
This paper is included in the Proceedings of the
18th USENIX WOOT Conference on Offensive Technologies.

August 12–13, 2024 • Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the
Proceedings of the 18th USENIX WOOT
Conference on Offensive Technologies

is sponsored by USENIX.

WhatsApp with privacy? Privacy issues
with IM E2EE in the Multi-device setting

Tal A. Be’ery, Zengo
https://www.usenix.org/conference/woot24/presentation/beery

WhatsApp with privacy? Privacy issues with IM E2EE in the Multi-device setting

Tal A. Be’ery, Zengo

Abstract
We recently discovered a privacy issue with Meta’s
WhatsApp, the world’s most popular Instant Messaging
(IM) application. Meta’s WhatsApp suffers from a privacy
issue that leaks the victims’ device setup information
(mobile device + up to 4 linked devices) to any user, even if
blocked and not in contacts. Monitoring this information
over time allows potential attackers to gather actionable
intelligence about victims and their device changes (device
replaced/ added /removed). Additionally, message recipients
can associate the message with the specific sender device
that sent it. The root cause for these issues stems from
Signal’s multi device protocol architecture, the Sesame
protocol, and as a result these issues are not limited to Meta’s
WhatsApp only but probably relevant to most IM solutions,
including the privacy-oriented Signal Messenger.

1. Introduction
End-to-End Encryption (E2EE) is a type of messaging that
keeps messages private from everyone, including the
messaging service. When E2EE is used, a message only
appears in decrypted form for the person sending the
message and the person receiving the message. The sender
is one "end" of the conversation, and the recipient is the other
"end"; hence the name "end-to-end.".
Originally, most Instant Messaging (IM) apps did not
support E2EE. However, as the importance and criticality of
IM security had raised, E2EE became the security standard
for modern communication and supported by modern IM
apps.

Another aspect of IM communications that evolved over
time is its multi-device support. Traditionally, Instant
Messaging (IM) apps were bounded to a single device.
However, as IM have gained popularity and became an
important and even critical medium for communications,
users wanted to have access to their IM conversations from
every computing device they own. As a result, modern IM
providers support the multi-device setting.

While each of these individual features (E2EE and multi-
device) is critical for modern IM apps, supporting both
simultaneously can lead to some security and privacy
tradeoffs, as current E2EE solution expose some public
cryptographic information about each of the devices, by thus
compromising their users’ privacy.

Contributions: Our main contributions are the following:
• We show the privacy and integrity implications of

current popular multi-device solutions in IM apps.

• We demonstrate how attackers can easily subvert the
WhatsApp client to obtain the victims’ multi-device
setup information.

• We suggest some practical measures to limit the
exposure of such privacy leaks.

Overview: This paper is organized as follows: Section 2
provides a brick-and-mortar analogy to IM E2EE, Section 3
presents the Signal protocol and highlights the privacy issues
in the multi-device setting, Section 4 shows how such
privacy leaking attacks can be easily mounted by attackers
against WhatsApp currently the world’s most popular IM
service, section 5 considers possible solutions. We conclude
in Section 6.

2. Background

To better understand E2EE and its threat model we can use
the postal service analogy:
Prior to E2EE, senders sent their letter in an envelope, but
the envelope was not sealed. As part of its service, the post
office opens the envelope and then puts it in another
envelope and delivers it to the intended recipient.

This scheme has many advantages:
• Thanks to envelopes, eavesdroppers cannot see the
contents of the letters.
• Thanks to the post office buffering, users do not
need to meet to converse, but rather do so indirectly. This
not only allows asynchronous conversations but also can
protect user anonymity. Receivers can disclose only their
nicknames to senders, and have the post service resolve from
nicknames to true names and addresses. In fact, there is a
privacy tradeoff between service and the conversation
counterparty: If the conversing parties are directly
connected, then the service is not exposed to the contents of
the conversation, however the parties may uncover more
metadata about each other and be able to break the “rules”
of the protocol as the service is not there to enforce them.
Generally speaking, it makes sense to assume that the service
provider is more trustworthy than some counterparties that
might be malicious.
• The post office can scan the contents of envelopes
to make sure they do not contain bad content: Bombs, terror
group messaging or pedophile photos.
• If letters are intended for multiple addresses
(groups or a user with multiple houses) the post office can
simply copy the message and send it to all addresses.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 11

However, this scheme has a major drawback: Postal service
employees are exposed to the contents of the letters and can
leak them. The practical reasons for such leakage can vary:
The service may act in negligence and mishandle user data,
sell the data to advertisers for financial gain, be hacked by
attackers, fail to restrict rogue employee access to private
customer data, or even be served with a subpoena by the
government.

To address this issue, E2EE was introduced. With E2EE,
users send their message in locked boxes within the
envelopes. Users provide their locks to the service when they
join, but keep the keys themselves. When senders want to
send a letter to a recipient they get the relevant padlock from
the service and send their letter in a locked box within the
envelope. As before, the post office opens the envelope and
then puts it in another envelope and delivers it to the intended
recipient. However, due to the locked box, the postal service
personnel can no longer see the contents of the letter.

While E2EE indeed protects message content from the
prying eyes of the service operator, it should be noted that:

• Even with E2EE, users must place some trust in the
service provider, as the storing and forwarding messages,
even encrypted, exposes metadata. Whether it’s
conversation related (counterparties, number of messages,
length of messages, timing) or operational (online status,
devices used, IP addresses which may have geo-location
information).
• The newly added E2EE lock creates a new
identifier for the user. When users lose their key, they must
issue a new lock for the service. Aware attackers might
leverage this information to deduce something changed on
the user side.
• To make sure the E2EE lock is indeed of the
intended user and not maliciously replaced by the service or
a “Monster-in-the-Middle” (MITM) attacker, the sender
must verify the lock’s genuinity with the receiver using
another independent channel. This requirement not only
hinders the user experience but also jeopardizes the privacy
of the users as they need to connect via additional service
with additional identifiers.

But even with E2EE, users were still concerned: What
happens if attackers break into their homes? Surely the
system cannot prevent attackers from unlocking boxes and
reading letters while they are still there and can use the keys,
but we want to make sure that this privacy breach is limited
to the exact period of the breach. Namely:
• Perfect Forward Secrecy (PFS): Attackers cannot
open locked boxes that were locked before they broke into
their victims’ homes.

• Post Compromise Security (PCS): Attackers cannot
open locked boxes that were locked after they left their
victims’ homes.

To achieve these properties, keys must be updated for every
message, such that in case of compromise, the compromised
keys are only useful for that message only. To do so, the two
parties within the conversation are sending information to
update the next locks and keys within their conversation.

It should be noted that while the first scenario of the pre-
E2EE postal service privacy leak might be relevant at a large
scale, for example to read the conversation of many users for
serving ads or for mass surveillance, the case of post E2EE
breaking into victims’ homes does not scale well and mostly
relevant to a small portion of the population consisting of
highly targeted individuals. Since the contents of the
messages themselves cannot be protected during the time of
the attackers breaking in, the scenario for which PCS and
PFS are relevant is only when attackers break into the
victims’ homes along with compromise of the service to get
some of the victims’ locked message boxes. Having such
two successful independent attacks is a much less likely
scenario than each of these attacks on their own.

3. The Signal protocol: From postal service
analogy to real world crypto

3.1. The basic Signal protocol
WhatsApp is using the Signal protocol to implement E2EE’s
“postal service locked boxes” with public key cryptography.
Users create their private and public key pair on their device
when they join the IM service, and provide their public keys
(possibly along with additional auxiliary data) to the IM
service, which maintains the directory of the user’s public
keys. When parties wish to converse, the IM server provides
them with their counterparty’s public keys. It should be
noted, as discussed above, that the newly added E2EE public
key creates a new identifier for the user. When users lose
their device, they must issue a new pair of keys for the
service. Aware attackers might leverage this information to
infer changes on the user side and leverage them to facilitate
attacks.

Leveraging both parties’ public keys, the parties can securely
create a shared secret using the X3DH protocol, an extended
version of the Diffie-Hellman protocol. This shared secret is
then used to derive keys to encrypt the messages between the
parties. While this in of itself might be sufficient to fulfill
E2EE’s promise, in order to fulfill the advanced properties
of E2EE, namely the aforementioned Perfect Forward
Secrecy (PFS) and Post Compromise Security (PCS), more
is needed.

12 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

• Perfect Forward Secrecy (PFS): Attackers cannot read
messages that were encrypted before they took over the
victims’ device and app.

• Post Compromise Security (PCS): Attackers cannot
read messages that were encrypted after they were
removed from the victims’ device and app.

As discussed above, to limit breached key exposure and
achieve PCS and PFS, a new key for each message needs to

be created. To do so the Signal protocol introduced the
“Double Ratchet” algorithm. As its name suggests, the
solution consists of two “ratchets” preventing attackers
compromising a key to “move it forward” to read future

encrypted messages, or “backwards” to read past encrypted
messages:

Figure 1 The Symmetric ratchet (source: signal.org)

The Symmetric ratchet (Fig 1): Ensures PFS, as it uses a one-
way Key Derivation Function (KDF) to prevent attackers
from calculating past keys from current keys.

Figure 2 The Asymmetric ratchet (source: signal.org)

The Asymmetric ratchet (fig 2): This ratchet (sometimes
called the “Diffie-Hellman/DH ratchet”) ensures PCS as it
utilizes the entropy coming from the uncompromised other
party to generate new keys.

Combining the symmetric and asymmetric ratchets together
gives the Double Ratchet: When a message is sent or
received, a symmetric-key ratchet step is applied to the
sending or receiving chain to derive the message key.

When a new ratchet public key is updated via a received
message, a DH ratchet step is performed prior to the
symmetric-key ratchet to replace the chain keys.

3.2. Extending E2EE to the Multi Device setting: Existing
solutions
As discussed above, in the pre E2EE era, the multi-device
support requirements were trivial to solve. Since the IM
server had access to the contents of the message, senders
could just send their message once to the server, totally
unaware of the receiver's device setup and the IM server
would handle its distribution to all of the receiver’s devices
and sender’s other devices (so that their history would be up
to date). However once E2EE is applied, the IM server
cannot read the contents of the message and thus can no
longer distribute them to all of the devices.

IM providers needed to address E2EE in the multi-device
setting while still maintaining PCS and PFS requirements.
Extending PFS and PCS definitions for the multi-device
setting is quite natural:

• Perfect Forward Secrecy (PFS): Attackers cannot read
messages that were encrypted before they took over the
victim’s app on one device.

• Post Compromise Security (PCS): Attackers cannot
read messages that were encrypted after they took over
the victim’s app on one device and were removed from
it.

There are two simple solutions to do so:

The “Leader” based solution: One of the user’s devices
serves as the leader and the E2EE conversation happens
between the parties leaders, in the same manner as if both
users had a single device. The leaders then distribute the
messages to their other devices, using E2EE between Leader
and Devices. In the WhatsApp mobile based IM case, it
would be natural to appoint the mobile device which was
associated with the phone number that created the account
as “leader” (or “primary device” in WhatsApp lingo).

This solution was applied by WhatsApp until mid-2021.
However, the solution suffers from an obvious centralization
drawback: When the leader device is offline, none of the
other devices can communicate.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 13

The Multiplication solution: In this solution, all user device
public keys become public, compared to a single public key
per user in the single device setting. The sender’s sending
device creates an E2EE channel with each of the receiver
devices, as if they were different users and uses these
channels to send E2EE messages in the same manner of the
single device setting. The sender device also creates such
channels with all other sender’s devices and uses them to
securely E2EE update other senders devices with the sent
messages.

This Multiplication solution was selected by Signal’s
Sesame protocol to support the multi-device setting, and
later adopted by WhatsApp, where it serves as its current
solution for the multi-device setting.

WhatsApp’s white-paper states: “In order for WhatsApp
users to communicate with each other securely and privately,
the sender client establishes a pairwise encrypted session
with each of the recipient’s devices. Additionally, the sender
client establishes a pairwise encrypted session with all other
devices associated with the sender account. Once these
pairwise encrypted sessions have been established, clients do
not need to rebuild new sessions with these devices unless
the session state is lost, which can be caused by an event such
as an app reinstall or device change. WhatsApp uses this
“client-fanout” approach for transmitting messages to
multiple devices, where the WhatsApp client transmits a
single message N number of times to N number of different
devices. Each message is individually encrypted using the
established pairwise encryption session with each device.”

It should be noted that WhatsApp still uses the leader
concept for managing the life cycle of additional devices (or
“companion device” in WhatsApp lingo). i.e. adding and
removing other devices is done via the “leader” device.

While this Multiplication solution solves its predecessor’s
centralization problem, it also multiplies the E2EE privacy
issue. The multiplication solution exposes all of the user’s
device setups and allows aware attackers to leverage this
information to infer changes in the user’s devices and use it
to facilitate their attacks. For example, attackers can learn
without interacting with their targets, that they added a
device to their setup and thus represent an opportunity to
attack it. Additionally, the receiver knows which of the
sender devices’ sent to it and can infer on the sender’s real-
world information, such as the physical location of the user
(e.g. “my spouse is near their desktop right now”).

Besides device information leakage issues, the
Multiplication solution potentially allows attackers to
pinpoint their attack to a specific device. Since the sender
creates independent channels with the receiver devices, it
can send a malicious message to a single receiver’s device
to exploit a vulnerability specific to it, e.g. mobile vs.
desktop exploit, with no impact and thus detection
opportunities for defenders on other devices.

Additionally, a rogue sender can create an incoherent world
view between the victim’s different devices, by sending a
different message to each of them. This incoherent world
view can give way to all kinds of social engineering attacks
and generally undermine the credibility of the IM app
messages history as a source of truth.

The threat of device hostile takeover is very much within the
IM’s E2EE threat model, as shown by the existence of the
PFS and PCS requirements. Since device takeover is within
the threat model, the privacy of users’ devices exposed by
the Multiplication solution which allows attackers to gather
information for such takeover should be addressed too.

4. Attacking WhatsApp E2EE Solution
Meta’s WhatsApp is the most popular messaging app in the
world, with over five billion downloads and 2.4 billion
active users.

One way for attackers to obtain WhatsApp users’ device
information is by leveraging WhatsApp web client. (It
should be noted that this issue is not specific to the web
version and is relevant for all WhatsApp client’s platforms.
However, the Web environment is the easiest way to
demonstrate this issue as it does not require jail breaking or
other additional hacking method to access the app’s internal
databases.) This client is using the browser’s local storage to
store the devices’ identity key.

The browser’s developer tools provide an easy way to view
the contents of this table (“Signal-storage.identity-store”) as
depicted in Figure 3.

Figure 3 The identity store table: contacts’ devices and Keys.

This table is storing all of the user’s contacts and their
corresponding identity keys. Primary devices are identified
by the phone number and the ‘.0’ suffix, while companion
devices have a ‘:<n>.0’ suffix (e.g. “:16.0”).

By sampling a few instances, we had verified that this table’s
data indeed corresponds to the actual user devices.

For example, user X (in figure 4) has 1 primary device and
3 companion devices:

14 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 4 WhatsApp’s linked devices screen of user X

User X’s corresponding entries in the table matched this
information as shown in Figure 5.

Figure 5 User X’s corresponding entries in the identity store table

We had verified that such information is present even when
the sender is not part of the receiver contact list and without
actually sending messages to the receiver. Blocking the
sender on the receiver side does not prevent it from getting
device identity information.
We had responsibly disclosed our findings to Meta’s bug-bounty
program on January 9th 2024 but got politely rejected two days
later, mainly because this is not an implementation bug but the way
the protocol works by design.
Summing up, in order to obtain its victims’ WhatsApp
devices information, attackers need to:

• Know their victims’ phone number.
• Add victims as contacts, no need to actually send a

message to them.
• Use whatsApp web client and monitor the identity-store

table for information and changes.

5. Possible solutions
5.1. “Lockdown mode” to limit non-contacts access

This optional Lockdown mode will enable users to limit
messages’ reception to ones sent by their contacts only.
Consequently, only the users’ contacts will need and be able
to view their device information.

While it does not fully prevent the privacy issue it presents a
dramatic improvement compared to the current situation in
which any user, including blocked users, can view that
information.

Figure 6 WhatsApp’s privacy settings

This Lockdown mode can be beneficial to security and
privacy aware users across the board and not just for this
multi-device privacy issue, as it would protect them from
receiving all kinds of malicious messages from non-contacts,
which may include 0-days exploits, social engineering and
phishing or even just spammy messages. The notion of
limiting certain types of information to contacts only is

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 15

https://www.facebook.com/whitehat
https://www.facebook.com/whitehat

already present in WhatsApp as shown in Figure 6 and
therefore already understood by its users.

5.2. Cryptographic solutions
To completely solve this issue a design change must be done,
and the burden of distributing the messages needs to be
removed from senders and placed on the receivers’ instead.

As a result, the senders are only aware of a single recipient
key, regardless of the number of the recipient’s devices and
are not aware of all recipients’ devices and keys and cannot
monitor changes to this setup.

A few researchers tried to suggest such solutions in the past,
including a 2019 paper named “Multi-Device for Signal”
that considers the multi-device scenario for the Signal
protocol, which is used by WhatsApp (and others) and
explicitly addresses and solves its privacy issues. It will be
worthy to try and actually implement it or similar solution in
popular IM E2EE solutions.

6. Conclusions
In this paper, we present the security and privacy tradeoffs
of IM apps supporting both E2EE and multi-device. We
demonstrate how attackers can easily subvert the WhatsApp
client to obtain the victims’ multi-device setup information
and suggest some practical measures to limit the exposure of
such privacy leaks.

16 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

