt-Svc header can be used
by a network level attacker to exfiltrate a user’s browser his-
tory. Our attack requires a threat model similar to the history
exfiltration technique presented by Dabrowski et. al. [20].
Their work demonstrates how a Captive Wi-Fi Portal (i.e., an
internet provider that also has a network login webpage) can
be used to exfiltrate a victim’s browser history by leverag-
ing the HSTS cache and cached HTTP cookies. However, the
techniques they present have certain limitations–for instance,
their exfiltration techniques do not work against websites that
are on the browser’s pre-loaded HSTS list, or against websites
that use secure cookies. Our technique does not face these
limitations, and thus may be used to complement their attacks.
Our work also differs from other prior works on history infer-
ence [14, 56], which require a browser-based adversary rather
than a network-based adversary.

Finally, unlike most JavaScript based website attacks, our
techniques operate at a layer below on the browser level,



and thus are not visible to both the victim and any JavaScript-
based detection techniques. This, coupled with the fact that all
our attacks require no user interaction and could be mounted
via third-party web content, makes our techniques especially
pernicious. It is thus essential that these vulnerabilities be
fixed at their source–in the browser. For this, we are currently
working with the affected browser vendors to implement the
appropriate patches, where possible.

4 Attacks

We next discuss the different ways in which Alt-Svc can
be abused. For each attack, we describe, in technical detail,
the impact, the browsers affected, and our experimental re-
sults. We note that the impact of the attacks in Sections 4.1
through 4.4 depend on browser adoption of Alt-Svc, which is
widespread. The impact of the attacks in Sections 4.5 and 4.6,
on the other hand, depend on server adoption, which is cur-
rently limited to large web companies.

Threat Model Our attacks can be classified into two dif-
ferent classes, based on the threat model involved. The first
class involves an adversary that runs one or more websites
(i.e., through a single domain, or multiple colluding domains).
The second model involves an attacker that runs one website,
but can also monitor the victim’s network traffic. The second
attacker could be the victim’s internet provider or a public
network provider akin to those found in coffee shops, both of
which typically can monitor the victim’s (encrypted) traffic
and also control certain web pages that the victim would need
to use (e.g., network login pages).

In both attacker models, we assume that the attacker has no
access to the victim’s machine outside of the browser sandbox–
i.e., no hardware or operating system access. Furthermore,
even within the browser, we assume that the attacker can
only control data within her own website origin. Finally, it
is important to stress that none of the attacks require any
interaction from the user (assuming, for Chrome and Brave
users, that they have the QUIC protocol enabled, which, for
now, is an experimental feature behind a preference flag).

4.1 Distributed port scanning

The Alt-Svc header may be leveraged to force an unwitting
Firefox or Tor user to scan any TCP ports of any host that
the victim can access. This vulnerability has been publicly
disclosed by Mozilla as CVE-2019-11728 [2]. This includes
ports that Firefox and Tor mark as unsafe and are otherwise
inaccessible through JavaScript. For Firefox, the attacker can
access hosts behind the victim’s firewall or even the victim’s
machine itself (i.e., localhost), and for Tor, the attacker can
scan public targets that the exit node can access. The attack
naturally lends itself to a stealthy distributed port scanning

of a target from multiple victim browsers connecting to the
attacker’s website. The header can also be used to scan UDP
ports on Chrome and Brave, although some of these ports are
blacklisted [44].

The basis of this attack is the observation that if a web-
site specifies an Alt-Svc header to a secondary host with an
HTTP/2/QUIC endpoint, then browsers immediately try to ini-
tiate a handshake with the secondary host, without performing
any checks on the host or port; the secondary host could even
be a private IP or localhost, and the port could be on the
browser’s HTTP port blacklist.

The port-scanning thus proceeds with the attacker creating
a webpage (e.g., https://evil.com/p1) whose Alt-Svc
is set to the target host and port (see Figure 2). When the
victim then visits this page, the victim’s browser parses this
alternative endpoint and attempts to initiate a connection to
the target host on the specified port:

1. If the target port is in a closed state, the target immedi-
ately returns a RST packet to the browser and the browser
registers the alternative service as broken.

2. However, if the target port is in an open state, more pack-
ets are typically exchanged (e.g., ACKs) and the browser
thus does not immediately know whether the Alt-Svc
host is valid.

To discern between these two possible states of the tar-
get port, the attacker then automatically redirects the vic-
tim to a second webpage on the same attacker host (e.g.,
https://evil.com/p2), but whose Alt-Svc host is un-
der the attacker’s control (e.g., moreevil.com). Two cases
emerge:

1. The browser has determined that the original Alt-Svc
(i.e., the target host and port) is broken, and the redirect
will produce an immediate connection to the secondary
attacker site (moreevil.com) that can be logged by the
attacker.

2. The browser has not yet determined that the orig-
inal Alt-Svc is broken, and the redirect will not
produce a connection to the secondary attacker site
(moreevil.com).

In this way the attacker can infer whether the target port
was open or closed.

We have implemented this on Firefox and Tor using an h2
(HTTP/2) Alt-Svc endpoint advertisement, sent upon loading
a (hidden) iframe embedded within a page. We provide a
screenshot of our demo website on Firefox as it scans port
25 (a port whose access is otherwise restricted through the
browser) on the victim’s localhost in Figure 3.

Within Firefox, we are able to scan public and even private
hosts, including localhost and private IP addresses. Within
Tor, we are not able to scan localhost and private IP ad-
dresses, presumably because the Tor exit nodes cannot access



PKT 4

https://evil.com/p1 
Alt­Svc: h2="localhost:25" 

Browser sends handshake packets to  
Alt­Svc

RST

REDIRECT

PORT CLOSED PORT OPEN

https://evil.com/p2 
Alt­Svc: h2="evil.com:80" 

Tries to connect
to new (attacker
controlled) Alt­

Svc

Does not know
whether previous

Alt­Svc is
invalid, so does
not initiate new

connection

PKT 1

PKT 2

PKT 3

RST

Figure 2: A browser based port scanner.

Figure 3: A screenshot of our tool for browser based port-
scanning in action, as it scans port 25 on the victim’s
localhost through Firefox

private addresses; however, we were still able to scan public
hosts in a distributed fashion. We have disclosed this issue
to both Tor and Firefox. Mozilla has acknowledged the issue
as CVE-2019-11728 [2] and has instituted the mitigation we
suggest in Section 4.7. Tor will also receive Firefox’s patch,
since the Tor browser is based on Firefox’s ESR series.

We have also implemented this attack on the Chrome
and (Chromium based) Brave browser using a quic (QUIC)
Alt-Svc endpoint advertisement. Here we are able to scan
UDP ports, although both browsers prevent even alternative
connections to certain blocked ports (e.g., SMTP port 25) [44].
We are, however, able to scan arbitrary hosts for UDP ports
through the browsers, which we believe is novel. We have
disclosed this vulnerability to Google, and are in discussions
about mitigations.

4.2 Bypassing malware/phishing protections

Chrome, Firefox and Brave browsers currently block domains
known to host malware and phishing websites by checking for
blacklisted domains through Google’s Safe Browsing [15,41].
When a user attempts to visit a domain that is known to
be associated with deceptive activity, the page is not loaded
and a conspicuous warning is displayed (see Figure 4). Safe
Browsing is triggered even if the first-party domain is safe
but contains any third party content from a suspicious website
(e.g., an image from a blacklisted domain). In this scenario,
Chrome and Brave display the same warning as in Figure 4,
blocking all content even from the clean first-party webpage.
Firefox, on the other hand, only blocks the the unsafe third-
party content, while still displaying all content from the safe
first-party and other safe third parties. Under these conditions,
the victim is precluded from visiting a site that is known
to be malicious, even if a white-listed first-party domain is
convinced (or colludes) to load content from the malicious
website.

However, if a clean, whitelisted first-party specifies a black-



Figure 4: Warning for deceptive website on Chrome

listed domain as its Alt-Svc, then the Safe Browsing checks
are skipped and all content is loaded from the malicious do-
main. This happens as long as the blacklisted website presents
a proper certificate for the clean site (which may happen if,
for example, the attacker controls or colludes with both sites).
This works on all browsers that rely on Safe Browsing: Fire-
fox, Brave, and Chrome. The attacker need only specify an
Alt-Svc for HTTP/2 with a malicious domain in Firefox, and
an Alt-Svc for QUIC in Chrome and Brave. This loophole in
Safe Browsing has been disclosed to Google and Mozilla, as
of yet.

Effectively, Alt-Svcs allow the attacker to have “two-
faced” content–clean content on the original endpoint and
malicious content on the alternate endpoint. And so, anyone
viewing the website through an Alt-Svc-aware browser will
see the malicious content, while others will see the clean con-
tent. Hence, even if a user tries reporting the “clean” site as
malicious to an online clearinghouse (like Safe Browsing’s
Reporting page), automated tools that are not Alt-Svc-aware
will not see any of the malicious content.

In fact, a website that is itself whitelisted but has a
blacklisted Alt-Svc also bypasses many popular online
site checking tools like VirusTotal, URLVoid, Sucuri and
IPVoid [35,48,50,54]. These websites accept a user-provided
URL and evaluate the safety of the corresponding website by
comparing it against their own database. We have found that
if the main first-party domain is not on any blacklist for these
scanners, the website is reported as safe even if the Alt-Svc
points to a blacklisted domain. This should not happen be-
cause even though the main domain points to a whitelisted
website, all the content is effectively loaded from the black-
listed site. Hence, all protection mechanisms should not only
check the first-party domain, but also check the Alt-Svc to
see if it is in the blacklist before marking a website as safe.

4.3 Distributed Denial of Service

Firefox and Tor browsers do not maintain a memory of broken
Alt-Svc endpoints (unlike the Chrome and Brave browsers).

Server
Client
data
(KB)

Server
data
(KB)

Round
trip

length
(s)

smtp.bu.edu:465 0.5 29 0.3
smtp.gmail.com:465 0.6 3.0 0.1
www.google.com:443 0.5 2.8 0.05

www.facebook.com:443 0.5 3.1 0.03
smtp.zoho.com:465 0.7 4.5 0.4
imap.gmail.com:993 0.6 3.0 0.07

Table 1: Servers that send back a lot of data compared to the
client. Hence, this is low effort on the part of the client, but
high effort on the server, making it ideal for DDoS.

Hence every time a page is reloaded, a connection to its
Alt-Svc is attempted (if one is specified). This happens
even if the browser had attempted a connection to the same
Alt-Svc in a previous load and realized that it was broken
(i.e., due to certificate mismatch or some other issue). As such,
if we produce a reload loop in an iframe, we could force the
victim’s browser to repeatedly initiate TLS connections with
a target server/port combination (as in the “port scanning”
attack in Section 4.1), effectively denying service to it.

This is different from the standard JavaScript DDoS at-
tacks, because Firefox and Tor do not check the port number
of the Alt-Svc connection. For example, the attacker could
force a number of distributed victims to repeatedly initiate
TLS handshakes to specific non-HTTP speaking services (e.g.,
secure email and FTP servers that run on ports whose access
is otherwise blocked from JavaScript), and force them to re-
peatedly present their certificates. This is a classic reflected
amplification attack: fairly low effort on the client’s part be-
cause the client hello packet is very small, but high effort on
the server’s part as the server hello packet may be quite large
due to large server certificates. The ampflication is presented
in Table 1 (columns 2 and 3), for some concrete servers; for
example, a connection request to smpt.bu.edu (port 465)
requires the server to respond with roughly 60x more data
than the client sends. Furthermore, the short TLS handshake
round-trips in the final column of the table are reflective of
the correspondingly short intervals at which the browser can
force the target machine to present its certificate, further am-
plifying the transmission/reception imbalance over a short
period of time. This amplification attack could thus exhaust a
target server’s resources, either from a single client or as part
of a distributed attack where multiple browsers continuously
ask these non-HTTP services to present their certificates.

Amplification attacks, in general, have been known to take
down web servers, as happened for hours in 2014 [19, 53]
with Wordpress’s pingback feature . However, the Wordpress
techniques, as well as other prior JavaScript-based DDoS

https://safebrowsing.google.com/safebrowsing/report_phish/?hl=en


Vulnerable Servers
smtp.bu.edu:25
ftp.bu.edu:21

smtp.cornell.edu:25
smtp.zoho.com:587

smtp.outlook.com:25

Table 2: Live servers that have long time-outs (at least 30
seconds) for Alt-Svc connections, making them vulnerable
to DDoS attacks.

victim.com
Client
Browser

evil.com

https://evil.com/iframe.html

Alt­Svc: victim.com:465 
... 

iframe content

1

2

TLS Client Hello 
(500B)

TLS Server Hello, Certificate 
(>> 500B)

3

4

Certificate Mismatch, FIN 5

Figure 5: Data amplification DDoS attacks.

techniques, were limited to attacking web servers, whereas
our attack can attack a broader range of services (e.g., e-mail
severs). Needless to say, our attack should not be possible
from a typical browser, which should only be connecting to
HTTP speaking endpoints.

More generally, even services that do not speak TLS can
be targeted. Many plain-text email and FTP servers have long
timeouts for every connection; an example list of such (live)
services is provided in Table 2. For instance, consider the
situation where the attacker forces a victim browser to send a
TLS client hello packet to a plain-text email service (i.e., SMTP
port 25) by appropriately setting its Alt-Svc to point to that
service. Even though the email server does not understand
the hello packet, it still keeps the connection open for as long
as the browser requests–30-40 seconds, after which point the
browser itself typically terminates the connection. If enough
victim browsers are made to target a server, it may be possible
to exhaust all available connections on the target server as yet
another denial of service.

Both Firefox and Tor have confirmed this issue and have
instituted the patch we suggest in Section 4.7.

facebook.com

orig.tracking.com

google.com

x029.tracking.com

victim

GET index

<iframe src=orig.tracking.com>

GET iframe

Alt­Svc: x029.tracking.com 

GET index

<iframe src=orig.tracking.com>

GET iframe

HTML response

Figure 6: Third party tracking using Alt-Svc.

4.4 Tracking

By specifying a unique Alt-Svc for each user, and observ-
ing subsequent user requests, an attacker could track a user
both as a first-party website and a third-party iframe or im-
age, as illustrated in Figure 6. On Firefox, if the original
endpoint uses HTTP/1.1 and specifies an Alt-Svc endpoint
for HTTP/2, the Alt-Svc endpoint is always used over the
original, since it presents the newer protocol. Further, the
Alt-Svc header is cached for as long as the attacker specifies
via the ma parameter, persisting across sessions. Hence, as
long as the user does not clear their browsing history, this
can be reliably used for persistent tracking. Similar behavior
is seen for the QUIC protocol with Chrome, and even Brave,
which is supposed to safeguard users from such persistent
tracking. In fact, Alt-Svc tracking also bypasses the built-in
third-party tracking protection mechanisms on Firefox and
Chrome, when such features are enabled. We have notified
all affected vendors of this issue and suggested mitigations to
prevent abuse of the header. The only exception to this attack
is Tor, which disallows disk persistence and supports first-
party cache isolation, thus preventing any cross-session and
third-party tracking, but still allowing same-session first-party
tracking.

Finally, since the Alt-Svc header allows specifying a
unique IP address and port combination, an ISP, which can-
not decrypt connection data, can track the use of a unique
Alt-Svc header. Most hardware vendors today randomize
MAC addresses, a common tracking identifier of recent use,
making Alt-Svc an attractive alternative [3, 12]. In a sample
use-case, an ISP can embed within its network login page
a tracking iframe that specifies a unique Alt-Svc as in
Figure 7. This makes the victim cache the unique Alt-Svc
header for the tracking domain as part of the “planting phase”
noted as Step 1 in Figure 7. In the “tracking” phase (Step
2 in the figure), the ISP (and this could be a different ISP
than before) inserts the same tracking iframe into their net-
work login page and checks which unique Alt-Svc endpoint
the client loads. Unique third-party cookies could perform
iframe tracking in a similar manner, but they are currently



ISP	1

victim login.isp1.com

<iframe	src="orig.tracking.com">

orig.tracking.com

GET	iframe

Alt-Svc:	x029.tracking.com

ISP	X

victim login.ispX.com

<iframe	src="orig.tracking.com">

x029.tracking.com

GET	iframe

HTML	...

ISP	X
(can	see	unique

domain)

Step 2: track

Step 1: plant

Figure 7: Network level tracking using Alt-Svc.

blocked by many services [37]. We tested, and appropriately
disclosed, ISP tracking on Chrome, Brave and Firefox and Tor,
and it is effective on all browsers except Tor (which practices
first-party cache isolation).

4.5 Network level browser history exfiltration

ISPs (or any other active man-in-the-middle attacker) may
also abuse Alt-Svc to exfiltrate a browser’s history, without
requiring any user interaction.

This history exfiltration attack involves a technique sim-
ilar to the network level tracking presented in Section 4.4.
Let us assume that the ISP wants to know if a particular
user visited www.illegal.com sometime in the past (while
on a different ISP that was outside the window of obser-
vation of the current ISP). For the sake of exposition, as-
sume that www.illegal.com also sets an Alt-Svc header
that points to its load-balancer alt.illegal.com. Now all
the ISP needs to be able to do is to insert an image or iframe
from www.illegal.com within their login web page (or any
other webpage that they control). Then the ISP needs to mon-
itor from where the image/iframe is loaded –the original
domain, or the Alt-Svc domain. If it is loaded from the
Alt-Svc endpoint, then the user must have visited the website
before because there is no other way for the user’s browser to
know of the Alt-Svc endpoint than to have cached it from a
prior visit. Otherwise, the user has not visited the website be-
fore. The granularity with which the ISP can exfiltrate history
depends on the ma value set in the website’s Alt-Svc, which
is as short as 4 weeks for websites like the Google search
engine.

4.6 Triggering anomaly false positives on In-
trusion Detection Systems

Our port access capabilities might be useful in triggering
Intrusion Detection Systems (IDSs). An attacker need only
specify Alt-Svc values for the target service, and let the vic-
tims visit the malicious website to initiate connections to the
Alt-Svc endpoint. The victim could, for example, be forced
to connect to unusual ports (like port 0 through Firefox or
Tor), access long chains of consecutive ports (mimicking a
port scan), or send UDP-traffic to services not typically expect-
ing it. All of these unusual behaviors may trigger some IDS
systems, adding to their false positive maintenance load. Of
course, the effectiveness of this approach depends on the spe-
cific configuration of a given IDS, and thus we only present it
as a potential malicious use-case for the Alt-Svc header.

4.7 Mitigations

Many of the issues discussed about Alt-Svc are fundamen-
tal to its design, and so mitigations are not straightforward.
Nevertheless, there are a few fixes that can be employed. First
of all, like Chrome and Brave, Firefox and Tor should make
Alt-Svc headers adhere to the same port blacklist as regular
URLs [22]. Indeed, Firefox lets a browser access any and
every port through an Alt-Svc header, whereas it blacklists
certain ports otherwise. Blocking popular non-HTTP ports will
make distributed port scanning of these ports a lot harder. It
will also deter DDoS attacks, since ports that are likely to
be running interesting services will no longer be accessible
through Alt-Svc. In response to our disclosure, Mozilla has
updated the blacklist to prevent these two attacks, and pub-
lished this as CVE-2019-11728 [2].

In fact, all browsers should also check both primary do-
mains and alternative service endpoints against their blacklists.
Skipping blacklist checks for Alt-Svc allows an attacker to
load content from malicious blacklisted domains and under-
mines the phishing and malware protections of Safe Browsing.
For the same reasons, website evaluators such as VirusTotal
URLVoid, IPVoid, and Sucuri should also check Alt-Svc end-
points against blacklists. Even automated scanners that assess
the content of websites to generate these domain blacklists
should be Alt-Svc aware due to the “two-faced" content that
Alt-Svc headers make possible.

Further, like Tor, all browsers–Firefox, Chrome and Brave,
should practice first-party cache isolation for the Alt-Svc
header, which can prevent the tracking and history exfiltration
attacks presented in Section 4.4 and 4.5. If not this, then
they should at least prevent websites from setting Alt-Svcs
through third-party content like iframes and images. This
would help impede third-party tracking.

Finally, all browser vendors should also present a user op-
tion to disable Alt-Svc headers–currently this feature is en-
abled by default and cannot be disabled by users.



5 Conclusion

We have shown how the relatively new but widely adopted
Alt-Svc header can be abused for various attacks, including
distributed port-scanning (of external and internal networks),
bypassing domain blacklists, DDoS of non-HTTP services,
history exfiltration and tracking (on first- and third-party web-
sites, and at the network layer), and possibly triggering In-
trusion Detection Systems. This is despite (i) a considerable
history of HTTP attacks and defenses over almost thirty years,
(ii) development by independent, highly competent, browser-
developer teams across several companies, and (iii) the sim-
plicity and straightforwardness of the header. In the immedi-
ate mode, we hope that our mitigations will be implemented
to resolve as many of these attacks as possible. However, as
Alt-Svc gains support throughout the browser community,
we further hope that this work highlights and adds to the types
of concerns that should be considered.

References

[1] Advanced ddos attack protection. https://www.
cloudflare.com/ddos/.

[2] CVE-2019-11728: Mozilla found. security advisory.

[3] Privacy: Mac randomization. https://source.
android.com/devices/tech/connect/wifi-mac-
randomization.

[4] Disable tls session resumption and session ids.
https://trac.torproject.org/projects/tor/
ticket/4099, 2011.

[5] Persistent and unblockable cookies using http headers.
https://www.nikcub.com/posts/persistantand-
unblockable-cookies-using-http-headers,
2011.

[6] Ddos attack from browser-based botnets that lasted
for 150 hours. https://thehackernews.com/2013/
11/ddos-attack-from-browser-based-botnets.
html, 2013.

[7] Issue 392575: Implement the alt-svc spec.
https://bugs.chromium.org/p/chromium/
issues/detail?id=392575, 2014.

[8] http/2 alt-svc support. https://bugzilla.mozilla.
org/show_bug.cgi?id=1003448, 2015.

[9] Non traditional costs of financial fraud. https:
//www.saveandinvest.org/sites/default/
files/Non-Traditional-Costs-Of-Financial-
Fraud-Survey-Findings.pdf, 2015.

[10] List of public corporations by market capital-
ization. https://en.wikipedia.org/wiki/
List_of_public_corporations_by_market_
capitalization, 2019.

[11] Furkan Alaca and Paul C Van Oorschot. Device finger-
printing for augmenting web authentication: classifica-
tion and analysis of methods. In Proceedings of the 32nd
Annual Conference on Computer Security Applications,
pages 289–301. ACM, 2016.

[12] Nick Arnottt. What’s really happening with ios 8 mac
address randomization? https://www.imore.com/
closer-look-ios-8s-mac-randomization, 2014.

[13] Mika D Ayenson, Dietrich James Wambach, Ashkan
Soltani, Nathan Good, and Chris Jay Hoofnagle. Flash
cookies and privacy ii: Now with html5 and etag
respawning. Available at SSRN 1898390, 2011.

[14] David Baron. :visited support allows queries into
global history. https://bugzilla.mozilla.org/
show_bug.cgi?id=147777, 2012.

[15] Google Safe Browsing. Making the world’s information
safely accessible. https://safebrowsing.google.
com/.

[16] Tomasz Bujlow, Valentín Carela-Español, Josep Sole-
Pareta, and Pere Barlet-Ros. A survey on web tracking:
Mechanisms, implications, and defenses. Proceedings
of the IEEE, 105(8):1476–1510, 2017.

[17] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu.
Deterministic browser. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 163–178. ACM, 2017.

[18] Hanqing Chen. Privacy tools: How to block online
tracking. https://www.propublica.org/article/
privacy-tools-how-to-block-online-tracking,
2014.

[19] Daniel Cid. More than 162,000 wordpress
sites used for distributed denial of service at-
tack. https://blog.sucuri.net/2014/03/
more-than-162000-wordpress-sites-used-for-
distributed-denial-of-service-attack.html.

[20] A. Dabrowski, G. Merzdovnik, N. Kommenda, and
E. Weippl. Browser history stealing with captive wi-fi
portals. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 234–240, May 2016.

[21] Anupam Das, Nikita Borisov, and Matthew Caesar.
Tracking mobile web users through motion sensors: At-
tacks and defenses. In NDSS, 2016.

https://www.cloudflare.com/ddos/
https://www.cloudflare.com/ddos/
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://trac.torproject.org/projects/tor/ticket/4099
https://trac.torproject.org/projects/tor/ticket/4099
https://www.nikcub.com/posts/persistantand-unblockable-cookies-using-http-headers
https://www.nikcub.com/posts/persistantand-unblockable-cookies-using-http-headers
https://thehackernews.com/2013/11/ddos-attack-from-browser-based-botnets.html
https://thehackernews.com/2013/11/ddos-attack-from-browser-based-botnets.html
https://thehackernews.com/2013/11/ddos-attack-from-browser-based-botnets.html
https://bugs.chromium.org/p/chromium/issues/detail?id=392575
https://bugs.chromium.org/p/chromium/issues/detail?id=392575
https://bugzilla.mozilla.org/show_bug.cgi?id=1003448
https://bugzilla.mozilla.org/show_bug.cgi?id=1003448
https://www.saveandinvest.org/sites/default/files/Non-Traditional-Costs-Of-Financial-Fraud-Survey-Findings.pdf
https://www.saveandinvest.org/sites/default/files/Non-Traditional-Costs-Of-Financial-Fraud-Survey-Findings.pdf
https://www.saveandinvest.org/sites/default/files/Non-Traditional-Costs-Of-Financial-Fraud-Survey-Findings.pdf
https://www.saveandinvest.org/sites/default/files/Non-Traditional-Costs-Of-Financial-Fraud-Survey-Findings.pdf
https://en.wikipedia.org/wiki/List_of_public_corporations_by_market_capitalization
https://en.wikipedia.org/wiki/List_of_public_corporations_by_market_capitalization
https://en.wikipedia.org/wiki/List_of_public_corporations_by_market_capitalization
https://www.imore.com/closer-look-ios-8s-mac-randomization
https://www.imore.com/closer-look-ios-8s-mac-randomization
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://safebrowsing.google.com/
https://safebrowsing.google.com/
https://www.propublica.org/article/privacy-tools-how-to-block-online-tracking
https://www.propublica.org/article/privacy-tools-how-to-block-online-tracking
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html


[22] MDN Web Docs. Mozilla port blocking.
https://developer.mozilla.org/en-US/docs/
Mozilla/Mozilla_Port_Blocking.

[23] Peter Eckersley. How unique is your web browser? In
International Symposium on Privacy Enhancing Tech-
nologies Symposium, pages 1–18. Springer, 2010.

[24] Edward W Felten and Michael A Schneider. Timing
attacks on web privacy. In Proceedings of the 7th ACM
conference on Computer and communications security,
pages 25–32. ACM, 2000.

[25] David Fifield and Serge Egelman. Fingerprinting web
users through font metrics. In International Conference
on Financial Cryptography and Data Security, pages
107–124. Springer, 2015.

[26] Internet Engineering Task Force. Http alternative ser-
vices. https://tools.ietf.org/html/rfc7838.

[27] Internet Engineering Task Force. Opportunistic se-
curity for http/2. https://tools.ietf.org/html/
rfc8164.

[28] Dan Goodin. How a website flaw turned 22,000
visitors into a botnet of ddos zombies. https:
//arstechnica.com/information-technology/
2014/04/how-a-website-flaw-turned-22000-
visitors-into-a-botnet-of-ddos-zombies/,
2014.

[29] J Grossman and M Johansen. Million browser botnet
(2013), 2013.

[30] Jeremiah Grossman. Browser port scanning without
javascript. https://blog.jeremiahgrossman.com/
2006/11/browser-port-scanning-without.html.

[31] Jeremiah Grossman. Tracking users with basic auth.
http://jeremiahgrossman.blogspot.com.es/
2007/04/trackingusers-without-cookies.htm,
2007.

[32] Leviathan Security Group. The double-edged
sword of hsts persistence and privacy. http://
www.leviathansecurity.com/blog/the-double-
edged-swordof-hsts-persistence-and-privacy,
2012.

[33] Ossi Herrala. How did i turn my browser
into a port scanner? tricksy but doable.
https://medium.com/hownetworks/how-did-
i-turn-my-browser-into-a-port-scanner-
tricksy-but-doable-c37db85f9adc.

[34] Gareth Heyes. Exposing intranets with re-
liable browser-based port scanning. https:

//portswigger.net/blog/exposing-intranets-
with-reliable-browser-based-port-scanning.

[35] IPVoid. Ip blacklist check. https://www.ipvoid.
com/ip-blacklist-check/.

[36] Ryo Kamikubo and Taiichi Saito. Browser-based ddos
attacks without javascript. International Journal of Ad-
vanced Computer Science and Applications, 8(12):276–
280, 2017.

[37] Matt Klein. How to block third-party cookies in
every web browser. https://www.howtogeek.com/
241006/how-to-block-third-party-cookies-
in-every-web-browser/.

[38] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In 25th {USENIX} Se-
curity Symposium ({USENIX} Security 16), pages 463–
480, 2016.

[39] Declan Mccullagh. Exclusive: Google’s
web mapping can track your phone. https:
//www.cnet.com/news/exclusive-googles-
web-mapping-can-track-your-phone/, 2016.

[40] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Ho-
vav Shacham. Fingerprinting information in javascript
implementations. In Proceedings of W2SP, volume 2,
2011.

[41] Support Mozilla. How does built-in phishing and
malware protection work? https://safebrowsing.
google.com/.

[42] Martin Mulazzani, Philipp Reschl, Markus Huber,
Manuel Leithner, Sebastian Schrittwieser, Edgar Weippl,
and FC Wien. Fast and reliable browser identification
with javascript engine fingerprinting. In Web 2.0 Work-
shop on Security and Privacy (W2SP), volume 5, 2013.

[43] Dror Nahumi. Web isolation – a paradigm
change in enterprise cyber attack defense. https:
//www.nvp.com/blog/web-isolation-paradigm-
change-enterprise-cyber-attack-defense/,
2016.

[44] The Chromium Project. Ports blocked
on chromium. https://chromium.
googlesource.com/chromium/src/+/
ba78b86d7b4ef5140ef9838d41ca471b3075ef32/
net/base/port_util.cc.

[45] Get Cyber Safe. Phishing: How many take the
bait? https://www.getcybersafe.gc.ca/cnt/
rsrcs/nfgrphcs/nfgrphcs-2012-10-11-en.aspx.

https://developer.mozilla.org/en-US/docs/Mozilla/Mozilla_Port_Blocking
https://developer.mozilla.org/en-US/docs/Mozilla/Mozilla_Port_Blocking
https://tools.ietf.org/html/rfc7838
https://tools.ietf.org/html/rfc8164
https://tools.ietf.org/html/rfc8164
https://arstechnica.com/information-technology/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
https://arstechnica.com/information-technology/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
https://arstechnica.com/information-technology/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
https://arstechnica.com/information-technology/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
https://blog.jeremiahgrossman.com/2006/11/browser-port-scanning-without.html
https://blog.jeremiahgrossman.com/2006/11/browser-port-scanning-without.html
http://jeremiahgrossman.blogspot.com.es/2007/04/trackingusers-without-cookies.htm
http://jeremiahgrossman.blogspot.com.es/2007/04/trackingusers-without-cookies.htm
http://www.leviathansecurity.com/blog/the-double-edged-swordof-hsts-persistence-and-privacy
http://www.leviathansecurity.com/blog/the-double-edged-swordof-hsts-persistence-and-privacy
http://www.leviathansecurity.com/blog/the-double-edged-swordof-hsts-persistence-and-privacy
https://medium.com/hownetworks/how-did-i-turn-my-browser-into-a-port-scanner-tricksy-but-doable-c37db85f9adc
https://medium.com/hownetworks/how-did-i-turn-my-browser-into-a-port-scanner-tricksy-but-doable-c37db85f9adc
https://medium.com/hownetworks/how-did-i-turn-my-browser-into-a-port-scanner-tricksy-but-doable-c37db85f9adc
https://portswigger.net/blog/exposing-intranets-with-reliable-browser-based-port-scanning
https://portswigger.net/blog/exposing-intranets-with-reliable-browser-based-port-scanning
https://portswigger.net/blog/exposing-intranets-with-reliable-browser-based-port-scanning
https://www.ipvoid.com/ip-blacklist-check/
https://www.ipvoid.com/ip-blacklist-check/
https://www.howtogeek.com/241006/how-to-block-third-party-cookies-in-every-web-browser/
https://www.howtogeek.com/241006/how-to-block-third-party-cookies-in-every-web-browser/
https://www.howtogeek.com/241006/how-to-block-third-party-cookies-in-every-web-browser/
https://www.cnet.com/news/exclusive-googles-web-mapping-can-track-your-phone/
https://www.cnet.com/news/exclusive-googles-web-mapping-can-track-your-phone/
https://www.cnet.com/news/exclusive-googles-web-mapping-can-track-your-phone/
https://safebrowsing.google.com/
https://safebrowsing.google.com/
https://www.nvp.com/blog/web-isolation-paradigm-change-enterprise-cyber-attack-defense/
https://www.nvp.com/blog/web-isolation-paradigm-change-enterprise-cyber-attack-defense/
https://www.nvp.com/blog/web-isolation-paradigm-change-enterprise-cyber-attack-defense/
https://chromium.googlesource.com/chromium/src/+/ba78b86d7b4ef5140ef9838d41ca471b3075ef32/net/base/port_util.cc
https://chromium.googlesource.com/chromium/src/+/ba78b86d7b4ef5140ef9838d41ca471b3075ef32/net/base/port_util.cc
https://chromium.googlesource.com/chromium/src/+/ba78b86d7b4ef5140ef9838d41ca471b3075ef32/net/base/port_util.cc
https://chromium.googlesource.com/chromium/src/+/ba78b86d7b4ef5140ef9838d41ca471b3075ef32/net/base/port_util.cc
https://www.getcybersafe.gc.ca/cnt/rsrcs/nfgrphcs/nfgrphcs-2012-10-11-en.aspx
https://www.getcybersafe.gc.ca/cnt/rsrcs/nfgrphcs/nfgrphcs-2012-10-11-en.aspx


[46] Michael Smith, Craig Disselkoen, Shravan Narayan,
Fraser Brown, and Deian Stefan. Browser history re:
visited. In 12th {USENIX} Workshop on Offensive Tech-
nologies ({WOOT} 18), 2018.

[47] The SSL Store. 1.4 million new phishing
websites are created every month. https:
//www.thesslstore.com/blog/1-4-million-
new-phishing-websites-created-every-month/.

[48] Sucuri. Free website malware and security scanner.
https://sitecheck.sucuri.net/.

[49] Jochen Topf. The html form protocol attack. https:
//www.jochentopf.com/hfpa/hfpa.pdf.

[50] Virus Total. Analyze suspicious files and urls to detect
types of malware, automatically share them with the
security community. https://www.virustotal.com/
#/home/url.

[51] Matthew Traudt and Paul Syverson. Does pushing secu-
rity on clients make them safer? hotpets 2019, 2019.

[52] Morgan True. Church street tracking of
visitors via wi-fi raises privacy concerns.
https://vtdigger.org/2016/03/16/church-
street-tracking-of-visitors-via-wi-fi-
raises-privacy-concerns/, 2016.

[53] Krassi Tzvetanov. Wordpress pingback attack.
https://www.a10networks.com/resources/
articles/wordpress-pingback-attack, 2016.

[54] UrlVoid. Website reputation checker. https://www.
urlvoid.com.

[55] Patrick Verleg, MCJD van Eekelen, and HPE Vranken.
Cache cookies: searching for hidden browser storage.
https://www.cs.ru.nl/bachelors-theses/2014/
Patrick_Verleg___3049701___Cache_Cookies_
searching_for_hidden_browser_storage.pdf,
2014.

[56] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jack-
son. I still know what you visited last summer: Leaking
browsing history via user interaction and side channel
attacks. In 2011 IEEE Symposium on Security and Pri-
vacy, pages 147–161, May 2011.

[57] Berend-Jan Wever. Localnetworkscanner. https://
github.com/SkyLined/LocalNetworkScanner/.

[58] Michal Zalewski. p0f v3 (version 3.09b). http://
lcamtuf.coredump.cx/p0f3/, 2014.

https://www.thesslstore.com/blog/1-4-million-new-phishing-websites-created-every-month/
https://www.thesslstore.com/blog/1-4-million-new-phishing-websites-created-every-month/
https://www.thesslstore.com/blog/1-4-million-new-phishing-websites-created-every-month/
https://sitecheck.sucuri.net/
https://www.jochentopf.com/hfpa/hfpa.pdf
https://www.jochentopf.com/hfpa/hfpa.pdf
https://www.virustotal.com/#/home/url
https://www.virustotal.com/#/home/url
https://vtdigger.org/2016/03/16/church-street-tracking-of-visitors-via-wi-fi-raises-privacy-concerns/
https://vtdigger.org/2016/03/16/church-street-tracking-of-visitors-via-wi-fi-raises-privacy-concerns/
https://vtdigger.org/2016/03/16/church-street-tracking-of-visitors-via-wi-fi-raises-privacy-concerns/
https://www.a10networks.com/resources/articles/wordpress-pingback-attack
https://www.a10networks.com/resources/articles/wordpress-pingback-attack
https://www.urlvoid.com
https://www.urlvoid.com
https://www.cs.ru.nl/bachelors-theses/2014/Patrick_Verleg___3049701___Cache_Cookies_searching_for_hidden_browser_storage.pdf
https://www.cs.ru.nl/bachelors-theses/2014/Patrick_Verleg___3049701___Cache_Cookies_searching_for_hidden_browser_storage.pdf
https://www.cs.ru.nl/bachelors-theses/2014/Patrick_Verleg___3049701___Cache_Cookies_searching_for_hidden_browser_storage.pdf
https://github.com/SkyLined/LocalNetworkScanner/
https://github.com/SkyLined/LocalNetworkScanner/
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/

	Introduction
	Overview of abuse

	Background
	Why Alt-Svc?
	Browser implementation
	Uses in the wild

	Related Work
	Attacks
	Distributed port scanning
	Bypassing malware/phishing protections
	Distributed Denial of Service
	Tracking
	Network level browser history exfiltration
	Triggering anomaly false positives on Intrusion Detection Systems
	Mitigations

	Conclusion

