
This paper is included in the Proceedings of the
18th USENIX WOOT Conference on Offensive Technologies.

August 12–13, 2024 • Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the
Proceedings of the 18th USENIX WOOT
Conference on Offensive Technologies

is sponsored by USENIX.

SoK: On the Effectiveness of Control-Flow
Integrity in Practice

Lucas Becker and Matthias Hollick, Technical University of Darmstadt;
Jiska Classen, Hasso Plattner Institute, University of Potsdam

https://www.usenix.org/conference/woot24/presentation/becker

SoK: On the Effectiveness of Control-Flow Integrity in Practice

Lucas Becker
Technical University of Darmstadt

lbecker@seemoo.de

Matthias Hollick
Technical University of Darmstadt

mhollick@seemoo.de

Jiska Classen
Hasso Plattner Institute, University of Potsdam

jiska.classen@hpi.de

Abstract
Complex programs written in memory-unsafe languages tend
to contain memory corruption bugs. Adversaries commonly
employ code-reuse attacks to exploit these bugs. Control-flow
Integrity (CFI) enforcement schemes try to prevent such at-
tacks from achieving arbitrary code execution. Developers
can apply these schemes to existing code bases by setting
compiler flags, requiring less effort than rewriting code in
memory-safe languages. Although many works propose CFI
schemes and attacks against them, they paid little attention
to schemes deployed to end-users. We provide a systematic
categorization and overview of actively used CFI solutions.
We then conduct a large-scale binary analysis on 33 Android
images of seven vendors and two Windows builds for differ-
ent hardware architectures to study CFI utilization in practice.
We analyzed over 77,000 files on the Android images. We
found that depending on the variant, up to 94% of binaries
and 93% of libraries are unprotected. All analyzed binaries
depend on unprotected libraries, therefore rendering CFI en-
forcement ineffective. Further, we look at the development
of CFI coverage over time on Android and find it stagnating.
CFI roll-out is closer to complete on the Windows builds, but
not all files are protected yet (2.63% unprotected). Conse-
quently, our results show that the adoption of CFI protection
is lacking, putting devices at risk. Additionally, our results
highlight a large gap between the state of the art in research
and the reality of deployed systems.

1 Introduction

Memory safety vulnerabilities make up two thirds of security
issues in large code bases across the industry [45]. Despite
the ongoing effort to prevent and mitigate memory corruption
attacks, adversaries exploit these memory corruption bugs to
take over computer systems. Rewriting memory-unsafe code
in memory-safe languages reduces this attack surface [101].
However, the tremendous engineering effort of, e.g., porting
C/C++ code to Rust, will still take years and is often infea-
sible on a limited budget. As a generic solution fitting most

code bases, compiler toolchains add checks meant to prevent
the exploitation of memory safety vulnerabilities. Control-
flow Integrity (CFI) enforcement schemes are one instance
of such checks. CFI checks prevent code-reuse attacks by
limiting the allowed targets for indirect control-flow transfers.
Ideally, this means that the program flow stays within the
intended boundaries. Because the precise and sound points-to
analysis required to enforce this property is generally undecid-
able [93], practical CFI schemes have to settle for less precise
policies. Implementations must be efficient to be deployed
on real-world systems while also granting sufficient security
guarantees. As a result of this trade-off, coarse-grained CFI
schemes can often be observed in practice, even though their
ineffectiveness is well known [31]. We address the following
research questions in this paper:

1. Which CFI schemes are found in practice?

2. Where and how consequently are they deployed?

3. What are their capabilities and limitations to prevent
attacks?

In contrast to previous works comparing and benchmark-
ing CFI schemes [19, 33, 65, 66, 78, 105, 114, 123], we study
real-world ecosystems that deploy CFI mitigations. With this
approach, we address how effectively CFI enforcement is de-
ployed on actual systems rather than comparing academic re-
search prototypes. For that, we study three different software-
and four hardware-based CFI implementations on their cor-
responding platforms. We primarily focus on CFI schemes
targeting user-space programs, even though most of them are
used to protect the operating system kernel as well, since
protecting OS kernels requires a different threat model. We
also examine three shadow stack designs used to implement
backwards-edge CFI. Numerous choices are involved in de-
signing CFI enforcement schemes. These choices include
which kind of control-flow transfers are protected, how the al-
lowed Control-flow Graph (CFG) is derived, and whether spe-
cial hardware features are required. CFI enforcement opens
up a considerable research area, with a vast amount of differ-
ent proposals [2, 24, 34, 46, 52, 59, 61, 62, 68, 72, 79, 82, 83,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 189

https://orcid.org/0009-0004-5437-5067
https://orcid.org/0000-0002-9163-5989

87, 88, 110, 117, 118, 127]. Most of these proposals are not
widely deployed in practice, as they depend on specialized
hardware, require intrusive changes, come with a significant
performance overhead, or are closed-source. Many promising
academic solutions have not been adopted in practice and
were not maintained over time. Following the approaches
laid out by these prototypes, all of the most common operat-
ing systems [100] support some form of CFI enforcement in
2024. We identified the most notable solutions currently used
in practice as:

• LLVM Clang CFI [107,110], used primarily on Android
and the Linux Kernel,

• Windows Control Flow Guard (WCFG) [76] and its suc-
cessor eXtended Flow Guard (XFG) [120],

• ARMv8 Pointer Authentication (PA) [96] including
Branch Target Identification (BTI), utilised by recent
Apple Systems on a Chip (SoCs) starting with the A12,
S4, and M1 chips [11], by Android, and by Windows on
ARM [121]; and

• Intel Control-flow Enforcement Technology (CET) [54,
56], supported on Intel processors starting with the 11th
Gen [55] and used by Windows and Linux.

There are also a few other commercial offerings, such as the
Reuse Attack Protector (RAP) [49] and similar. We do not
include them in this work, as it is difficult to reason about
how frequently they are deployed.

We find that many binaries and libraries are missing appro-
priate protection, despite the compilation toolchains for these
systems supporting them. On Android, we find that every in-
vestigated binary depends on at least one unprotected library.
Overall, less than 17% of the binaries and libraries in recent
firmware images are CFI protected. On Windows, CFI cov-
erage is much higher, but a fine-grained CFI implementation
is only available on preview builds. In summary, our main
contributions are as follows:

• We systematize prevalent CFI solutions in practice, in-
cluding LLVM’s CFI scheme and Microsoft’s closed-
source implementations WCFG and XFG on Windows.

• We study CFI coverage, security characteristics, and ef-
fectiveness in practice by running a large-scale binary
analysis on Android and Windows binaries.

• We analyse Android firmware releases of the same de-
vices to get insights into the development over time.

2 CFI Design Space

Approaches to CFI Enforcement CFI schemes prevent devia-
tion from a program’s control flow, assuming an attacker who
can divert the control flow by exploiting memory corruption
bugs. Figure 1 shows a simplified CFG example, where basic

CFI Policy

C

A

DB

L
egal

ForbiddenLegal

Figure 1: Simplified CFG under a CFI policy. Flows from A
to D are unintended by the programmer and are only made
possible by memory corruption attacks.

block A is allowed to call blocks B and C, but not block D.
Calling into D from A violates the CFI policy. Block D could,
for example, be the system() function on Unix-like systems.

To protect indirect control-flow transfers, most CFI en-
forcement schemes follow the same basic pattern: First, a
program-specific CFG is derived from the policy specifying
the rules for valid control-flow transfers. Then, during run-
time, this CFG is enforced by guard code, which checks that
a control-flow transfer abides by the CFG [123]. If a viola-
tion of the CFG is detected, the program can be terminated
to prevent successful attacks. Some recent proposals also re-
fine the CFG during runtime [34, 52, 83, 115]. This allows to
increase the precision of the CFG, for example, to achieve
forms of context sensitivity. Although CFI includes forward-
and backward-edge protection, this approach is often only
applied to forward-edge flows, while shadow stacks are the
preferred method to protect backward-edge transfers [21].
They can leverage that the return address after a call instruc-
tion is known to be the address of the subsequent instruction,
language features that require special stack unwinding aside.

Compile-time Instrumentation vs. Binary Rewriting
Guard code can be added directly during a program’s com-
pilation or by applying binary rewriting or instrumentation
techniques. Hereby, there is a trade-off between applicability
and precision: Compiler-based CFI implementations require
the source code of applications to add protection, which im-
plies that protection can only be added to commercial off-the-
shelf software by the vendor itself. However, binary rewriting
suffers from higher complexity and usually a loss of preci-
sion [85,114]. Seemingly for this reason, we observed that all
CFI schemes found in practice are compiler-based.

Policy Precision CFI schemes are often categorized into
coarse- and fine-grained schemes. We adopt the definition
from [83], wherein the number of supported Equivalence
Classes is used as the decisive characteristic. Targets of indi-
rect control-flow transfers are divided into classes so that if a
target is reachable from a given control-flow transfer, every
other target in the same equivalence class is a valid target
as well, but others are not. Coarse-grained CFI schemes sup-
port only a program-independent and typically low number
of equivalence classes. Fine-grained CFI schemes support a
program-dependent number of equivalence classes, allowing

190 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 1: Overview of CFI schemes used in practice

Scheme Edge Policy Granularity Impl. Open-source Platforms

LLVM CFI [107, 110] → Type-based Fine SW ✓ All LLVM supported
Control Flow Guard [76] → Marked function Coarse SW ✗ Windows
eXtended Flow Guard [120] → Type-based Fine SW ✗ Windows
Pointer Authentication [12, 96] ⇄ Implementation dep. n/a HW G# ARMv8.3-A, ARMv8.1-M
Branch Target Identification [12] → Label-based (#l=3) Coarse HW G# ARMv8.5-A, ARMv8.1-M
Indirect Branch Tracking [56] → Label-based (#l=1) Coarse HW G# Intel 11th / 12th gen.
FineIBT [44] → Implementation dep. n/a Hybrid G# Linux with IBT support
LLVM Shadow Call Stack [109] ← Shadow Stack n/a SW ✓ ARM-based
SafeStack [64, 106] ← Shadow Stack n/a SW ✓ All LLVM supported
CET Shadow Stack [56, 97] ← Shadow Stack n/a HW G# Intel 11th / 12th gen.

“Edge” specifies the protected control-flow transfers: backward-edge (←), forward-edge (→), and both (⇄). The “Impl.” column shows
whether a scheme is implemented in software (SW) or hardware (HW). G# means that open-source implementations of the compiler and
runtime components exist, but the hardware implementation is closed-source. For hardware schemes, “platforms” specifies the minimum
CPU or instruction set.

each indirect control-flow transfer to have its own targets.
Evaluating CFI Effectiveness How to precisely quantify

the effectiveness of CFI schemes is an open research ques-
tion. To address this issue, several metrics to quantize secu-
rity guarantees have been proposed, most notably Average
Indirect target Reduction (AIR) [127], Average Indirect tar-
gets Allowed (AIA) [46], Relative Average Indirect target Re-
duction (RAIR) [117], Calltarget Reduction (CTR) [81], and
Quantitative Security (QS) [19]. The common shortcoming
of these metrics is that they only consider the target reduction
while ignoring the quality of the corresponding targets. Conse-
quently, good values in these metrics do not guarantee better
security, as even with CFI, there can remain valid paths to
divert the program flow maliciously. CFInsight [43] uses the
length and number of such paths reaching syscalls to judge
the ease of mounting attacks. We argue that this approach
shares the same issue as the other metrics since it remains
unclear which non-syscall gadgets are available and how path
lengths correspond to exploitability.

Another approach is to collect gadgets useful to an ad-
versary and measure their availability with and without CFI
enforcement [30, 97]. In this case, it has to be defined which
gadgets are considered useful. Multiple approaches exist to
analyze gadget quality by determining the expressiveness of
gadgets and their capabilities to set up function calls [18, 42].
We are unaware of any CFI-related work that uses such met-
rics for their evaluation.

3 Adversary Model and Known Attacks

CFI enforcement is a mitigation technique that aims to pre-
vent code-reuse attacks by restricting the allowed targets of
indirect control-flow transfers [2]. Therefore, CFI enforce-
ment is intended to prevent even a strong adversary from
executing arbitrary code [2, 64, 97, 110]. This adversary can
read and write from/to arbitrary addresses in memory by ex-

ploiting already existing memory corruption vulnerabilities.
The CFI adversary model assumes that by using these ca-
pabilities, the adversary can break Address Space Layout
Randomisation (ASLR) [84, 128]. By common assumption,
the adversary can perform arbitrary calculations, for example,
by sending data to their server or by abusing existing scripting
capabilities as present in web browsers. Since an adversary
with arbitrary write capabilities could overwrite any checks,
the enforcement of a Write ⊕ Execute (W⊕X) policy [104]
is typically assumed to protect the integrity of code sections.
Because CFI focuses on protecting individual control-flow
transfers, CFI schemes generally cannot prevent data-only
attacks, which only modify non-control data [21, 23].

Attacks Several generic attacks on CFI are known in the
literature. The first category of attacks exploits imprecision in
the enforced CFG. For instance, [31] studies Call-preceded
Gadgets, assuming that the backward-edge protection only
restricts returning to a legitimate call site but does not restrain
the choice of call sites. This does not hold for shadow stacks,
and only to some extent for PA, as discussed in Section 4.2.1,
and is hence not fully applicable to programs that are ade-
quately protected with either a hardware-based shadow call
stack or PA. In the same category, [50] analyses the availabil-
ity of so called Entry Point Gadgets, which are sequences of
useful instructions that start at a function’s entry point and end
with an indirect call or jump. Similarly, [38] introduces the
notion of Argument Corruptible Indirect Call Site (ACICS)
gadgets, which are pairs of indirect call sites and security-
sensitive target functions that are reachable from the corre-
sponding call sites. As the name suggests, a core property of
these ACICS gadgets is that the attacker can control the argu-
ments of the corrupted call site to gain additional capabilities
(e.g., arbitrary code execution in the best case).

Fundamentally, the previously covered CFI schemes can
only limit the number of available gadgets, not guarantee
their absence. For coarse-grained schemes such as WCFG

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 191

and Indirect Branch Tracking (IBT), this means that the set of
potential entry points of ACICS gadgets consists of all func-
tions that are marked as valid call targets. Fine-grained CFI
implementations like Clang’s schemes and XFG limit valid
call targets per call site even more. Their protection implies
that entry point gadgets must be chained so that the associated
type of the call site at the end of the gadget matches the type
of the next gadget or the gadget dispatching function. This
exact scenario is covered by [41], which uses so-called Linker
Gadgets to traverse the CFG in a policy-adhering fashion. Fi-
nally, the Counterfeit Object-oriented Programming (COOP)
technique [95] chains fake objects with virtual function table
pointers pointing to the functions to be called. This approach
only works if C++ semantics are not adequately enforced, and
hence is only applicable to WCFG, BTI or IBT, but not the
type-based LLVM CFI and XFG schemes.

Besides these works, there are studies covering interac-
tions between compilers, runtime, and CFI schemes leading
to bypasses. Such interactions include the compiler spilling
sensitive registers to the unprotected stack [29], compiler-
introduced double-fetches that enable Time-of-check to Time-
of-use (TOCTOU) attacks [122], and exception handling
mechanisms that can be abused for control-flow hijack-
ing [36]. Further works focus on data-only attacks to bypass
CFI [21, 23, 58]. Such attacks break most CFI schemes since
they fall outside the typical CFI adversary model.

4 CFI Scheme Internals

In this section we categorize existing schemes that we found
relevant in practice and describe how they work. Refer to
Table 1 for an overview.

4.1 Software-based Forward-edge CFI
CFI mechanisms for forward- and backward-edge protection
can be implemented either purely in software [19, 66, 123]
or based on hardware support [33, 105]. From the security
perspective, we found that existing hardware-based forward-
edge CFI mechanisms are not inherently more secure than
schemes implemented entirely in software. Although Clerq et
al. argue in [33] that software CFI instrumentation code can be
bypassed if the adversary can change the page permissions of
code to writable, this also applies to hardware-based schemes
such as Intel’s CET or ARM’s PA and BTI. In addition, there
is already the W⊕X policy to prevent such attacks, which
is typically hardware-enforced [104]. Under it, an adversary
must first overcome CFI to disable this policy, at which point
CFI has already been broken.

4.1.1 LLVM Clang CFI

LLVM’s CFI implementation [107, 110] is part of the com-
piler front-end Clang and supports languages in the C fam-

ily, including C++. It protects indirect function calls, calls
via pointers to member functions, virtual function calls, non-
virtual function calls using polymorphic classes (i.e., classes
declaring or inheriting virtual functions), and invalid casts of
polymorphic classes1.

The enforced policy follows the type system of the source
language, e.g., a function pointer of a specific type is only
allowed to call functions with a compatible signature. Conse-
quently, all unique function signatures and class hierarchies
form their own equivalence classes, and LLVM CFI is, there-
fore, a fine-grained CFI scheme. LLVM’s CFI checks can
be divided into inlined local checks performed in the current
module and Cross-Dynamic Shared Object (CDSO) checks
crossing library boundaries.

Local CFI Local checks use a bit-vector-based approach.
For indirect function calls involving function pointers or point-
ers to member functions, a jump table is generated during
compilation for each unique function signature, which con-
tains all related address-taken or exported functions. In addi-
tion, each call site is instrumented with instructions that check
whether the call target is a member of the table belonging to
the static type of the function pointer. Virtual and non-virtual
function calls and casts to polymorphic classes are checked
with a bit-vector, encoding valid vtable address points for the
corresponding class type [108]. This more elaborate check
is necessary because sub-classes may implement new virtual
functions, resulting in vtables of different sizes, so a simple
alignment and range check does no longer work.

Cross-DSO CFI When the program calls an exported func-
tion of another module, its type identifier must be derived to
perform the CFI check. Hence, a direct table- or vtable- based
check is infeasible in such a case, as the address of the correct
table is unknown. To solve this problem, CDSO-compatible
modules export the __cfi_check function, which is invoked
by the calling module with the type identifier of the function
pointer or class used in the checked call-site, and the address
of the target function. This function can then check to confirm
that the given target address has a matching type.

The corresponding module must be determined to find the
correct __cfi_check function belonging to a target address.
For that, CDSO-compatible programs maintain a CFI-shadow
mapping that allows getting the __cfi_check address of the
module a given address is located in. The lookup of the entry
in the CFI-shadow and calling the correct __cfi_check func-
tion is handled by __cfi_slowpath. At runtime, functions
affecting loaded modules such as dlopen must be intercepted
to adjust the CFI-shadow mapping accordingly.

We find that the necessity to update the CFI-shadow map-
ping introduces a potential race condition, which we discuss
further in Section A.2 in the appendix.

Unprotected Libraries LLVM’s CDSO CFI scheme allows
loading unprotected libraries (i.e., without __cfi_check). In

1We focus on control-flow transfers in this paper, as casts are not a typical
concern of CFI. LLVM just uses the same mechanism to check them.

192 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

this case, the corresponding library is marked as unchecked in
the shadow mapping, and indirect calls to targets in it always
succeed. This principle applies even to protected indirect
calls that are not intended to target functions in this library. If
such calls are corrupted to transfer into an unprotected library,
__cfi_check will dispatch them successfully, because no
information is available regarding valid targets in this library.
As a consequence, mixing protected and unprotected libraries
diminishes CFI’s security guarantees, as large libraries are
bound to contain useful gadgets. Our evaluation in Section 5.1
shows that this is a serious issue across all major Android-
based platforms.

4.1.2 Windows Control Flow Guard

Microsoft Windows has a proprietary CFI implementation,
which is integrated into the operating system itself. It is called
Control Flow Guard (WCFG) [76], and was first released in
November 2014 [14]. WCFG enforces a CFI policy where
indirect calls must target a known address-taken or exported
function. This means there is only a single equivalence class,
and WCFG is hence a coarse-grained CFI scheme. Indirect
calls, including virtual calls using a vtable, are either protected
with a call to a check function or entirely replaced with the
call to a dispatch function that performs the WCFG check and
dispatches the call afterward.

Implementation To mark functions that can be called indi-
rectly, the Load Configuration structure that is part of the
portable executable (PE) format is added to the executable
during compilation. This structure contains various WCFG-
related fields, including function pointers to the check/dis-
patch functions and the address of the table containing the rel-
ative addresses of all WCFG-protected functions [77]. Scan-
ning this table when dispatching an indirect call is inefficient,
which is why a bitmap marking valid functions is constructed
when loading a program [124]. As the compiler aligns func-
tions to 16-byte boundaries, a single bit per 16 bytes of address
space would be sufficient to mark functions in the bitmap.
Windows uses two bits to support unaligned functions, e.g.,
handwritten assembly.

Security Previous research identified various weaknesses
in WCFG, such as gadgets that are contained in unaligned 16-
byte blocks [15], or memory-based indirect calls via writable
function pointers [102]. Independent of WCFG, multiple
works raise issues of coarse-grained CFI schemes [31,50,95],
implying that WCFG cannot prevent memory corruption at-
tacks from achieving arbitrary code execution.

4.1.3 eXtended Flow Guard (XFG)

Microsoft is developing a WCFG successor called eXtended
Flow Guard (XFG) [120], which is already available on Win-
dows preview builds, even though undocumented. XFG uses a
type-based policy similar to LLVM’s CFI implementation (cf.

function a:
0xef83aa18363bd271

+0x00 push rbp
…

function b:
0xa7d5beda74d27871

+0x30 push rbp
…

Program

100000100000000000000000
000000000000000000000000
000000000000000000000000

mov r10 , 0xa7d5beda74d27870
lea rax, b
call qword [rel __guard_dispatch_icall_fptr]

Instrumented Callsite

WCFG Bitmap

ntdll.dll!LdrpHandleInvalidUserCallTarget

Fallback Bitmap
Check

ntdll.dll!LdrpDispatchUserCallTargetXFG

Figure 2: Reverse-engineered XFG check flow. Green and
red arrows represent flows after a successful and failed check,
respectively. The dotted arrows mark data fetches.

Section 4.1.1), but it is based on embedded labels to perform
CFI checks. We extend existing third-party works treating
XFG [39, 73] by reverse-engineering relevant XFG internals
to compare its security properties with the other CFI schemes.
In the implementation at the time of writing (Insider Preview
build 23440), a 64-bit type hash precedes all XFG instru-
mented functions. During runtime, the XFG dispatch function
checks whether a given call target has the expected type hash
or else the program is terminated. The type hashes are derived
from a combination of a function’s signature, its name, and the
class hierarchy in case of virtual function calls. Consequently,
cross-module calls to XFG-instrumented functions work with-
out additional overhead since type hashes directly precede the
functions. On some architectures such as x64, MOV instructions
for loading the expected type hash contain the type hash itself
as part of the instruction encoding. Such instructions would
then produce unintended call targets. To address this issue,
the instrumentation code loads the expected type hash with
the last bit flipped, and the dispatch function undoes this bit
flip before comparing it with the stored label. Figure 2 depicts
the whole XFG flow: First, an instrumented call site is redi-
rected to the dispatch function. This function is configured by
the loader, which sets the __guard_dispatch_icall_fptr
function pointer depending on whether WCFG or XFG should
be enforced. The XFG dispatch function loads the hash lo-
cated at the quad-word prior to the target address, flips the last
bit of the expected value, and compares them. If they match,
the call is dispatched. Else, the WCFG bitmap is consulted
to check if the target is a known function entry address. The
target address is called if it is. Otherwise, a function is called
to determine the consequences of this CFI violation.

XFG is backward-compatible with WCFG-protected pro-
grams. After a failed check for a matching type hash, the
XFG dispatch function also consults the WCFG bitmap to
check whether the target is a WCFG-protected function, and
if so, may still allow the call. XFG-instrumented functions
hence use the fourth remaining bitmap state to encode that
they should not be valid WCFG call targets.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 193

4.2 Hardware-based Forward-edge CFI
This section introduces four hardware-based CFI schemes
targeting forward-edge protection. These schemes are coarse-
grained, except for PA and FineIBT, which allow to implement
different policies. It follows that they are less precise than
LLVM CFI or XFG. However, due to their implementation in
hardware, they are more efficient.

4.2.1 ARM Pointer Authentication

Pointer Authentication (PA) [12] is a security extension for
the AArch64 architecture, which allows for protecting pointer
integrity by inserting a cryptographic Message Authentication
Code (MAC) called Pointer Authentication Code (PAC) into
the unused upper bits of pointers. Unused bits are available
because the virtual address space size does not occupy the full
64-bit of register width. Consequently, their exact number de-
pends on the specific implementation. PA was introduced in A
RMv8.3-A in 2016 [17], and later also for the microprocessor
profile starting with the ARMv8.1-M architecture update, as
announced in 2021 [80]. To operate on PACs, the PA exten-
sion adds a variety of instructions that can be divided into
four categories [12]:

• PAC* instructions to generate and insert a PAC,

• AUT* instructions to authenticate and remove the PAC
for subsequent use of a pointer,

• XPAC* instructions to strip the PAC from a pointer with-
out authenticating it, and

• (no common prefix) combined instructions that perform
a PA-related operation and a related instruction together.

The MAC algorithm uses one of five keys and a 64-bit context
value that allows tying pointers to a specific context. These
keys are stored in CPU registers and are not accessible from
exception level EL0 (user space).

Since PA is more of a building block for CFI schemes rather
than a mitigation on its own, there are different PA-based im-
plementations that differ in their respective characteristics.
While the protection of forward-edge flows is covered in mul-
tiple research works such as [40, 57, 68, 94, 96, 126], Apple’s
arm64e ABI [10] is the only case where we observed a PA-
based forward-edge scheme in practice.

4.2.2 ARM Branch Target Identification

ARM’s BTI feature is a forward-edge CFI scheme and an
alternative to custom PA-based schemes. It introduces the BTI
instruction, which takes a target operand specifying what kind
of control-flow transfer is allowed to target the instruction.
The target operand can be c, j, or jc, indicating that the
corresponding BTI instruction can be targeted by calls, jumps,
or both respectively [12]. Jumps that target the registers X16 or

X17 are also compatible with the c target. This enables the use
of jumps to these registers in Procedure Linkage Table (PLT)
entries or for indirect tail-calls [92]. BTI allows configuring
which memory page should be protected. Outside protected
memory regions, the BTI executes as NOP [12].

4.2.3 Intel Indirect Branch Tracking

The IBT feature is the forward-edge control-flow transfer pro-
tection component of Intel CET. It is a coarse-grained CFI
scheme using label instructions for marking valid call targets,
and thus very similar to the proposal in the seminal work
on CFI [2] and ARM’s BTI feature. The two label instruc-
tions that IBT adds are ENDBR32 and ENDBR64, for the 32-bit
compatibility mode and the 64-bit mode, respectively.

The CFI policy enforced by IBT is straightforward: If an
indirect call or jump is encountered, the next instruction ex-
ecuted must be a label instruction. If it is not, the control
protection exception is raised [56]. There might be instances,
such as switch-case constructs, where the control-flow transfer
target resides in read-only memory or where IBT is undesired
for some other reason. To support such instances, CET sup-
ports a no-track prefix that marks the subsequent CALL or JMP
as not requiring a ENDBR instruction as the target. For back-
ward compatibility, it is also possible to set up a bitmap that
marks memory pages where the same exception applies [56].

4.2.4 FineIBT

FineIBT [44] is a hybrid CFI scheme, which improves the
precision of coarse-grained hardware-based schemes while
preserving their performance gains. While the general ap-
proach is mostly architecture-agnostic, their implementation
targets Intel’s BTI as suggested by the name of their scheme.
The fundamental idea is that if a coarse-grained scheme like
BTI or IBT protects a program, all indirect control-flow trans-
fers are already limited to target particular instructions (i.e.,
ENDBR64 for IBT), and instrumentation code only needs to
be placed at these locations. This restriction means that the
policy check can be executed after the control-flow transfer
occurred since the hardware-based scheme guarantees that
only such locations can be indirect call targets. Compared
to full-software implementations of this approach like XFG,
FineIBT avoids loading a label from memory before taking
an indirect control-flow transfer. It follows that FineIBT is
compatible with execute-only memory.

4.3 Software-based Backward-edge CFI

Shadow call stacks are a common approach to protect
backward-edge control-flow transfers. They protect saved
return addresses against memory corruption attacks by sav-
ing them to an isolated memory region. Since such metadata
must be dynamically updated during runtime, it cannot be

194 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

protected by marking it read-only like CFI checks [20]. Solv-
ing this issue in software is challenging, as it either requires
full Software Fault Isolation (SFI) or hardware-supported iso-
lation [2, 20]. Often, software-based shadow call stacks rely
on information hiding to protect the shadow stack area. How-
ever, it has been shown that due to information disclosure
attacks [48, 84], this approach cannot withstand the CFI ad-
versary [128]. Recent works propose re-randomization as a
solution to such attacks [119, 129, 130]. They continuously
re-randomize the addresses of protected areas or the addresses
contained therein and thus limit the use of information leaks
to an adversary. Another problem of software-based shadow
stacks is that on some platforms such as x64, where call in-
structions directly push the return address on the stack, there
is a timing window for a race condition between the call in-
struction and the return address being written to the shadow
stack [2]. These shortcomings aside, a few software-based
shadow stack approaches are found in practice.

4.3.1 LLVM Shadow Call Stack

LLVM implements a shadow stack scheme for the AArch64
architecture. The design supported by Clang is a compact
shadow stack based on information hiding, i.e., the shadow
stack maintains its own stack pointer in register X18, which
must remain unknown to the attacker to offer any protection.
This implies that this register must not be spilled onto the
stack (e.g., when calling into unprotected code), or else an
attacker could obtain the shadow stack location from there.
Because of its nature as software-based shadow stack, which
is only protected through information hiding, this design is
inherently weak against attacks that try to uncover hidden
locations in memory. Corresponding example attacks based
on allocation oracles are proposed in [84]. A larger guard
region can be allocated to increase the resistance against such
attacks, containing the shadow stack itself. Thus, an allocation
oracle will only find the whole guard region instead of the
exact location of the shadow stack. Android implements this
approach in its Libc [89].

4.3.2 SafeStack

Besides the shadow call stack, LLVM also implements SafeS-
tack [64, 106]. The key idea of SafeStack is to separate safe
and unsafe memory objects on the stack. Memory objects
considered safe are return addresses, stack spills, and local
variables that are not address-taken but only accessed via the
frame pointer. Everything else is stored on the unsafe stack.
The implementation relies on information hiding to protect
the safe stack area and hence suffers the same associated
weaknesses as the shadow call stack [47].

4.4 Hardware-based Backward-edge CFI
Hardware-based backward-edge CFI schemes address the
weaknesses of software-based designs. They can implement
atomic instructions to prevent race conditions and provide
memory isolation for sensitive regions.

4.4.1 PA-based Approaches

One common scheme uses PA to protect saved return ad-
dresses on the stack by tying them to the stack pointer value
at function entry [96]. This can efficiently be done by using
the PACIASP and AUTIASP instruction pair, which sign and
verify the link register with the current stack pointer value
as context. Since the link register is used to store return ad-
dresses by BL instructions, these instructions can be placed at
the start of the function prologue and epilogue, respectively.
The PACIASP and PACIBSP instructions have implicit BTI
behaviour, making them valid call targets [12] under BTI en-
forcement. Consequently, programs using PA to protect the
return address with these instructions do not need an extra
BTI instruction at the start of a function.

In comparison to a regular shadow call stack there is no
memory overhead for the shadow call stack area. Neither
loader nor operating system needs to do additional work be-
sides the operating system managing the PA keys themselves,
which is required for any PA-based scheme. Due to the na-
ture of stack-based function calls, stack pointer values are
not guaranteed to be unique to a specific function during pro-
gram execution. This enables substitution attacks, where an
adversary exchanges the saved return address with another
unintended target that has been leaked earlier [96]. Conse-
quently, compared to the hardware-based shadow call stack,
the PA design offers weaker security guarantees.

4.4.2 Intel CET Shadow Call Stack

Intel CET features a hardware-based shadow call stack for
backward-edge protection [97]. This shadow stack is imple-
mented as a descending second stack designated for storing
only return addresses. A new SSP CPU register holds the cur-
rent shadow stack pointer. This register can only be modified
by dedicated new instructions for shadow call stack manage-
ment, which are intended for either the operating system or
libraries that need to handle special stack unwinding cases.
During normal program execution, the call and return instruc-
tions are shadow stack aware if the shadow stack feature is
enabled. This means that the call instructions do not only push
the return address to the unprotected program stack but also to
the shadow stack. Similarly, the return instructions compare
the return address stored on the shadow stack to the return ad-
dress stored on the save stack and only continue if they match.
Otherwise, the #CP exception is raised [56]. Adapting the
semantics of these instructions means that existing programs
do not need to be recompiled to benefit from shadow stack

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 195

.zip

Firmware Images

Extract and
mount filesystems

Feature Detection

ELF

64-bit ELF Files

OAT

.KO

.SO

PA

SS

Serialized
Storage

if having
__cfi_check

if having
__cfi_slowpath

Symbolic
Execution

Constant
Propagation

Allowed Call
Targets

ELF

ProtectionFile Type

Protected
Indirect Calls

Features

Figure 3: Android analysis pipeline.

protection as long as they do not implement custom unwind-
ing logic. Only the runtime and standard libraries that handle
unwinding must be modified to be shadow stack aware.

The shadow stack region is protected by adding a new
attribute to the address translation to indicate a shadow-stack
page. Pages marked as such cannot be modified by regular
store instructions, protecting the integrity of the saved return
addresses. In addition, call and return instructions fault if
the page where they try to store or fetch the saved return
address from the shadow stack, respectively, is not marked
as shadow page [56]. This implies that even with complete
control over a program’s virtual memory, an adversary cannot
manipulate return addresses without access to either gadgets
with management instructions or a primitive to create shadow-
stack pages under their control.

5 Study on CFI Adoption in Platforms

In this section, we study the usage and effectiveness of the
CFI schemes covered in the previous section on the Android,
Linux, and Windows platforms.

5.1 Android Study

The Android Open Source Project (AOSP) [7] uses LLVM’s
CFI implementation to enforce CFI since Android 8.1 for a
set of components [4]. In user space, CDSO mode is used,
enabling protected programs to perform indirect calls into
shared libraries [108]. Since LLVM’s CFI implementation
only protects indirect forward-edge control-flow transfers,
Android (on AArch64) supports LLVM’s shadow call stack
for backward-edge protection [6]. However, this shadow call
stack is based on information hiding and is not designed to
resist the typical CFI adversary. We also observed the PA-
based return address protection scheme used as a more secure
alternative. Bionic provides the necessary runtime support for
the shadow call stack and LLVM CFI. Android 12 added sup-
port for ARM’s Memory Tagging Extension (MTE) [1, 8], a
hardware-based memory safety mitigation which implements
memory tagging. While the first phones supporting MTE have
been released [16], it is not a CFI mitigation and disabled by
default, and we do not include it in our study.

5.1.1 Android Image Analysis Setup

We analyze 33 Android images of popular flagship devices
to compare the CFI usage on Android across multiple device
manufacturers. Based on their market share, we select the
smartphones Samsung Galaxy S22, Xiaomi 13, Vivo V25, and
Oppo Reno 8 5G [9]. In addition, we include the pure AOSP
Generic System Images (GSIs) for Android 10 to 14 and a
system image from Google’s Pixel 7 phone, because Google
is part of the driving force behind Android. We also include
the GrapheneOS firmware for the Pixel 7, which promises
increased security and privacy [27], to see if it has better CFI
coverage than the Google Pixel 7 firmware. Based on the
results of these images, we picked the Samsung Galaxy S20
and the Xiaomi Mi 10 for analysis over time. They both have
publicly available firmware archives ranging from Android
10 to Android 13. The full versions and source URLs of all
firmware images are specified in the appendix (Table 8).

Since all of these phones are ARM-based, we enumerate
AArch64 ELF files on their Android firmware images and run
an analysis on them. An overview of our analysis pipeline is
shown in Figure 3. We extract the following characteristics:

ELF Type We distinguish between binaries (i.e., executable
programs), shared libraries, and loadable kernel modules (with
a .ko extension).

General LLVM CFI Usage To determine general LLVM
usage, the analysis checks for the existence of the exported
__cfi_check function, which is always present if the binary
was compiled with LLVM CFI. We manually check samples
to confirm that all vendors built their applications with CDSO.

Shadow Stack Usage The analysis searches for instructions
unique to shadow-stack-protected binaries to detect shadow-
stack usage. One such instruction is ldr LR, [x18, #-8]!,
which is used to restore the link register from the shadow stack.
We examine multiple random samples of files containing this
instruction and found that it is only used for the shadow stack
and does not appear in other contexts.

Pointer Authentication PA is used to protect return ad-
dresses in some of the files. We detected PA protection by
scanning for related instructions. This approach introduces
imprecision as it counts files where only certain functions
are PA-instrumented as PA-protected. However, we deem this
approach sufficient to understand the overall distribution of
fully unprotected binaries. We also scanned for BTI related

196 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 2: CFI coverage of Android firmware images.

Files Total [count] LLVM CFI Protected [%] Shadow Stack Protected [%] Pointer Auth. Protected [%]

Vendor & Devices Binaries Libraries Kernel Binaries Libraries Kernel Kernel Binaries Libraries Kernel Binaries Libraries Kernel
Modules Modules Modules Modules

GSI 10 142 1240 0 4.93 9.19 n/a n/a 0 0.24 n/a 0 0 n/a
GSI 11 154 1383 0 7.79 10.12 n/a n/a 0 0.14 n/a 0 0 n/a
GSI 12 167 1708 0 8.98 10.6 n/a n/a 0 0.18 n/a 12.57 5.62 n/a
GSI 13 173 1893 0 8.67 9.77 n/a n/a 0 0.11 n/a 35.26 18.17 n/a
GSI 14 150 1729 0 9.33 8.04 n/a n/a 0 0.12 n/a 39.33 22.15 n/a

Xiaomi 13 535 2601 270 47.85 65.24 100.0 ✓ 0 0.08 100.0 94.21 92.62 97.78
Google Pixel 7 234 998 241 7.26 16.83 100.0 ✓ 0 0.2 99.59 12.82 9.52 99.17
GrapheneOS Pixel 7 233 994 241 7.3 16.9 100.0 ✓ 0 0.2 99.59 12.88 9.56 99.17
Oppo Reno 8 5G 351 2316 9 6.27 8.25 0 ✗ 0 0.17 0 7.98 4.49 0
Samsung Galaxy S22 289 1775 6 7.27 12.23 100.0 ✓ 0 0.28 100.0 23.53 17.18 100.0
Vivo V25 361 2771 10 5.82 6.75 0 ✗ 0 0.14 0 11.36 4.19 0

S20 2020-02-19 10 255 1573 1 3.14 6.74 0 ✗ 0 0.25 0 0 0 0
S20 2020-05-15 10 254 1572 1 3.15 6.74 0 ✗ 0 0.25 0 0 0 0
S20 2020-10-14 10 257 1595 1 3.11 5.58 0 ✗ 0 0.25 0 0 0 0
S20 2020-11-23 11 264 1395 1 4.92 9.82 0 ✗ 0 0.22 0 0 0 0
S20 2021-05-17 11 271 1430 1 4.8 9.58 0 ✗ 0 0.21 0 0 0 0
S20 2021-10-20 11 274 1447 1 4.74 9.47 0 ✗ 0 0.21 0 0 0 0
S20 2021-12-23 12 273 1527 0 5.86 11.92 n/a ✗ 0 0.2 n/a 5.86 4.32 n/a
S20 2022-04-26 12 276 1536 0 5.8 11.78 n/a ✗ 0 0.2 n/a 6.16 4.62 n/a
S20 2022-09-27 12 276 1536 0 5.8 11.78 n/a ✗ 0 0.2 n/a 6.16 4.62 n/a
S20 2022-10-24 13 278 1582 0 5.76 12.2 n/a ✗ 0 0.19 n/a 20.14 15.49 n/a
S20 2023-02-20 13 279 1592 0 5.73 12.12 n/a ✗ 0 0.19 n/a 20.07 15.39 n/a
S20 2023-07-26 13 280 1599 0 5.71 12.45 n/a ✗ 0 0.19 n/a 20.0 15.82 n/a

For the S20 firmware images, the security patch level and the Android version are given. Data for the Mi 10 in Table 5 in the appendix.

instructions, but found them too rare for consideration.
Kernel CFI Configuration Clang’s kernel CFI is enabled

by the CONFIG_CFI_CLANG Kconfig flag [5]. To determine
if the kernel of a firmware image enables CFI we use the
extract-ikconfig script from the Linux repository [70]
and double check the decompressed kernel image for CFI-
related symbols and strings.

Rust Source Language All analyzed Rust binaries were
compiled without CFI protection and hence excluded from the
statistics. These files were detected by checking their symbols
for Rust-specific functions (e.g., __rust_alloc).

OAT Files Some ELF files can contain ahead-of-time com-
piled DEX code in a custom OAT format [91]. Such files are
not CFI-protected and can be detected by a combination of
specific symbols, such as oatdata and oatdex. We exclude
them from the statistics.

Library Dependencies Unprotected dependencies mas-
sively contribute to the number of available call targets. We
collected each analyzed file’s dependencies as indicated in
the corresponding ELF structure.

Type Identifiers Passed to __cfi_slowpath Extracting type
identifiers passed to __cfi_slowpath shows which func-
tion or class types are actually used for CFI checks. In our
analysis, this is done by leveraging Ghidra’s [3] constant
propagation analysis. First, the analysis searches calls to
__cfi_slowpath, which is imported from bionic and hence
easy to locate. Then, it extracts the first argument that is passed
to the function. Since type identifiers are constants, this is
well-doable by static analysis.

Type Identifiers and Their Associated Address Ranges
Given a binary file, its equivalence classes and their mem-

bers can be constructed by extracting type identifiers and
their associated address ranges. The core observation is that
this information is encoded in the exported __cfi_check
function, which is easy to locate. In addition, this function is
independent of any global state and uses only arithmetic and
control-flow instructions, making it a good fit for symbolic
execution [13]. Our implementation uses the Angr frame-
work [99]. It progresses execution states until they either hit
a return, indicating a successful check, or a call to abort(),
in which case they are discarded. Afterward, the collected
constraints on the type identifier and the address argument are
solved for the successful states, resulting in a mapping from
type identifiers to the address ranges of their jump tables or
vtables. Finally, it detects whether a target range is for a jump
table or a vtable by checking whether a branch instruction is
found at the start of the first slot. On a side note, the results
of the symbolic execution can also support program analysis.
We discuss this further in Section A.1 in the appendix.

5.1.2 Evaluation

Unprotected Binaries We count the number of files with and
without CFI protection (as indicated by the existence of the
__cfi_check export) to determine the general coverage of
CFI protection. We divide them into binaries, libraries, and
loadable kernel modules and additionally count the shadow
call stack usage. We filter out files that are unprotected by
design, such as OAT files or binaries that were classified as
Rust binaries. Table 2 depicts the numerical results for the
CFI coverage of the remaining files. For both binaries and
libraries, only the minority of files is CFI-protected, with the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 197

Table 3: Unprotected library dependencies in binaries.

Vendor & Device Min [%] Mean [%] Max [%]

GSI 10 83.78 92.84 100.0
GSI 11 75.24 86.93 100.0
GSI 12 61.76 83.56 100.0
GSI 13 58.97 83.12 100.0
GSI 14 63.41 82.46 100.0

Xiaomi 13 24.14 75.83 100.0
Google Pixel 7 58.97 84.65 100.0
GrapheneOS Pixel 7 58.97 84.65 100.0
Oppo Reno 8 5G 61.76 87.0 100.0
Samsung Galaxy S22 60.98 87.13 100.0
Vivo V25 58.97 88.48 100.0

only exception being the Xiaomi 13 firmware. Concerning
loadable kernel modules, build settings seem to be more con-
sistently activating CFI, i.e., all kernel modules are protected,
or none are.

Unprotected Dependencies When looking at the few pro-
tected binaries, an essential factor is the number of unpro-
tected dependencies they load. Unprotected dependencies
have twofold implications: First, CFI-protected control-flow
transfers targeting address in them cannot be checked. Hence,
every byte in all executable sections in any unprotected de-
pendency is a valid call target. Second, indirect control-flow
transfers within the unprotected dependencies are not checked
and can be used to reach arbitrary code in the protected parts.

For each of the selected Android firmware images, we
compute the recursive dependencies of all protected bina-
ries. Then, we calculate the ratio of unprotected to protected
dependencies (selected results in Table 3, see Table 6 for the
full results). Inspecting the unprotected libraries shows that
system libraries such as libc are never protected. Since these
libraries are large and offer a variety of gadgets, they pose an
attractive target for adversaries [113]. All protected binaries
on the analyzed images depend on at least one of them.

Backwards-edge Protection on Android We find that there
are two prevalent approaches for protecting return addresses
in AArch64-based Android. First, there is the LLVM shadow
call stack [6, 109]. Bionic allocates the shadow stack area
during process creation, and it is only protected by informa-
tion hiding through ASLR. Programs not using the shadow
call stack will simply overwrite X18 and ignore the allocated
shadow stack area. As seen in Table 2, no binaries and barely
any libraries are compiled with the shadow call stack. A prob-
able explanation for its low usage is that a PA-based scheme
is used instead, which does not share the weakness against
memory disclosure attacks.

Comparably many binaries and libraries use the PA in-
structions PACIBSP and AUTIBSP to protect return addresses
by tying them to the stack pointer (cf. Section 4.2.1). We
also observe some cases with generic PA instructions such as
autia1716 (which authenticates the value in X17 with X16
as the context), but they appear only in stack unwinding code.

Development over Time The datasets for the S20 and the

Android 10 Android 11 Android 12 Android 13 Android 14

Release

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

C
ov
er
a
g
e
P
er
ce
n
ta
ge

Protection Mechanism

Prot. Binaries

Prot. Libraries

PA prot. Binaries

PA prot. Libraries

Figure 4: Development of mitigations on the GSI over time.

Mi 10 show that significant changes in CFI coverage occur
only with new Android releases (cf. Table 2 and Table 5).
Minor fluctuation in CFI coverage within the same Android
version happens primarily due to the addition or removal of
ELF files. However, some changes in the protection status of
existing files, from protected to unprotected and vice versa,
also happen in our dataset. Figure 4 shows the development
over consecutive Android releases for the GSI. PA-based re-
turn address protection has been introduced with Android
12 and has since been extended, although the adoption rate
slowed down with Android 14. The LLVM CFI coverage stag-
nates and, in some cases, even decreases with recent releases.
Corresponding figures for the S20 and the Mi firmware can
be found in Figure 6 in the appendix.

Memory-safe Code in Rust We find that Rust binaries are
rather uncommon, with an average of only 14 files over all
Android 13 firmware images. This might be subject to change
as Google plans to primarily use Rust for new low-level code
in Android [101]. Such a transition period comes with its
own issues: Mixed binaries resulting from combined Rust
and C / C++ codebases might be more vulnerable to memory
corruption attacks because memory-safe parts can be abused
to bypass mitigations such as CFI, which are deployed to pro-
tect unsafe code [74, 86]. Mixed binaries aside, Rust-based
libraries will also contribute to the number of unprotected li-
braries and hence to the number of unprotected dependencies
C / C++ binaries might have. While this issue could be ad-
dressed by compiling such libraries with LLVM CFI enabled,
cross-language CFI support for Rust is not available yet [32].

Equivalence Class Size Frequencies For an indirect
forward-edge control-flow transfer, the equivalence class size
expresses the number of available call targets and hence the
possible choices to an adversary. Therefore, the distribution
of equivalence class sizes is a relevant metric to analyze type-
based CFI schemes on a particular platform. Even though
it shares the issue that the usefulness of targets is not con-

198 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

100 101 102

Equivalence Class Size (log scale)

100

101

102

103

104

105

N
u
m
b
er

of
o
cc
u
rr
en
ce
s
(l
og

sc
al
e)

Firmware Image

Google Pixel 7

Vivo V25

Samsung Galaxy S22

Xiaomi 13

Oppo Reno 8 5G

Mi 10 V14.0.2

S20 SIHWGA (12)

GSI 14

Figure 5: Equivalence class size distribution over all firmware.

sidered, it implicitly only considers full functions instead of
arbitrary gadgets. Figure 5 depicts the frequencies with which
each equivalence class size appears on the different firmware
images. Equivalence classes are counted over all files on
the corresponding firmware image as they were extracted
from the __cfi_check function by our analysis. Equivalence
classes consist of either jump tables, as used for checking
function pointers, or vtables for checks involving C++ ob-
jects. Equivalence classes with the same type identifiers may
appear multiple times if used in different files.

The distribution concentrates on single-member classes,
with lesser frequencies of larger classes. This characteristic is
desirable, as single-member classes imply that an adversary
has no choice. We observe that the same outliers are often
found across different firmware images due to the fact that
they share a common codebase. Concerning the type of the
tables these equivalence classes are based on, we found that
jump tables are primarily responsible for the largest equiva-
lence classes, with the exception of the Xiaomi 13 firmware.

Reachable Equivalence Classes Not all equivalence
classes in a CFI-protected binary and its dependencies are
actually reachable, i.e., there is no indirect control-flow trans-
fer targeting them. Calls to __cfi_slowpath can be used
to determine equivalence classes that are reachable from a
binary. This approach is imperfect because __cfi_slowpath
is also used for other CFI-related checks that are not strictly
speaking indirect control-flow transfers. One instance of such
a check is the cfi-nvcall, which checks non-virtual calls
for polymorphic class types by checking the vtable pointer
to ensure that the function is called with a compatible ob-
ject [108]. This can be solved by following the CFG after the
corresponding __cfi_slowpath call to determine the type of
the next branch instruction, keeping only indirect calls. Such

additional analysis steps introduce imprecision and runtime
overhead, and we decided to focus on CFI checks indepen-
dently of their purpose. To get an idea of how a program’s
dependencies increase the size of existing equivalence classes,
we also included its dependencies for this particular analy-
sis. Because this does not make sense for binaries with no
protected dependencies, such files are ignored. Full results
are depicted in Table 7 in the appendix. Besides for the Xi-
aomi firmware, the geometric mean of equivalence class sizes
slightly decreases when considering dependencies. While
this is contrary to the expectation that equivalence classes
grow due to the merging of classes with common type iden-
tifiers, it can be explained by the fact that on these firmware
images, protected libraries on average, have smaller equiva-
lence classes than binaries. Therefore, the geometric mean
decreases when also considering dependencies. The results
restricted to reachable equivalence classes change as expected.
Overall, reachable equivalence classes are expected to contain
more than a single member because else there would be no
need for function pointers or virtual functions. Table 7 con-
tains equivalence class sizes below two because a significant
portion (cf. Table 3) of dependencies are unprotected, and
targets that are located in them cannot be considered.

5.2 Linux Study

The Linux kernel introduced support for Clang’s CFI scheme
in release 5.13 [111]. As a more efficient alternative, Linux
also supports FineIBT, starting with version 6.2 [71]. FineIBT
user-space support is also in the works, but it requires PLT
format modifications, thus leading to ABI changes [44]. For
backward-edge protection in user space, the Linux kernel
6.6 introduced CET shadow stack support on corresponding
platforms [112]. Applications need to signal shadow stack
compatibility by setting the SHSTK flag in the Executable and
Linking Format (ELF) note, and the kernel must be configured
with the X86_USER_SHADOW_STACK flag [60].

The build configuration of shipped kernels and applications
usually depends on the Linux distribution. Because there are
many different Linux distributions and their market share is
hard to quantify [35], we exemplarily pick the most recent De-
bian, Ubuntu, Fedora Workstation, and Arch Linux releases as
representatives of widespread distributions. As of September
2023, none of them ship a kernel recent enough to support the
CET shadow stack, and none enables CONFIG_CFI_CLANG by
default. On the application side, these distributions set the
-fcf-protection build flag by default to produce shadow
stack and IBT protected binaries, even though kernel support
for neither feature is available yet [25, 26, 28, 53]. Clang’s
CFI scheme is not specified, probably because it is tied to
Clang and unusable with other prevalent compilers such as
GCC. On major Linux distributions, fully working mitigation
combinations are not deployed yet. For this reason, we refrain
from running a binary analysis study on Linux distributions.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 199

Table 4: Windows 11 Insider Preview CFI coverage

File Type Unprotected Only WCFG XFG EC Size

Exe 2.68% 11.59% 85.73% 1.37 [G.M.]
DLL 2.62% 11.68% 85.70% 1.37 [G.M.]
Sys. DLL 0.91% 2.06% 97.04% 1.38 [G.M.]
Combined 2.63% 11.66 % 85.70% 1.37 [G.M.]

The Sys. DLL column covers all .DLL files located in
C:\Windows\System32\ and subdirectories thereof.

5.3 Windows Study

We study the Windows 11 Insider Preview developer
build 23440 with respect to WCFG and XFG coverage.
WCFG-related metadata in the Portable Executable (PE)
header allows us to reliably detect WCFG and XFG
usage. The former can be detected by checking the
DllCharacteristics field [77], while XFG protection is
indicated by the GuardFlags field of the load configu-
ration. All XFG-instrumented functions are listed in the
GuardCFFunctionTable in the load configuration and have
the corresponding bit set in the flags part of their entry [75].
Hence, we use the following approach: First, we traverse the
GuardCFFunctionTable and extract all entries with flag-bit
0x08 set. Then, for each entry, we extract the 8 bytes repre-
senting the type hash, which precedes the address indicated
by its address part. As a result, we obtain the set of XFG-
instrumented functions and their type hashes.

WCFG and XFG Coverage First, we measure WCFG and
XFG coverage by enumerating all PE files compiled for x64
with either a .dll or .exe extension. We restrict files to these
extensions to exclude files that share the PE format but are
irrelevant to our study, such as .mui files used for multilin-
gual user interfaces. Additionally, we ignore files without ex-
ecutable sections since they do not require protection. Virtual
DLLs are one example of such files [124]. Table 4 gives an
overview of the distribution of protection schemes. Contrary
to the results from our Android study, the majority of analyzed
files on Windows are compiled with XFG instrumentation.

Equivalence Class Sizes The geometric mean equivalence
class size is similar to the one we observed on Android (cf. Ta-
ble 7, second column), even though slightly lower. Besides
Windows 11 being a codebase unrelated to Android, a con-
tributing factor to this difference could be that not every
protected function in an XFG-instrumented PE file is nec-
essarily XFG protected, as WCFG can be used to protect
individual functions. We found that, on average, 95.94% of
GuardCFFunctionTable entries were marked as XFG pro-
tected for files with XFG instrumentation. This means that the
on average remaining 4.06% of targets must be considered
members of every XFG equivalence class in the correspond-
ing file. The entire distribution of equivalence class sizes is
depicted in Figure 7 in the appendix and looks similar to the
distribution on Android (cf. Figure 5).

Backwards-edge Protection on Windows WCFG and XFG
only protect forward-edge control-flow transfers. Microsoft
tested a software-based shadow stack called Return Flow
Guard but found it affected by information leakage attacks and
an exploitable race condition [14]. Instead, they use hardware-
supported schemes on supported platforms: On recent x86-
based systems, the shadow stack of Intel’s CET is used to
protect backward-edge transfers [69] if the corresponding PE
file sets the CET_COMPAT extended DLL characteristics bit.

On AArch64-based systems, recent Windows on ARM
builds support PA for protecting return addresses [121]. Our
analysis of the insider preview dev build 23419 yields a PA file
coverage of 92 %. To calculate this, we enumerate all .exe
and .dll files for AArch64 and search them for PA-related
instructions. Then, we filter out cases of instructions that only
appear incidentally in executable sections. The remaining in-
structions consist of the PACIBSP and AUTIBSP pair used for
signing and authenticating the return address with the stack
pointer as context and the B key, and the XPACLRI instruction
for stripping PACs from the link register. Windows 11 on
ARM uses the basic PA scheme, in which each return address
is tied to the stack pointer value at function entry (refer to Sec-
tion 4.2.1). Since better designs exist (e.g. [57, 67]), it seems
that the current implementation was deemed sufficiently se-
cure, or the complexity or runtime overhead of such solutions
was found unacceptable.

Bypassing XFG with Suppressed Functions WCFG sup-
ports function suppression, a feature to mark unsafe functions
that should never be called indirectly [75]. Such functions are
not placed into the WCFG function table and have no bitmap
entry to mark them as valid functions. Developers can use
this feature by using function modifiers in their code, and
Microsoft uses it internally to protect system DLLs. In such
DLLs, restricted functions are mostly related to control-flow
tasks such as stack unwinding or exception handling.

We found that even though suppressed functions do not
appear in the WCFG function table, they still have XFG type
hashes. Consequently, they are valid call targets under XFG
enforcement, as long as the corresponding call site has the
same type hash. For suppressed functions of a sufficiently
generic signature (i.e., no custom types appearing only in
specific APIs), this implies that they can be reachable by an
attacker, especially considering previously described tech-
niques to reach such call sites [38, 41]. We reported this issue
to Microsoft and expect that Microsoft will fix this in future
releases of Windows and their MSVC compiler by omitting
XFG type hashes for suppressed functions.

6 Related Work

Various CFI schemes have been treated in previous research.
Thereby lay the focus on either compatibility [123], a com-
bination of precision, security, and performance [19], tech-
niques applicable to resource-restrained embedded and real-

200 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

time processing devices [78], the precision of binary-level
techniques [114], and the security boundaries of different ap-
proaches [66]. [81] introduces a framework for comparing dif-
ferent CFI policies. Since this framework operates on source
code, it solves a different task than our analysis. Equivalent
studies also exist for hardware-based schemes [33, 65, 105].
Because these surveys mostly compare academic prototypes,
they do not address the usage of CFI in practice. In [116], CFI
equivalence classes in the Linux kernel are analyzed. Their
approach differs from ours, as they extract CFI targets by
using an instruction pattern instead of symbolic execution.
Consequently, they do not consider CDSO calls.

Several works exist that explore approaches to automated
firmware analysis. Firmalice [98] detects authentication by-
passes in binary programs automatically. It uses symbolic
execution to detect such vulnerabilities based on a general
and architecture-agnostic model characterizing them. Sim-
ilarly, [22] employs full-system emulation of Linux-based
firmware to identify vulnerabilities by checking accessible
web pages, enumerating Simple Network Management Proto-
col (SNMP) information, and attempting known exploits.

Related to memory safety, the work in [125] runs a large-
scale analysis to study the coverage of different mitigations
in embedded-device firmware. To detect present mitigations,
they use static indicators, including the occurrence of cer-
tain strings or symbols, the existence of specific ELF sec-
tions, or flags in the program header. However, they do not
consider CFI usage. Targeting specifically the Android plat-
form, [51] analyzes Android firmware to investigate its patch
level. It builds on multiple static analysis tools to detect
missing patches, app attribute misconfigurations, and cryp-
tographic misuse. To perform static analysis tasks targeting
pre-installed apps in Android firmware, the FirmwareDroid
framework [103] was proposed. It has been applied to study
advertiser tracker libraries shipped with pre-installed apps.
[37] investigates the security of such pre-installed apps, focus-
ing on privilege-escalation vulnerabilities by using a custom
static taint analysis.

7 Recommendations for Improving CFI

A comparison of the state of the art CFI research with the
schemes found in practice shows a large gap between scien-
tific implementations and their adoption. Researchers identi-
fied compatibility as a long-standing issue [123]. When look-
ing at the two instances where production systems and com-
pilers have integrated results from research efforts [44, 110],
it becomes evident that corresponding authors had direct ties
to the industry. The corresponding financial backing and in-
terest in creating solutions that are applicable to production
systems could explain why these authors underwent the effort
of submitting patches to LLVM and the Linux kernel.

The CFI schemes observed in practice are primarily coarse-
grained. With LLVM’s type-based scheme and the intro-

duction of XFG, vendors are moving towards fine-grained
schemes, which provide better security. This trend confirms
that vendors are interested in moving forward and closing the
gap between academia and industry.

Our analysis shows that equivalence classes of the fine-
grained schemes tend to be small. Compared to coarse-
grained schemes, this indicates a substantial improvement, but
outliers exist and contribute to the choices of targets available
to adversaries. Existing metrics for measuring CFI protection
are insufficient to address this problem, therefore adding to
the difficulty in evaluating the benefits of these mitigations.

We found that in the Android ecosystem, popular vendors
rolled out CFI support differently over time. This indicates
that even if there is a build environment that supports CFI
and that is well-maintained and tested, adoption to real-world
systems takes time. We strongly encourage vendors to ensure
that CFI is applied to all binaries. From the vendor’s perspec-
tive, system libraries should be shipped with CFI enabled to
allow developers to benefit from compiling programs with
CFI. Our tools will support vendors in analyzing their systems
for potential gaps in CFI support, which might arise due to
passing wrong compiler options in subprojects.

8 Conclusion

Our results show that CFI roll-out is not yet a finished process.
We found the CFI coverage on Android lacking, especially
regarding system-provided shared libraries. In these cases,
CFI follows an all-or-nothing principle, meaning that secu-
rity benefits are basically non-existent without a complete
deployment. While the WCFG/XFG coverage we observed
on Windows was better, it remains to be seen how long it takes
until commercial off-the-shelf software builds are properly
shipped with XFG protection once XFG is officially released.

With the increasing adoption of CFI, the hurdle for ad-
versaries grows, who, in the best case, need to develop new
exploitation techniques for each vulnerable program, hence
raising the required effort and cost of attacks. In addition,
specific bugs that would lead to arbitrary code execution with-
out CFI can become unexploitable with CFI protection being
applied, requiring adversaries to find stronger primitives. We
hope to see CFI fully deployed in the future, along with more
effective protection guarantees.

Acknowledgments
We thank the anonymous reviewers and the artifact evalua-
tors for their helpful suggestions. This work has been funded
by the German Research Foundation (DFG) in the project
CRUST (grant number: 503199853).

Availability
The scripts described in the paper are published here:
github.com/seemoo-lab/woot24_cfi_coverage_tools/

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 201

https://github.com/seemoo-lab/woot24_cfi_coverage_tools/

References
[1] Armv8.5-A memory tagging extension. https://developer.arm.

com/-/media/Arm%20Developer%20Community/PDF/Arm_Memo
ry_Tagging_Extension_Whitepaper.pdf. Whitepaper.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, CCS ’05, pages 340–353, New
York, NY, USA, 2005. Association for Computing Machinery.

[3] National Security Agency. Ghidra. https://ghidra-sre.org/,
March 2019.

[4] Android Open Source Project. AOSP - Control Flow Integrity. https:
//source.android.com/docs/security/test/cfi, 2022.

[5] Android Open Source Project. AOSP - Kernel Control Flow Integrity.
https://source.android.com/docs/security/test/kcfi,
2022.

[6] Android Open Source Project. AOSP - ShadowCallStack. https:
//source.android.com/docs/security/test/shadow-call-s
tack, 2022.

[7] Android Open Source Project. AOSP - Homepage. https://sour
ce.android.com/, 2023.

[8] Android Open Source Project. AOSP - Arm Memory Tagging Exten-
sion. https://source.android.com/docs/security/test/me
mory-safety/arm-mte, 2024.

[9] AppBrain. Top android phone manufacturers. https://web.arch
ive.org/web/20230317081510/https://www.appbrain.com/s
tats/top-manufacturers, 2023.

[10] Apple. Apple LLVM fork - pointer authentication documentation.
https://github.com/apple/llvm-project/blob/d43163879b
db9576fff7a5a269d36920eee4ac29/clang/docs/PointerAut
hentication.rst.

[11] Apple. Apple platform security. https://help.apple.com/pdf/s
ecurity/en_US/apple-platform-security-guide.pdf, May
2022.

[12] ARM Holdings. Arm architecture reference manual for a-profile
architecture. https://developer.arm.com/documentation/dd
i0487/ha/?lang=en, February 2022.

[13] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3), May 2018.

[14] Joe Bialek. The evolution of CFI attacks and defenses. https:
//github.com/Microsoft/MSRC-Security-Research/blob/m
aster/presentations/2018_02_OffensiveCon/The%20Evolu
tion%20of%20CFI%20Attacks%20and%20Defenses.pdf, 2018.

[15] Andrea Biondo, Mauro Conti, and Daniele Lain. Back To The Epi-
logue: Evading Control Flow Guard via Unaligned Targets. In NDSS,
San Diego, California, February 2018. Internet Society.

[16] Mark Brand. First handset with mte on the market. https://goog
leprojectzero.blogspot.com/2023/11/first-handset-wit
h-mte-on-market.html, 2023.

[17] David Brash. Armv8-a Architecture: 2016 Additions. https://co
mmunity.arm.com/developer/ip-products/processors/b/p
rocessors-ip-blog/posts/armv8-a-architecture-2016-a
dditions, 2016.

[18] Michael D. Brown and Santosh Pande. Is less really more? towards
better metrics for measuring security improvements realized through
software debloating. In Proceedings of the 12th USENIX Conference
on Cyber Security Experimentation and Test, CSET’19, page 5, USA,
2019. USENIX Association.

[19] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Preci-
sion, security, and performance. ACM Comput. Surv., 50(1), April
2017.

[20] Nathan Burow, Xinping Zhang, and Mathias Payer. SoK: Shining
Light on Shadow Stacks. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 985–999, 2019.

[21] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R. Gross. Control-Flow bending: On the effectiveness
of Control-Flow integrity. In 24th USENIX Security Symposium
(USENIX Security 15), pages 161–176, Washington, D.C., August
2015. USENIX Association.

[22] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley.
Towards Automated Dynamic Analysis for Linux-based Embedded
Firmware. In Proceedings 2016 Network and Distributed System
Security Symposium. Internet Society, 2016.

[23] Long Cheng, Hans Liljestrand, Md Salman Ahmed, Thomas Nyman,
Trent Jaeger, N. Asokan, and Danfeng Yao. Exploitation techniques
and defenses for data-oriented attacks. In 2019 IEEE Cybersecurity
Development (SecDev), pages 114–128, 2019.

[24] Nick Christoulakis, George Christou, Elias Athanasopoulos, and
Sotiris Ioannidis. HCFI: Hardware-enforced control-flow integrity. In
Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, CODASPY ’16, pages 38–49, New York, NY,
USA, 2016. Association for Computing Machinery.

[25] Arch Linux Community. makepkg.conf. https://gitlab.archl
inux.org/archlinux/packaging/packages/pacman/-/blob/5
fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf.

[26] Debian Community. Debian dpkg-buildflags. https://manpages.d
ebian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.htm
l.

[27] GrapheneOS Community. Grapheneos. https://grapheneos.org
/.

[28] Ubuntu Community. Compilerflags - default flags. https://wiki.u
buntu.com/ToolChain/CompilerFlags.

[29] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. Losing control: On the effectiveness of control-flow
integrity under stack attacks. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15,
pages 952–963, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[30] John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Com-
plete control-flow integrity for commodity operating system kernels.
In 2014 IEEE Symposium on Security and Privacy, pages 292–307,
2014.

[31] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Mon-
rose. Stitching the gadgets: On the ineffectiveness of Coarse-Grained
Control-Flow integrity protection. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 401–416, San Diego, CA, August
2014. USENIX Association.

[32] Ramon de C Valle. Tracking issue for LLVM control flow integrity
(CFI) support for rust. https://github.com/rust-lang/rust/i
ssues/89653, 2023.

[33] Ruan de Clercq and Ingrid Verbauwhede. A survey of hardware-based
control flow integrity (CFI). CoRR, abs/1706.07257, 2017.

[34] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. Efficient protection of Path-Sensitive control security.
In 26th USENIX Security Symposium (USENIX Security 17), pages
131–148, Vancouver, BC, August 2017. USENIX Association.

[35] DistroWatch. Distrowatch page hit ranking. https://distrowatch.
com/dwres.php?resource=popularity.

[36] Victor Duta, Fabian Freyer, Fabio Pagani, Marius Muench, and Cris-
tiano Giuffrida. Let me unwind that for you: Exceptions to backward-
edge protection. In NDSS, 2023.

202 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://ghidra-sre.org/
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/
https://source.android.com/
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://web.archive.org/web/20230317081510/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20230317081510/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20230317081510/https://www.appbrain.com/stats/top-manufacturers
https://github.com/apple/llvm-project/blob/d43163879bdb9576fff7a5a269d36920eee4ac29/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/d43163879bdb9576fff7a5a269d36920eee4ac29/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/d43163879bdb9576fff7a5a269d36920eee4ac29/clang/docs/PointerAuthentication.rst
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://gitlab.archlinux.org/archlinux/packaging/packages/pacman/-/blob/5fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf
https://gitlab.archlinux.org/archlinux/packaging/packages/pacman/-/blob/5fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf
https://gitlab.archlinux.org/archlinux/packaging/packages/pacman/-/blob/5fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf
https://manpages.debian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.html
https://manpages.debian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.html
https://manpages.debian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.html
https://grapheneos.org/
https://grapheneos.org/
https://wiki.ubuntu.com/ToolChain/CompilerFlags
https://wiki.ubuntu.com/ToolChain/CompilerFlags
https://github.com/rust-lang/rust/issues/89653
https://github.com/rust-lang/rust/issues/89653
https://distrowatch.com/dwres.php?resource=popularity
https://distrowatch.com/dwres.php?resource=popularity

[37] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo,
Qingchuan Zhao, and Zhiqiang Lin. FIRMSCOPE: Automatic un-
covering of Privilege-Escalation vulnerabilities in Pre-Installed apps
in android firmware. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2379–2396. USENIX Association, August 2020.

[38] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Mar-
tin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control
jujutsu: On the weaknesses of fine-grained control flow integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 901–913, New York, NY,
USA, 2015. Association for Computing Machinery.

[39] Francisco Falcon. How the MSVC compiler generates XFG function
prototype hashes. https://web.archive.org/web/20230518
085024/https://blog.quarkslab.com/how-the-msvc-com
piler-generates-xfg-function-prototype-hashes.html,
November 2020.

[40] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. Ptauth:
Temporal memory safety via robust points-to authentication. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1037–
1054, 2021.

[41] Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William
Robertson, Engin Kirda, and Hamed Okhravi. On the effectiveness
of type-based control flow integrity. In Proceedings of the 34th An-
nual Computer Security Applications Conference, ACSAC ’18, pages
28–39, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[42] Andreas Follner, Alexandre Bartel, and Eric Bodden. Analyzing
the gadgets. In Proceedings of the 8th International Symposium on
Engineering Secure Software and Systems - Volume 9639, ESSoS
2016, page 155–172, Berlin, Heidelberg, 2016. Springer-Verlag.

[43] Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza
Sadeghi. CFInsight: A Comprehensive Metric for CFI Policies. In
Proceedings 2022 Network and Distributed System Security Sympo-
sium. Internet Society, 2022.

[44] Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis
Atlidakis, and Vasileios P. Kemerlis. Fineibt: Fine-grain control-flow
enforcement with indirect branch tracking, 2023.

[45] Alex Gaynor. What science can tell us about C and C++’s security.
https://alexgaynor.net/2020/may/27/science-on-memor
y-unsafety-and-security/, May 2020.

[46] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. Fine-
grained control-flow integrity for kernel software. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages
179–194, 2016.

[47] E.K. Goktas, A. Oikonomopoulos, Robert Gawlik, Benjamin Kol-
lenda, I. Athanasopoulos, C. Giuffrida, G. Portokalidis, and H.J. Bos.
Bypassing Clang’s SafeStack for Fun and Profit. In Black Hat Europe,
November 2016.

[48] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In Proceedings 2017 Network and Distributed System Security Sym-
posium. Internet Society, 2017.

[49] GRSecurity. Frequently asked questions about rap. https://grse
curity.net/rap_faq, 2023.

[50] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. Out of control: Overcoming control-flow integrity. In 2014
IEEE Symposium on Security and Privacy, pages 575–589, 2014.

[51] Qinsheng Hou, Wenrui Diao, Yanhao Wang, Chenglin Mao, Lingyun
Ying, Song Liu, Xiaofeng Liu, Yuanzhi Li, Shanqing Guo, Meining
Nie, and Haixin Duan. Can we trust the phone vendors? comprehen-
sive security measurements on the android firmware ecosystem. IEEE
Transactions on Software Engineering, 49(7):3901–3921, 2023.

[52] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. Enforcing unique
code target property for control-flow integrity. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 1470–1486, New York, NY, USA, 2018.
Association for Computing Machinery.

[53] Red Hat Inc. Using rpm build flags. https://src.fedoraproject.
org/rpms/redhat-rpm-config/blob/f39/f/buildflags.md.

[54] Intel. Control flow enforcement technology. https://www.intel.
com/content/dam/develop/external/us/en/documents/cat
c17-introduction-intel-cet-844137.pdf, December 2017.

[55] Intel. New intel vpro platform portfolio. https://www.intel.com/
content/www/us/en/products/docs/processors/core/12th
-gen-vpro-desktop-processors-brief.html, June 2022.

[56] Intel. Intel® 64 and ia-32 architectures software developer manuals.
https://www.intel.com/content/www/us/en/developer/ar
ticles/technical/intel-sdm.html, 2023.

[57] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. Tightly seal your sensitive pointers with
pactight, 2022.

[58] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. Block oriented programming: Automating data-only attacks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 1868–1882, New York,
NY, USA, 2018. Association for Computing Machinery.

[59] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Safedispatch:
Securing c++ virtual calls from memory corruption attacks. In NDSS,
01 2014.

[60] The kernel development community. Control-flow enforcement tech-
nology (cet) shadow stack. https://www.kernel.org/doc/html/
v6.6-rc2/arch/x86/shstk.html.

[61] Mustakimur Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and
Jie Yang. Origin-sensitive control flow integrity. In 28th USENIX
Security Symposium (USENIX Security 19), pages 195–211, Santa
Clara, CA, August 2019. USENIX Association.

[62] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin
Zhou, and Yueqiang Cheng. Adaptive call-site sensitive control flow
integrity. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 95–110, 2019.

[63] Hyungseok Kim, Junoh Lee, Soomin Kim, Seungil Jung, and Sang Kil
Cha. How’d security benefit reverse engineers? : The implication of
intel cet on function identification. In 2022 52nd Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), pages 559–566, 2022.

[64] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. Code-Pointer integrity. In 11th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), pages 147–163, Broomfield, CO, October 2014.
USENIX Association.

[65] Senyang Li, Weike Wang, Wenxin Li, and Dexue Zhang. Hardware-
Based Software Control Flow Integrity: Review on the State-of-the-
Art Implementation Technology. 11:133255–133280.

[66] Yuan Li, Mingzhe Wang, Chao Zhang, Xingman Chen, Songtao Yang,
and Ying Liu. Finding cracks in shields: On the security of control
flow integrity mechanisms. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1821–
1835, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[67] Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg,
and N. Asokan. Pacstack: an authenticated call stack, 2019.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 203

https://web.archive.org/web/20230518085024/https://blog.quarkslab.com/how-the-msvc-compiler-generates-xfg-function-prototype-hashes.html
https://web.archive.org/web/20230518085024/https://blog.quarkslab.com/how-the-msvc-compiler-generates-xfg-function-prototype-hashes.html
https://web.archive.org/web/20230518085024/https://blog.quarkslab.com/how-the-msvc-compiler-generates-xfg-function-prototype-hashes.html
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://grsecurity.net/rap_faq
https://grsecurity.net/rap_faq
https://src.fedoraproject.org/rpms/redhat-rpm-config/blob/f39/f/buildflags.md
https://src.fedoraproject.org/rpms/redhat-rpm-config/blob/f39/f/buildflags.md
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/www/us/en/products/docs/processors/core/12th-gen-vpro-desktop-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/12th-gen-vpro-desktop-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/12th-gen-vpro-desktop-processors-brief.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.kernel.org/doc/html/v6.6-rc2/arch/x86/shstk.html
https://www.kernel.org/doc/html/v6.6-rc2/arch/x86/shstk.html

[68] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. PAC it up: Towards Pointer Integrity
using ARM Pointer Authentication. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 177–194, Santa Clara, CA, August
2019. USENIX Association.

[69] Jin Lin. Developer guidance for hardware-enforced stack protection.
https://techcommunity.microsoft.com/t5/windows-kerne
l-internals-blog/developer-guidance-for-hardware-enf
orced-stack-protection/ba-p/2163340, 2021.

[70] Linus Torvalds. The linux kernel: extract-ikconfig. https://github
.com/torvalds/linux/blob/6465e260f48790807eef06b583b
38ca9789b6072/scripts/extract-ikconfig.

[71] LWN.net. Kernel release status. https://lwn.net/Articles/924
113/.

[72] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maz-
ières. CCFI: Cryptographically enforced control flow integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 941–951, New York, NY,
USA, 2015. Association for Computing Machinery.

[73] Connor McGarr. Exploit development: Between a rock and a (xtended
flow) guard place: Examining XFG. https://web.archive.org/
web/20231024102105/https://connormcgarr.github.io/exa
mining-xfg/, August 2020.

[74] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. Cross-
Language Attacks. In Proceedings 2022 Network and Distributed
System Security Symposium. Internet Society, 2022.

[75] Microsoft. Pe metadata. https://learn.microsoft.com/en-us/
windows/win32/secbp/pe-metadata, June 2021.

[76] Microsoft. Control flow guard for platform security. https://docs
.microsoft.com/en-us/windows/win32/secbp/control-flo
w-guard, 2022.

[77] Microsoft. Pe format. https://learn.microsoft.com/en-us/wi
ndows/win32/debug/pe-format, October 2022.

[78] Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. Survey of
Control-flow Integrity Techniques for Real-time Embedded Systems.
21(4):41:1–41:32.

[79] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios P
Kemerlis. Drop the rop fine-grained control-flow integrity for the
linux kernel. Black Hat Asia, 2017.

[80] Alan Mujumdar. Armv8.1-m pointer authentication and branch target
identification extension. https://community.arm.com/arm-com
munity-blogs/b/architectures-and-processors-blog/post
s/armv8-1-m-pointer-authentication-and-branch-targe
t-identification-extension, 2021.

[81] Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens
Grossklags, and Claudia Eckert. Analyzing control flow integrity with
LLVM-CFI. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, pages 584–597, New York, NY,
USA, 2019. Association for Computing Machinery.

[82] Ben Niu and Gang Tan. Modular control-flow integrity. SIGPLAN
Not., 49(6):577–587, June 2014.

[83] Ben Niu and Gang Tan. Per-input control-flow integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 914–926, New York, NY,
USA, 2015. Association for Computing Machinery.

[84] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giuffrida. Poking holes in information hiding. In 25th
USENIX Security Symposium (USENIX Security 16), pages 121–138,
Austin, TX, August 2016. USENIX Association.

[85] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever wanted to
know about x86/x64 binary disassembly but were afraid to ask. In
2021 IEEE Symposium on Security and Privacy (SP), pages 833–851,
2021.

[86] Michalis Papaevripides and Elias Athanasopoulos. Exploiting mixed
binaries. ACM Trans. Priv. Secur., 24(2), January 2021.

[87] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-grained
control-flow integrity through binary hardening. In Magnus Almgren,
Vincenzo Gulisano, and Federico Maggi, editors, Detection of Intru-
sions and Malware, and Vulnerability Assessment, pages 144–164,
Cham, 2015. Springer International Publishing.

[88] Manish Prasad and Tzi cker Chiueh. A binary rewriting defense
against stack based buffer overflow attacks. In USENIX Annual Techni-
cal Conference, General Track, pages 211–224. USENIX Association,
June 2003.

[89] Android Open Source Project. Increase the size of the shadow call
stack guard region to 16mb. https://android-review.googleso
urce.com/c/platform/bionic/+/891622.

[90] Android Open Source Project. bionic. https://android.google
source.com/platform/bionic, November 2022.

[91] Android Open Source Project. Configuring art. https://source.a
ndroid.com/docs/core/runtime/configure, October 2022.

[92] LLVM Project. Branch target identification code-generation pass.
https://github.com/llvm/llvm-project/commit/4bc81028
d48c0ab07e7b429d2a98ed6d15140a23.

[93] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program.
Lang. Syst., 16(5):1467–1471, September 1994.

[94] Robert Schilling, Pascal Nasahl, and Stefan Mangard. Fipac: Thwart-
ing fault- and software-induced control-flow attacks with arm pointer
authentication. In Josep Balasch and Colin O’Flynn, editors, Con-
structive Side-Channel Analysis and Secure Design, pages 100–124,
Cham, 2022. Springer International Publishing.

[95] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in
c++ applications. In 2015 IEEE Symposium on Security and Privacy,
pages 745–762, 2015.

[96] Qualcomm Product Security. Pointer Authentication on ARMv8.3
- Design and Analysis of the New Software Security Instructions.
Technical report, Qualcomm Technologies, Inc., 5775 Morehouse
Drive, San Diego, CA 92121, U.S.A., January 2017. Available here:
https://www.qualcomm.com/media/documents/files/white
paper-pointer-authentication-on-armv8-3.pdf.

[97] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. Security analy-
sis of processor instruction set architecture for enforcing control-flow
integrity. In Proceedings of the 8th International Workshop on Hard-
ware and Architectural Support for Security and Privacy, HASP ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[98] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice - Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware. In Pro-
ceedings 2015 Network and Distributed System Security Symposium.
Internet Society, 2015.

[99] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[100] StatCounter. Operating system market share worldwide – jan 2020-
jan 2023. https://gs.statcounter.com/os-market-share#m
onthly-202001-202301, March 2023.

[101] Jeffrey Vander Stoep. Memory safe languages in android 13. https:
//security.googleblog.com/2022/12/memory-safe-languag
es-in-android-13.html, December 2022.

204 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://github.com/torvalds/linux/blob/6465e260f48790807eef06b583b38ca9789b6072/scripts/extract-ikconfig
https://github.com/torvalds/linux/blob/6465e260f48790807eef06b583b38ca9789b6072/scripts/extract-ikconfig
https://github.com/torvalds/linux/blob/6465e260f48790807eef06b583b38ca9789b6072/scripts/extract-ikconfig
https://lwn.net/Articles/924113/
https://lwn.net/Articles/924113/
https://web.archive.org/web/20231024102105/https://connormcgarr.github.io/examining-xfg/
https://web.archive.org/web/20231024102105/https://connormcgarr.github.io/examining-xfg/
https://web.archive.org/web/20231024102105/https://connormcgarr.github.io/examining-xfg/
https://learn.microsoft.com/en-us/windows/win32/secbp/pe-metadata
https://learn.microsoft.com/en-us/windows/win32/secbp/pe-metadata
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://android-review.googlesource.com/c/platform/bionic/+/891622
https://android-review.googlesource.com/c/platform/bionic/+/891622
https://android.googlesource.com/platform/bionic
https://android.googlesource.com/platform/bionic
https://source.android.com/docs/core/runtime/configure
https://source.android.com/docs/core/runtime/configure
https://github.com/llvm/llvm-project/commit/4bc81028d48c0ab07e7b429d2a98ed6d15140a23
https://github.com/llvm/llvm-project/commit/4bc81028d48c0ab07e7b429d2a98ed6d15140a23
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://gs.statcounter.com/os-market-share#monthly-202001-202301
https://gs.statcounter.com/os-market-share#monthly-202001-202301
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

[102] Ke Sun, Ya Ou, Yahnhui Zhao, Xiaomin Song, and Xiaoning Li. Never
let your guard down: Finding unguarded gates to bypass control flow
guard with big data. https://www.youtube.com/watch?v=oD0r
KvJcGbs, March 2017. BlackHat Asia 2017 conference talk.

[103] Thomas Sutter and Bernhard Tellenbach. FirmwareDroid: Towards
Automated Static Analysis of Pre-Installed Android Apps. In 2023
IEEE/ACM 10th International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), pages 12–22, 2023.

[104] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok:
Eternal war in memory. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, SP ’13, pages 48–62, USA, 2013. IEEE
Computer Society.

[105] Stefan Tauner and Mario Telesklav. Comparative analysis and en-
hancement of CFG-based hardware-assisted CFI schemes. ACM Trans.
Embed. Comput. Syst., 20(5s), September 2021.

[106] The Clang Team. Clang Documentation - SafeStack. https://clan
g.llvm.org/docs/SafeStack.html.

[107] The Clang Team. Clang documentation - control flow integrity. ht
tps://clang.llvm.org/docs/ControlFlowIntegrity.html,
2023.

[108] The Clang Team. Control flow integrity design documentation. https:
//clang.llvm.org/docs/ControlFlowIntegrityDesign.html,
2022.

[109] The Clang Team. Shadowcallstack. https://clang.llvm.org/d
ocs/ShadowCallStack.html, 2023.

[110] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-
edge control-flow integrity in gcc & LLVM. In 23rd USENIX security
symposium (USENIX security 14), pages 941–955, 2014.

[111] Sami Tolvanen. Linux kernel - add support for clang cfi. https:
//github.com/torvalds/linux/commit/cf68fffb66d60d962
09446bfc4a15291dc5a5d41.

[112] Linus Torvalds. Merge tag ’x86_shstk_for_6.6-rc1’. https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.g
it/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd
2e.

[113] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. On the expressiveness of return-into-libc
attacks. In Robin Sommer, Davide Balzarotti, and Gregor Maier, edi-
tors, Recent Advances in Intrusion Detection, pages 121–141, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[114] Ruturaj K. Vaidya and Prasad A. Kulkarni. Assessing the effectiveness
of binary-level cfi techniques. http://arxiv.org/abs/2401.071
48, 2024.

[115] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Prac-
tical context-sensitive CFI. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15,
pages 927–940, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[116] Jonathan Vexler. Characterization of forward-edge control-flow in-
tegrity targets in LLVM-compiled linux. https://cs.brown.edu/r
esearch/pubs/theses/masters/2020/vexler.jonathan.pdf,
2020.

[117] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and
Dengguo Feng. Binary code continent: Finer-grained control flow
integrity for stripped binaries. In Proceedings of the 31st Annual Com-
puter Security Applications Conference, ACSAC ’15, pages 331–340,
New York, NY, USA, 2015. Association for Computing Machinery.

[118] Wenhao Wang, Xiaoyang Xu, and Kevin W. Hamlen. Object flow
integrity. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 1909–1924,
New York, NY, USA, 2017. Association for Computing Machinery.

[119] Zhe Wang, Chenggang Wu, Yinqian Zhang, Bowen Tang, Pen-Chung
Yew, Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and
Zhiping Shi. SafeHidden: An efficient and secure information hiding
technique using re-randomization. In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 1239–1256, Santa Clara, CA,
August 2019. USENIX Association.

[120] David Weston. Advancing windows security. https://raw.github
usercontent.com/dwizzzle/Presentations/master/Blueha
t%20Shanghai%20-%20Advancing%20Windows%20Security.pdf,
2019. Presented at Bluehat Shanghai 2019.

[121] David Weston. Mwc 2022: The next microsoft pluton device + pac
technology. https://web.archive.org/web/20221104181427/h
ttps://blogs.windows.com/windowsexperience/2022/02/28
/mwc-2022-the-next-microsoft-pluton-device-pac-techn
ology/, February 2022.

[122] Jianhao Xu, Luca Di Bartolomeo, Flavio Toffalini, Bing Mao, and
Mathias Payer. Warpattack: Bypassing CFI through compiler-
introduced double-fetches, 2023.

[123] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen,
and Zhiqiang Lin. Confirm: Evaluating compatibility and relevance of
control-flow integrity protections for modern software. In Proceedings
of the 28th USENIX Conference on Security Symposium, SEC’19,
pages 1805–1821, USA, August 2019. USENIX Association.

[124] Pavel Yosifovich, Mark E. Russinovich, Alex Ionescu, and David A.
Solomon. Windows Internals, Part 1: System architecture, processes,
threads, memory management, and more. Microsoft Press, 7 edition,
2017.

[125] Ruotong Yu, Francesca Del Nin, Yuchen Zhang, Shan Huang, Pallavi
Kaliyar, Sarah Zakto, Mauro Conti, Georgios Portokalidis, and Jun
Xu. Building Embedded Systems Like It’s 1996. In Proceedings
2022 Network and Distributed System Security Symposium. Internet
Society, 2022.

[126] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun,
and Kui Ren. ARM Pointer Authentication based Forward-Edge and
Backward-Edge Control Flow Integrity for Kernels, 2019.

[127] Mingwei Zhang and R. Sekar. Control flow integrity for cots binaries.
In Proceedings of the 22nd USENIX Conference on Security, SEC’13,
pages 337–352, USA, 2013. USENIX Association.

[128] Philipp Zieris and Julian Horsch. A leak-resilient dual stack scheme
for backward-edge control-flow integrity. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, ASI-
ACCS ’18, pages 369–380, New York, NY, USA, 2018. Association
for Computing Machinery.

[129] Changwei Zou, Yaoqing Gao, and Jingling Xue. Practical Software-
Based Shadow Stacks on x86-64. ACM Transactions on Architecture
and Code Optimization, 19(4):1–26, 2022.

[130] Changwei Zou, Xudong Wang, Yaoqing Gao, and Jingling Xue. Buddy
stacks: Protecting return addresses with efficient thread-local storage
and runtime re-randomization. ACM Trans. Softw. Eng. Methodol.,
31(2), mar 2022.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 205

https://www.youtube.com/watch?v=oD0rKvJcGbs
https://www.youtube.com/watch?v=oD0rKvJcGbs
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://github.com/torvalds/linux/commit/cf68fffb66d60d96209446bfc4a15291dc5a5d41
https://github.com/torvalds/linux/commit/cf68fffb66d60d96209446bfc4a15291dc5a5d41
https://github.com/torvalds/linux/commit/cf68fffb66d60d96209446bfc4a15291dc5a5d41
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
http://arxiv.org/abs/2401.07148
http://arxiv.org/abs/2401.07148
https://cs.brown.edu/research/pubs/theses/masters/2020/vexler.jonathan.pdf
https://cs.brown.edu/research/pubs/theses/masters/2020/vexler.jonathan.pdf
https://raw.githubusercontent.com/dwizzzle/Presentations/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://raw.githubusercontent.com/dwizzzle/Presentations/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://raw.githubusercontent.com/dwizzzle/Presentations/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/

A Appendix

This appendix contains a discussion of how type-based CFI
schemes can aid binary analysis tasks and a description and
Proof of Concept (PoC) of the race condition in LLVM’s
CDSO CFI shadow mapping. Furthermore, it accommodates
measurement data that did not fit into the main parts of the
paper: Figure 6 shows how the CFI coverage changed over
time with regards to the S20 and Mi 10 firmware images.
Table 5 continues Table 2 with measurements for the Mi 10
firmware, Table 6 is an extended version of Table 3 covering
all firmware images, Table 7 contains additional measurement
data covering geometric means of equivalence class sizes in
different categories, and Table 8 specifies the exact versions
of the Android images we look at.

A.1 Using CFI to Aid Binary Analysis
Security aside, CFI can also unintentionally help analyze
binary programs. For example, it has been shown that the
ENDBR instructions used for Intel’s IBT feature can be used
to improve function boundary detection [63]. We argue that
type-based schemes such as LLVM CFI or XFG also aid
binary analysis by allowing to infer function addresses and
information about their signatures. We propose the following
approach:

1. Pre-compute type identifiers for common type signatures
and classes and store them for fast look-up.

2. Find and annotate indirectly-callable functions with their
corresponding type identifier. For LLVM CFI, the type
identifier can be obtained by symbolically executing the
__cfi_check function (details in Section 5.1.1). For
XFG, this is done by extracting the type identifier that
precedes the function.

3. Group annotated functions by their type identifiers.

4. Look up identifiers in the pre-computed data set, and if
found, mark the function with the corresponding type. If
some function in a set has a known signature, the same
type can be applied to all other functions in the same set.
The same principle can be applied to manually assigned
signatures, which can also be propagated to functions in
the same set.

A fundamental limitation of this approach is that only
indirectly-callable functions can be analyzed, as only they
will have the CFI-related metadata. More specifically, func-
tions that are neither exported nor address-taken will not have
jump tables or type hashes, respectively. A second issue is
that type identifiers can collide, producing the same identifier
for different types. Our approach would then produce wrong
function signatures. Even though such collisions are unlikely,
they are possible. However, we still think our approach is an

interesting enhancement of typical binary analysis tools and
leave a thorough evaluation for future work.

void thread_func(uintptr_t target) {
// Simulate vulnerability to overwrite shadow mapping

entry
reinterpret_cast <uintptr_t>(target) =

0xffffffffffffffff;
}

int main() {
// Simulate leak of allocation address
uintptr_t alloc = reinterpret_cast <uintptr_t >(

mmap(nullptr ,
SIZE , PROT_READ | PROT_WRITE ,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE , 0,

0));
std::cout << "Allocation at: "

<< std::hex << alloc << std::endl;

// Calculate the address where the mapping entry for
// target_func is located
uintptr_t target = (alloc + ((reinterpret_cast <

uintptr_t >(&target_func) >> kShadowGranularity)
<< 1) - DISTANCE);

std::cout << "Target at: " << std::hex << target <<
std::endl

<< "Shadow base at: "
<< std::hex << (alloc - DISTANCE) << std::

endl;

// Start a thread to overwrite the target ,
// and trigger shadow mapping update
std::thread t = std::thread(thread_func , target);
// The .so file is arbitrary
void *handle = dlopen("/usr/lib/p7zip/7z.so", 0);
t.join();

// Simulate an arbitrary write to redirect the
// function pointer to the target_function
int (*func_ptr)(int) = foo;
func_ptr = reinterpret_cast <int (*)(int)>(&

target_func);
func_ptr(5); // This call should fail under LLVM CFI

}

Listing 1: Proof of concept for CDSO CFI race condition
bypass

A.2 LLVM CDSO CFI race condition
LLVM’s compiler runtime and Android’s C standard library
bionic [90] handle this by first allocating a new area for
the shadow mapping, writing the desired values, and then
re-mapping this new area to the previous shadow mapping
address. This process opens up a timing window in which the
newly allocated mapping is writable.

We successfully exploit this race condition to bypass CFI
from within a C++ program, based on an experiment in which
the adversary triggers a call to dlopen and then immediately
starts a thread for writing to the shadow mapping afterward.
A PoC for this bypass is shown in the appendix in Listing 1.
Such issues indicate that an approach using embedded labels
like Window’s XFG is a more elegant solution, especially
with respect to CDSO checks, but it is incompatible with
execute-only memory.

206 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Android 10 Android 11 Android 12 Android 13

Release

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

C
ov
er
ag

e
P
er
ce
n
ta
ge

Protection Mechanism

Prot. Binaries

Prot. Libraries

PA prot. Binaries

PA prot. Libraries

(a) S20 Releases

Android 10 Android 11 Android 12 Android 13

Release

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

C
ov
er
ag

e
P
er
ce
n
ta
ge

Protection Mechanism

Prot. Binaries

Prot. Libraries

PA prot. Binaries

PA prot. Libraries

(b) Mi 10 Releases

Figure 6: CFI coverage development over different Android releases. Bars represent the arithmetic mean over the analysed
images within an Android release.

Table 5: CFI coverage of Android firmware images (continuation of Table 2)

Files Total [count] LLVM CFI Protected [%] Shadow Stack Protected [%] Pointer Auth. Protected [%]

Vendor & Version Binaries Libraries Kernel Binaries Libraries Kernel Kernel Binaries Libraries Kernel Binaries Libraries Kernel
Modules Modules Modules Modules

Mi 10 2020-03-21 10 384 1987 41 10.94 14.09 0 ✗ 0 0.15 0 0 0 0
Mi 10 2020-07-15 10 382 1987 42 10.99 14.14 0 ✗ 0 0.15 0 0 0 0
Mi 10 2020-10-20 10 382 1992 42 10.99 14.11 0 ✗ 0 0.15 0 0 0 0
Mi 10 2021-01-10 11 383 1542 42 17.75 27.43 0 ✗ 0 0.19 0 0 0 0
Mi 10 2021-07-07 11 385 1534 42 17.66 27.57 0 ✗ 0 0.2 0 0 0 0
Mi 10 2022-01-20 11 385 1542 42 17.4 27.5 0 ✗ 0 0.19 0 0 0 0
Mi 10 2022-04-20 12 396 1681 40 16.67 27.31 0 ✗ 0 0.12 0 43.43 37.54 0
Mi 10 2023-01-12 12 397 1688 40 16.88 27.19 0 ✗ 0 0.12 0 43.58 37.38 0
Mi 10 2023-04-03 13 428 1668 40 15.42 28.72 0 ✗ 0 0.06 0 44.39 38.67 0
Mi 10 2023-05-17 13 428 1668 40 15.42 28.72 0 ✗ 0 0.06 0 44.39 38.67 0

100 101 102 103 104

Equivalence Class Size (log scale)

100

101

102

103

104

105

106

N
u
m
b
er

of
o
cc
u
rr
en
ce
s
(l
og

sc
al
e)

Figure 7: Equivalence class size distribution on the Win-
dows 11 Insider Preview build 23440.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 207

Table 6: Unprotected library dependencies in binaries.

Vendor & Device Min [%] Mean [%] Max [%]

GSI 10 83.78 92.84 100.0
GSI 11 75.24 86.93 100.0
GSI 12 61.76 83.56 100.0
GSI 13 58.97 83.12 100.0
GSI 14 63.41 82.46 100.0

Xiaomi 13 24.14 75.83 100.0
Google Pixel 7 58.97 84.65 100.0
GrapheneOS Pixel 7 58.97 84.65 100.0
Oppo Reno 8 5G 61.76 87.0 100.0
Samsung Galaxy S22 60.98 87.13 100.0
Vivo V25 58.97 88.48 100.0

S20 2020-02-19 81.41 89.37 100.0
S20 2020-05-15 81.41 89.37 100.0
S20 2020-10-14 86.36 93.97 100.0
S20 2020-11-23 77.14 88.73 100.0
S20 2021-05-17 77.14 88.73 100.0
S20 2021-10-20 77.14 88.73 100.0
S20 2021-12-23 61.76 87.38 100.0
S20 2022-04-26 61.76 87.48 100.0
S20 2022-09-27 61.76 87.48 100.0
S20 2022-10-24 60.98 87.4 100.0
S20 2023-02-20 60.98 87.42 100.0
S20 2023-07-26 60.98 87.42 100.0

Mi 10 2020-03-21 77.97 93.81 100.0
Mi 10 2020-07-15 77.97 93.8 100.0
Mi 10 2020-10-20 77.97 93.8 100.0
Mi 10 2021-01-10 53.57 87.03 100.0
Mi 10 2021-07-07 53.57 87.0 100.0
Mi 10 2022-01-20 53.57 86.94 100.0
Mi 10 2022-04-20 49.36 87.14 100.0
Mi 10 2023-01-12 49.36 86.66 100.0
Mi 10 2023-04-03 47.49 86.13 100.0
Mi 10 2023-05-17 47.49 86.13 100.0

Table 7: Geometric mean of equivalence class sizes.

Firmware All
without deps.

All
with deps.

Reachable
without deps.

Reachable
with deps.

GSI 10 1.52251 1.48887 1.61912 2.17204
GSI 11 1.53914 1.47219 1.74867 2.24668
GSI 12 1.5913 1.40786 1.81712 2.35598
GSI 13 1.5868 1.42263 1.91317 2.54419
GSI 14 1.55852 1.49571 1.88483 2.53512

Xiaomi 13 1.26808 1.31866 1.42438 2.06797
Google P7 1.47118 1.41269 1.74687 1.9628
Reno 8 1.47902 1.40975 1.73381 1.93443
Galaxy S22 1.44893 1.42762 1.7376 1.93009
Vivo V25 1.46451 1.42683 1.76094 1.99112
GrapheneOS 1.46739 1.41381 1.74092 1.95775

S20 2020-02-19 1.44735 1.43 1.60504 1.76194
S20 2020-05-15 1.44887 1.43365 1.60284 1.76729
S20 2020-10-14 1.44793 1.47095 1.60507 1.71205
S20 2020-11-23 1.46341 1.46212 1.64564 1.81048
S20 2021-05-17 1.46006 1.4641 1.64128 1.81521
S20 2021-10-20 1.46704 1.46407 1.64932 1.82339
S20 2021-12-23 1.47126 1.4107 1.67733 1.8489
S20 2022-04-26 1.47519 1.41253 1.68565 1.85759
S20 2022-09-27 1.47654 1.41281 1.68332 1.84906
S20 2022-10-24 1.48012 1.42268 1.71563 1.89752
S20 2023-02-20 1.47762 1.42254 1.70653 1.8927
S20 2023-07-26 1.47624 1.42209 1.71574 1.89804

Mi 10 2020-03-21 1.34242 1.3812 1.38852 1.55355
Mi 10 2020-07-15 1.3431 1.37911 1.38709 1.54917
Mi 10 2020-10-20 1.33849 1.37826 1.38092 1.54222
Mi 10 2021-01-10 1.38289 1.41024 1.45177 1.65537
Mi 10 2021-07-07 1.3849 1.41137 1.45473 1.65985
Mi 10 2022-01-20 1.36369 1.40777 1.42972 1.6782
Mi 10 2022-04-20 1.33301 1.37841 1.40426 1.53657
Mi 10 2023-01-12 1.33273 1.3783 1.39999 1.53187
Mi 10 2023-04-03 1.34791 1.37218 1.44178 1.66612
Mi 10 2023-05-17 1.34805 1.37145 1.4436 1.67142

208 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 8: Analysed Android Firmware Images

Vendor Device Android Release Date Firmware Identifier URL (full URL on-hover)

GSI n/a 10 October 2019 gsi_gms_arm64-exp-QJR1 dl.google.com
GSI n/a 11 September 2020 gsi_gms_arm64-exp-RP1A dl.google.com
GSI n/a 12 July 2022 gsi_gms_arm64-exp-SQ3A dl.google.com
GSI n/a 13 April 2023 gsi_gms_arm64-exp-T3B3 dl.google.com
GSI n/a 14 August 2023 gsi_gms_arm64-exp-UPB5 dl.google.com

Google Pixel 7 13 March 2023 panther-t3b2.230316.003-factory-c65097bc dl.google.com
GrapheneOS Pixel 7 13 September 2023 2023091800 releases.grapheneos.org
Vivo V25 13 January 2023 PD2215F_EX_A_13.1.13.5.W30.V000L1 in-sysup-txdl.vivoglobal.com
Samsung Galaxy S22 13 January 2023 S901BXXU3CWAI_S901BOXM3CWAI_EUX www.sammobile.com
Xiaomi Xiaomi 13 13 February 2023 fuxi_eea_global_V14.0.15.0.TMCEUXM bigota.d.miui.com
Oppo Reno 8 5G 13 November 2022 CPH2359_MT6893_EX_11_A.18_221121 oppostockrom.com

Samsung Galaxy S20 10 February 2020 G980FXXU1ATBM samfw.com
Samsung Galaxy S20 10 May 2020 G980FXXU2ATE6 samfw.com
Samsung Galaxy S20 10 October 2020 G980FXXU5BTJ3 samfw.com
Samsung Galaxy S20 11 November 2020 G980FXXU5CTKG samfw.com
Samsung Galaxy S20 11 May 2021 G980FXXS8DUE4 samfw.com
Samsung Galaxy S20 11 October 2021 G980FXXSCDUJ5 samfw.com
Samsung Galaxy S20 12 December 2021 G980FXXSCEUL7 samfw.com
Samsung Galaxy S20 12 April 2022 G980FXXUEFVDB samfw.com
Samsung Galaxy S20 12 September 2022 G980FXXSFFVIB samfw.com
Samsung Galaxy S20 13 October 2022 G980FXXUFGVJE samfw.com
Samsung Galaxy S20 13 February 2023 G980FXXSFHWB1 samfw.com
Samsung Galaxy S20 13 July 2023 G980FXXSIHWGA samfw.com

Xiaomi Mi 10 10 March 2020 V11.0.9.0.QJBEUXM bigota.d.miui.com
Xiaomi Mi 10 10 July 2020 V11.0.18.0.QJBEUXM bigota.d.miui.com
Xiaomi Mi 10 10 October 2020 V12.0.6.0.QJBEUXM bigota.d.miui.com
Xiaomi Mi 10 11 January 2021 V12.2.4.0.RJBEUXM bigota.d.miui.com
Xiaomi Mi 10 11 July 2021 V12.5.2.0.RJBEUXM bigota.d.miui.com
Xiaomi Mi 10 11 January 2022 V12.5.8.0.RJBEUXM bigota.d.miui.com
Xiaomi Mi 10 12 April 2022 V13.0.4.0.SJBEUXM bigota.d.miui.com
Xiaomi Mi 10 12 January 2023 V13.0.10.0.SJBEUXM bigota.d.miui.com
Xiaomi Mi 10 13 April 2023 V14.0.1.0.TJBEUXM bigota.d.miui.com
Xiaomi Mi 10 13 May 2023 V14.0.2.0.TJBEUXM bigota.d.miui.com

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 209

https://dl.google.com/developers/android/qt/images/gsi/gsi_gms_arm64-exp-QJR1.191112.001-6004257.zip
https://dl.google.com/developers/android/rvc/images/gsi/gsi_gms_arm64-exp-RP1A.200720.009-6720564-c8273882.zip
https://dl.google.com/developers/android/sc/images/gsi/gsi_gms_arm64-exp-SQ3A.220705.003.A1-8672226-7230b502.zip
https://dl.google.com/developers/android/tm/images/gsi/gsi_gms_arm64-exp-T3B3.230413.003-9957835-c059e7b4.zip
https://dl.google.com/developers/android/udc/images/gsi/gsi_gms_arm64-exp-UPB5.230623.003.A1-10615600-57105b63.zip
https://dl.google.com/developers/android/tm/images/factory/panther-t3b2.230316.003-factory-c65097bc.zip
https://releases.grapheneos.org/panther-factory-2023091800.zip
https://in-sysup-txdl.vivoglobal.com/upgrade/official/officialFiles/PD2215F_EX_A_13.1.13.5.W30.V000L1-update-full_1672816959.zip
https://www.sammobile.com/samsung/galaxy-s22/firmware/SM-S901B/EUX/download/S901BXXU3CWAI/1724673/
https://bigota.d.miui.com/V14.0.15.0.TMCEUXM/fuxi_eea_global_images_V14.0.15.0.TMCEUXM_20230203.0000.00_13.0_eea_af5681bb33.tgz
https://oppostockrom.com/oppo-reno-8-5g-cph2359
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU1ATBM
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU2ATE6
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU5BTJ3
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU5CTKG
https://samfw.com/firmware/SM-G980F/BTB/G980FXXS8DUE4
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSCDUJ5
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSCEUL7
https://samfw.com/firmware/SM-G980F/BTB/G980FXXUEFVDB
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSFFVIB
https://samfw.com/firmware/SM-G980F/BTB/G980FXXUFGVJE
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSFHWB1
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSIHWGA
https://bigota.d.miui.com/V11.0.9.0.QJBEUXM/umi_eea_global_images_V11.0.9.0.QJBEUXM_20200321.0000.00_10.0_eea_3060ffeca1.tgz
https://bigota.d.miui.com/V11.0.18.0.QJBEUXM/umi_eea_global_images_V11.0.18.0.QJBEUXM_20200715.0000.00_10.0_eea_c682b1e206.tgz
https://bigota.d.miui.com/V12.0.6.0.QJBEUXM/umi_eea_global_images_V12.0.6.0.QJBEUXM_20201020.0000.00_10.0_eea_e0f755c9d5.tgz
https://bigota.d.miui.com/V12.2.4.0.RJBEUXM/umi_eea_global_images_V12.2.4.0.RJBEUXM_20210110.0000.00_11.0_eea_65d048ed43.tgz
https://bigota.d.miui.com/V12.5.2.0.RJBEUXM/umi_eea_global_images_V12.5.2.0.RJBEUXM_20210707.0000.00_11.0_eea_01274d1bee.tgz
https://bigota.d.miui.com/V12.5.8.0.RJBEUXM/umi_eea_global_images_V12.5.8.0.RJBEUXM_20220120.0000.00_11.0_eea_2ec979f62b.tgz
https://bigota.d.miui.com/V13.0.4.0.SJBEUXM/umi_eea_global_images_V13.0.4.0.SJBEUXM_20220420.0000.00_12.0_eea_0c3218f31e.tgz
https://bigota.d.miui.com/V13.0.10.0.SJBEUXM/umi_eea_global_images_V13.0.10.0.SJBEUXM_20230112.0000.00_12.0_eea_5e2cd50523.tgz
https://bigota.d.miui.com/V14.0.1.0.TJBEUXM/umi_eea_global_images_V14.0.1.0.TJBEUXM_20230403.0000.00_13.0_eea_d0f38bfd24.tgz
https://bigota.d.miui.com/V14.0.2.0.TJBEUXM/umi_eea_global_images_V14.0.2.0.TJBEUXM_20230517.0000.00_13.0_eea_0495336d47.tgz

	Introduction
	CFI Design Space
	Adversary Model and Known Attacks
	CFI Scheme Internals
	Software-based Forward-edge CFI
	LLVM Clang CFI
	Windows Control Flow Guard
	eXtended Flow Guard (XFG)

	Hardware-based Forward-edge CFI
	ARM Pointer Authentication
	ARM Branch Target Identification
	Intel Indirect Branch Tracking
	FineIBT

	Software-based Backward-edge CFI
	LLVM Shadow Call Stack
	SafeStack

	Hardware-based Backward-edge CFI
	PA-based Approaches
	Intel CET Shadow Call Stack

	Study on CFI Adoption in Platforms
	Android Study
	Android Image Analysis Setup
	Evaluation

	Linux Study
	Windows Study

	Related Work
	Recommendations for Improving CFI
	Conclusion
	Appendix
	Using CFI to Aid Binary Analysis
	LLVM CDSO CFI race condition

