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Abstract
Assessing the existence, exact impact and exploitability of
a known (or theoretical) memory corruption vulnerability
in an arbitrary piece of compiled software has arguably not
become simpler. The current methodology essentially boils
down to writing an exploit - or at least a trigger - for each
potential vulnerability. Writing an exploit for a weird machine
involves several undecidable steps, starting with overcoming
the reachability problem. In this article, we introduce the no-
tions of “libification” and “procedural debugging” to facilitate
partial debugging of binaries at the procedural level. These
techniques allow the transformation of arbitrary dynamically
linked ELF binaries into shared libraries, and the study of
memory corruption bugs by directly calling the vulnerable
functions, hence separating the memory corruption intrapro-
cedural analysis from the reachability problem. Finally, we
publish a framework [3] to implement such a libification un-
der a permissive open-source license to facilitate its adoption
within the security community.

1 Introduction

Triaging bugs has become an essential part of security. The
Product Security function as a whole is becoming ever
more critical for software manufacturers as legal frameworks
around the globe mandate more clarity, speed, and trans-
parency in dealing with existing and new vulnerabilities. The
Cyber Resilience Act being implemented in Europe and the
Executive Order on Improving the Nation’s Cybersecurity
published in the US, for instance, both mandate the use of
Software Bill of Materials (sBOMs) and their communication
to clients and third parties, effectively rendering the super-
ficial - software version based - vulnerability assessment of
potential new CVEs affecting their software, seemingly more
apparent.

However, assessing the actual existence, exact impact, and
exploitability of a given memory corruption bug, as required
by the above laws, has not become significantly more man-
ageable over time. The current methodology to assess the

presence and impact of a given CVE in a piece of software es-
sentially requires writing an exploit for each potential vulnera-
bility. As such, this situation creates a seemingly unreasonable
burden on Product Security teams, where triaging bugs re-
quires performing operations like overcoming the reachability
problem multiple times.

Writing exploits for a weird machine involves three steps:
reaching, triggering, and exploiting. Much work has been
done in automating the first step. Arguably, all of the fuzzing
and dynamic testing performed hitherto follows this top-
bottom approach, where execution starts from an application’s
entry point, toward the leaves of the application, across the
application’s call graph.

In this article, we aim to focus on the second step alone -
without requiring solving the first one, which is undecidable
in general.

Our methodology starts with modifying the ELF headers
and dynamic section of an arbitrary dynamically linked ELF
executable to turn it into a more workable shared library. The
benefit of this technique is that any public function within the
binary becomes callable without crafting an input to reach
the attractive, potentially vulnerable function. Subsequently,
we can render an arbitrary function within an ELF callable,
even turn the entire ELF application into a callable API, and
finally manually produce more limited, partial vulnerability
triggers under the form of simple text files.

In the rest of this article, we will focus on memory corrup-
tion vulnerabilities unless stated otherwise and limit ourselves
to C/C++ applications compiled as ELF binaries, as used un-
der GNU/Linux and Unix-like operating systems, when imple-
menting our framework. We will assume that the application’s
source code is unavailable to the auditor.
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Our first contribution is a methodology to transform an arbi-
trary ET_EXEC or ET_DYN dynamically linked ELF binary
into a shared library. We provide a tool named the Witchcraft
Linker to perform this operation on ELF32 and ELF64 exe-
cutables alike, regardless of their architectures. Our second
contribution is a methodology to invoke arbitrary C or C++
functions within ELF shared libraries without prior knowl-
edge of their exact prototypes. We implement an original type
of debugger, procedural-based, allowing the invocation of ar-
bitrary C/C++ functions. This debugger, the Witchcraft Shell,
noticeably does not use ptrace(), breakpoints, or single step-
ping. We name this new form of debugging procedural since
analysis is performed at the granularity of function calls.

2 Previous Work

2.1 Exploitability of a Vulnerability
As noted by Wang et al. [49], in general, the only definitive
way to prove the exploitability of a vulnerability is to write
an exploit for that vulnerability. This constitutes proof by
construction since the expert exhibits an exploit that demon-
strates the exploitability of the vulnerability. On the other
hand, proving that a vulnerability is not exploitable is a diffi-
cult problem, according to Suciu et al. [44]. Demonstrating the
non-exploitability of a vulnerability via formal proof based on
a crash analysis is sometimes possible despite the explosive
nature of proofs based on symbolic execution [9] [49].

Green et al. [24] consider that when it comes to vulner-
abilities such as memory corruptions, the fact that attacker
controls the next instruction to be executed (the “Program
Counter”) is a strong indicator of a function’s exploitability.
However, the presence of countermeasures may not make this
condition entirely sufficient [20].

2.2 Automatic Exploitation of Vulnerabilities
Detected via Static Analysis

Several research projects focus on exploiting (or at least trig-
gering) vulnerabilities detected using a preliminary static anal-
ysis to demonstrate that they are true positives. ExpRace [31],
for example, focuses on a single class of vulnerabilities: race
conditions in the Linux kernel. After having distinguished
race conditions involving several variables (qualified as diffi-
cult) and race conditions involving a single variable in the ker-
nel (qualified as easy), the authors propose a generic method-
ology for exploiting reusable single-variable race conditions
on several cores, running under Intel processors, making it
possible to trigger the previously identified vulnerability, tak-
ing advantage of the fact that an unprivileged process (or
secondary thread) in user mode can significantly increase
the race window using common system calls (mmap() and
mprotect()) to trigger the synchronization of memory tables
(“Lookaside Buffers translation”) between the cores of the

same Intel microprocessor. The tool is very specialized since
it only addresses the problem of mono-variable race condi-
tions in kernel mode under Linux.

The FUZE tool [51] aims at dynamically triggering, to
prove their existence, “Use After Free” vulnerabilities in ker-
nel mode under Linux. By combining open-source frame-
works such as syzcaller (fuzzer), angr [46] (for binary analysis,
function call graph generation, decompilation, and symbolic
execution), and kernel mode debugging techniques (parsing
the list of kernel modules, “LKM linked list”), it dramati-
cally reduces the complexity of UAF vulnerability analysis
by determining the few paths and system calls that can poten-
tially modify a variable in kernel mode, then using combined
fuzzing and symbolic execution techniques to generate user
inputs capable of automatically triggering the vulnerability,
and thus proving its existence.

The article “A Hybrid Interface Recovery Method for An-
droid Kernel Fuzzing” [32] is also specialized. The problem
raised by the authors is the addition of undocumented inter-
faces (system calls or ioctls) between user and kernel modes
by mobile phone equipment manufacturers. These new inter-
faces are typically additions via proprietary kernel modules
(the source code of which is unavailable, implying an analysis
partially to be made in black box mode) to the Android ker-
nel (which is based on Linux and is, therefore, open-source,
auditable in white box mode). However, these interfaces are
prime targets for privilege escalation attacks, where a program
in unprivileged user mode will purposely call these extra in-
terfaces to the privileged mode of the kernel to trigger vulner-
abilities. Therefore, the analysis is gray, combining a white
box analysis of the open-source Android part of the kernel
and a black box analysis of the non-open-source, proprietary
part added by the equipment manufacturer. The methodology
followed is a taint analysis of proprietary modules, includ-
ing type propagation, to find the prototypes of the interfaces
introduced (whether they are new system calls in their own
right or, more commonly, new valid ioctl calls on arbitrary
device drivers). Once the prototypes of these interfaces have
been determined, it becomes possible to use classic whitebox
fuzzing tools, such as Syzcaller, by measuring the impact of
calling these new system calls dynamically on the rest of the
kernel (id est: by instrumenting only the open-source part of
the kernel).

The PhD thesis “Finding race conditions in kernels: from
fuzzing to symbolic execution” [52] proposes an original ap-
proach to the detection and exploitation of “time of check,
time of use” (or TOCTOU) vulnerabilities, which are a sub-
class of race conditions, where a kernel resource is validated
at time t, then read back and used at time t+1. The underlying
fundamental issue is that this resource may have changed
in the meantime, the Linux kernel being multi-tasking and
concurrent, leading to false assumptions on the said resource
core properties. It should be noted that several vulnerabili-
ties of this type have been discovered on the Linux kernel
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in recent years, hence the renewed interest in an automatic
approach to the discovery and practical validation of this pe-
culiar vulnerability subclass. The methodology followed is to
modify the Linux kernel (using source patches) to instrument
regions likely to contain TOCTOU vulnerabilities, selected
by a preliminary static analysis, then use a fuzzer guided by
symbolic execution toward these regions to be more purpose-
fully scrutinized. This methodology is limited to TOCTOU
vulnerabilities and does not apply to kernels whose code is
unavailable.

Furthermore, the article “From source code to crash test
cases through software testing automation” [16] offers a
methodology for creating proof of exploits (id est: the au-
tomatic generation of user input triggering a vulnerability,
previously identified in source code), by combining a pre-
liminary static analysis (generation of the call graph of the
application) of the application, a fuzzing engine to traverse
this graph, and the use of a symbolic execution engine (named
Triton) to guide the fuzzer toward the vulnerable function. Al-
though the source code is essential to this methodology, it
applies to several classes of vulnerabilities, giving it notable
genericity.

2.3 Defense in Depth: Hardened Compilation
Techniques

Countermeasures have been developed to prevent or limit the
exploitability of vulnerabilities in compiled applications, par-
ticularly those developed in C or C++. Detecting and taking
into account, where applicable, the presence of these counter-
measures is critical when writing an exploit taking advantage
of memory corruption.

Khalsan et al. [28] identify in particular the DEP (“Data Ex-
ecution Prevention”) technique introduced in Microsoft Win-
dows XP SP2, which makes the stack, dynamic memory, and
variables in the data sections of an application non-executable.
According to the authors, the non-execution of the stack is
made possible thanks to hardware extensions (“NX” bit on
AMD processors or “XD” equivalent on Intel processors).
These countermeasures primarily aim to prevent the introduc-
tion and execution of shellcode [13] in all writable sections
of the application. We also find the term W^X to name the
segregation of variables (writable, non-executable) and code
(executable, non-writable) in the literature [34] [10].

Khalsan et al. also describe the use of ASCII armoring,
which ensures that all virtual addresses used by an applica-
tion contain at least one 0x00 ASCII byte (in hexadecimal
code). Given that the functions manipulating character strings
end with a 0x00 (named ASCIIZ format), exploitating a stack
buffer overflow vulnerability via the functions from libc mak-
ing a copy of strings of characters is made impossible. Intro-
ducing ASCII armoring requires modifying the kernel and
dynamic linker to provide armoring on the main binary and
all its dynamic libraries.

Khasan et al. detail the use of Address Space Layout Ran-
domization (ASLR) [43], which consists of making the base
address of a binary and each dynamic library in memory
non-predictable. An attacker can no longer hardcode return
addresses when writing an exploit. The introduction of ASLR
typically requires modifying the kernel and the file format
of executables to allow arbitrary relocation of protected bina-
ries [34].

Khasan et al. also describe binary protection techniques
using canaries. These techniques have known several names,
such as Propolice [21], StackGuard [15], and Stack Smashing
Protection (SSP) [39]. This involves modifying the compiler
in such a way as to introduce a canary (or “stack cookie”)
before the return address in the stack, the integrity of which
will be checked in the prologue of each instrumented function.
If the canary has been modified, the stack is corrupted, and
the program will be immediately terminated rather than risk
arbitrary code execution by an attacker. These techniques
have undergone several successive improvements until they
no longer have any significant cost during the execution of
the protected application [53].

Khasan et al. finally detail FORTIFY (standardized in the
ISO/IEC TR 247315 standard). This compilation option au-
tomatically replaces specific C library functions vulnerable
to buffer overflows with functions including an additional
argument, the maximum size of the destination buffer (which
can often be inferred by the compiler). In the event of a stack
buffer overflow during the program execution, the applica-
tion is terminated rather than allowing the attacker to execute
arbitrary code [30] [23].

These techniques have been extended to other architectures
and operating systems, such as Linux [39], Android [33],
OSX [39] or iOS [28].

Finally, there are protections against memory corruption
at the hardware level of specific microprocessors, such as In-
tel Control Flow Integrity (CFI) [7] [29], which allows, by
instrumenting the start of each block of code (an endbr64
instruction is added at compile time under Intel x86-64) [29]
to ensure that the control flow of the application has not been
altered via memory corruption exploitation techniques such
as ret2libc [10] or Return Oriented Programming (ROP) [40]
[34] [1] [12] at any point in time. During a transfer of execu-
tion via branching or when returning to a calling function, the
microprocessor can ensure whether the destination address is
an endbr64 instruction under x86-64 (respectively endbr32
under x86) and terminate the application if this is not the case.

These countermeasures to exploiting memory corruption
vulnerabilities are effective against their respective vulnera-
bility subclasses but require activation (often at compile time)
to operate correctly [50].
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2.4 Binary Loaders and Binary Post-
Compilation Instrumentation

The idea of statically or dynamically loading and instrument-
ing binaries is fundamental in analyzing compiled applica-
tions.

The most basic form of dynamic instrumentation is simply
using the trap instructions to force an application to divert its
execution flow, as seen in DTrace [14].

A more complex tool like Valgrind and its popular mem-
check [42] memory sanitizer can perform a Just in Time (JIT)
dynamic recompilation of executables. It is a complex frame-
work that starts by transforming the original basic blocks of
the application into an intermediate representation, then ap-
plies instrumentation and code optimization before translating
the intermediate representation back to machine code [36].
Such an instrumentation is heavy and incurs an execution
penalty of 10x or higher.

Some of the techniques available include dynamically
rewriting a single basic block of code at a time, while the appli-
cation is running, using a shadow memory mechanism. This is
the foundation of tools like DynamoRIO [4] [6] [5], a frame-
work reused in popular security tools such as WinAFL [55].

Dinesh et al., on the other hand, opt for a pure static rewrit-
ing of binaries to retrofit into binaries instrumentation that is
usually introduced at compile time, such as AFL [54] and Ad-
dress Sanitizer [41]. Their framework, named RETROWRITE
[17], works by diverting the flow of execution through the in-
sertion of trampolines. A preliminary static analysis involves
building the control flow graph, which is a difficult problem
in general [35] and undecidable [22].

This mechanism, where a preliminary disassembly and
control flow recovery precedes a static rewriting of portions
of the binary to introduce instrumentation code, is a popu-
lar design [2] [48] [37] [47], subject essentially to the same
limitations: recovery of the control flow is undecidable in
general [22].

To avoid this pitfall, Duck et al. [19] developed a suite of
binary rewriting techniques, implemented under the E9Patch
framework, that can insert jump trampolines without requir-
ing an understanding of the binary’s control flow. As such,
their instrumentation is more robust and scales to large appli-
cations such as web browsers. They leverage techniques such
as instruction punning [11], which may safely replace branch-
ing conditions and introduce trampoline code by overwriting
exactly one assembly instruction.

Furthermore, it is worth mentioning the idea of recovering
individual object files from a compiled binary [8] thanks
to a control flow and data flow analysis. When individual
compilation units can be unlinked, they may be subsequently
relinked and instrumented.

Finally, custom loaders may allow the loading of Windows
dynamic libraries under Linux [38] or rewriting Windows
Executables so they may be loaded as DLLs [18].

In light of this state of the art, it seems relevant to intro-
duce a more lightweight form of binary rewriting focused
solely on modifying an application’s metadata. As such, it
shall not suffer from the limitations of the techniques based
on control flow recovery or the runtime penalty of dynamic
instrumentation.

3 Overview of the Libification Process

3.1 Libification: Methodology

In this section, we describe the production of a libifier, that
is to say, a tool able to reliably and automatically transform
an arbitrary ELF binary into a shared library. We detail this
methodology, so it may be extended in the future, if necessary,
to compensate for breaking changes in the GNU dynamic
linker, or adapted to other toolchains.

The POSIX 2001 standard specifies the API of the dynamic
linker, and in particular the dlopen() function, which allows
loading an arbitrary shared library in memory:

# i n c l u d e < d l f c n . h>
vo id * d l op en ( c o n s t c h a r * f i l e n a m e , i n t f l a g s ) ;

The filename parameter must point to the path to the library
to be loaded on the file system.

The flags parameter controls the locality (local or global) of
the symbols loaded in the address space, as well as the behav-
ior of the dynamic linker. In particular, if the RTLD_LAZY
bit is set, the dynamic linker performs lazy binding of symbols
when necessary, as opposed to an immediate binding at load
time if the RTLD_NOW bit is set, in which case the Global
Offset Table may be safely remapped read-only.

In the remainder of this chapter, we will define a shared
library as an ELF file that can be loaded in memory via
dlopen().

A minimal oracle to determine whether the dynamic linker
can load an ELF file can be summarized with the following
code:

i n t main ( vo id ) {
vo id * h a n d l e = 0 ;

h a n d l e = d l op en ( " . / t e s t . so " , RTLD_NOW) ;

i f ( h a n d l e <= 0) {
p r i n t f ( " ! ! ERROR: %s \ n " , d l e r r o r ( ) ) ;
e x i t ( EXIT_FAILURE ) ;

}

p r i n t f ( " Loading s u c c e s s f u l \ n " ) ;
r e t u r n 0 ;

}
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If successful, the return code from this oracle will be 0. It
will be non-zero otherwise, and an error message stemming
from the dynamic linker will indicate the cause of the memory
loading error. Empirically, the work of the libifier will, there-
fore, be to modify the binary in a way that prevents the error
returned by dlerror() from occurring. The developer of the
libifier will then read the code of the dynamic linker, identify
the cause of the error, and modify the libifier to patch the
input binary to prevent this last error from occurring.

The goal - and hope - of the developer of the libifier is that
through this iterative and empirical process, the shared library
produced by the libifier will be able to pass all of the dlopen()
parsing checks, and eventually be loaded in memory. There is
no guarantee that such a libification will be or remain possible
in the future or across an arbitrary corpus of executables since
this libification is a reverse engineering technique and not a
standardized feature of a dynamic linker guaranteed in any
form or fashion.

3.2 Practical Libification

The operations performed by the Witchcraft Linker to libify
an arbitrary ELF binary modify the ELF header, the dynamic
section, and the GNU-specific symbols versioning section of
an input executable.

First, within the ELF header, the libifier must ensure that
the e_type field is set to ET_DYN since all shared libraries
are of type ET_DYN.

Then, the dynamic section of the ELF must be parsed and
possibly modified:

The DT_BIND_NOW shall be changed to DT_NULL if
present in the .dynamic section.

The DT_FLAGS_1 flags present in the .dynamic section
may need to be modified: the DF_1_PIE and DF_1_NOOPEN
bits must be removed if set. This last flag prevents an object
from being loaded via dlopen().

If the binary features constructors or destructors, those
may not expect to be called from dlopen(). The Witchcraft
Linker, therefore, features an optional command line argu-
ment to prevent constructors and destructors from being
called. Within the .dynamic section, setting the values of
DT_INIT_ARRAYSZ and DT_INIT_ARRAY to zero inhibits
the instantiation of constructors, and setting the values of
DT_FINI_ARRAYSZ and DT_FINI_ARRAY to zero inhibits
the calls to destructors.

Finally, because the dynamic linker may refuse to load
multiple versions of symbols if symbols versioning is in use
within the libified binary, the Witchcraft Linker will simply
zero out the entire section of type SHT_GNU_versym.

Currently, the Witchcraft Linker (wld) version v0.0.6 can
libify all of the binaries of a standard GNU/Linux distribution
such as Ubuntu 22.04 LTS, so that they may be loaded via the
dlopen() function of the GNU dynamic linker version 2.35.

3.3 Toward Procedural Debugging
Once the principle of libifying an ELF has been acquired,
writing a debugger capable of loading a libified executable
in its own address space is straightforward: simply load the
libified binary via the dlopen() function of the dynamic linker.
It appears appealing to integrate an interpreter into our de-
bugger to allow a developer to interact with the functions
exposed by the libified binary. Due to its tiny size, the choice
of interpreter fell on the Lua language [25] since a Lua inter-
preter, including all its dependencies, occupies less than 500
kilobytes of memory footprint.

We wish to make the entire API available in the address
space available to the Lua interpreter once the libified binary
is loaded in memory. This API is made up, on the one hand,
of the functions exported directly by the libified binary but
also of the APIs exported by all the dynamic libraries loaded
in memory by the dynamic linker when loading the libified
binary in memory via dlopen(). The case of functions declared
static and hence not exported at compile time is left aside for
now1. Obtaining these APIs can be done via the use of the
dlinfo() function of the dynamic linker [27] [45].

By making the entire API available in memory exposed to
the Lua interpreter, we simply make these APIs available to
the developer. One of the advantages of this methodology is
that a developer or security analyst may invoke any function
loaded in the address space without worrying too much about
the actual calling conventions or prototypes (number and type
of arguments) of these functions. Additionally, they may do so
without compilation from a Lua interpreter, which facilitates
manual exploration of said APIs.

We name this technique, which allows invoking a single
function at a time, “procedural debugging”.

3.4 An Empirical Assessment of the Side Ef-
fects of Libification

In this section, we address the question of the side effects
introduced by the libification of a binary over its main security
hardening properties.

We successively consider the following properties: the base
address of the executable mapping (ASLR), the presence of
stack cookies aimed at preventing buffer overflows, the stack’s
executability, the presence of static relocations (RELRO), and
the presence of Control Flow Integrity type protections (Intel
FCF).

Libification of an ET_DYN binary does not modify its
ASLR properties: the binary being initially mappable to an
arbitrary address remains so. In the case of the libification of
an ET_EXEC binary, which was initially only mappable to
a fixed address, the ASLR is not modified either: the library

1Static functions whose addresses relative to the base address of libraries
or executables are known thanks to a preliminary control flow analysis may
be named and called within the debugger.
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thus generated is only mappable at the same address. Loading
happens as if the binary had been transformed into a library
by prelinking to the same base address [26].

The stack executability of a library loaded via dlopen() is
determined by the stack executability of our debugger since
the latter loads the library in its own address space. This de-
bugger property can be arbitrarily changed via the execstack2

application.
Libification does not modify the presence of static reloca-

tions (binary or library with the BIND_NOW flag in their
dynamic sections).

The presence of stack cookies protecting the stack is intrin-
sic to each function since it is implemented by instrumenting
the prologue and epilogue of each function. Libification, there-
fore, does not modify this property of the functions present in
the libified binary.

The presence of Intel Integrity Protection (Intel FCF) type
protections is characterized by the presence of endbr64 in-
structions at the start of each basic block in each protected
function. Libification does not modify this intrinsic property
either.

Finally, this empirical study overall suggests that libify-
ing an ELF binary into a shared library does not modify its
fundamental security properties, particularly the countermea-
sures possibly introduced into the binary at compile time. In a
nutshell, libification does not introduce notable security side
effects from an exploitability standpoint.

3.5 Limits to Binary Libification
Libifying an ET_EXEC binary as a shared library generates a
somewhat special shared library since it cannot be remapped
to an arbitrary address. This induces a limit to our libifier. On
the one hand, a libified library can generate a collision with
the address space of a program trying to load it, as noted by
beta testers3. On the other hand, it is not possible to load two
libified ET_EXEC binaries initially provided with the same
base address in our debugger.

3.6 Validation
The libification process and the WSH debugger were validated
under GNU/Linux Ubuntu 22.04 equipped with an Intel 64-bit
processor using the following binaries:

Software Version Status Time
Google Chrome 114.0.5735.198 OK < 0.01s
OpenSSH Server 8.9p1 OK < 0.01s
Apache2 2.4.52 OK < 0.01s
Nginx 1.18.0 OK < 0.01s
GCC 11.4.0 OK < 0.01s

2https://linux.die.net/man/8/execstack
3Thanks to Dan Kaminsky https://github.com/endrazine/wcc/issues/26

Furthermore, copying, libifing, and loading via dlopen()
the 435 binaries in the default path of a default Ubuntu 22.04
AMD64 install took less than 3 seconds (in total) on a laptop
featuring a core i-7 11850H CPU and 32Gb of RAM.

4 Conclusion and Future Work

In this article, we presented a methodology to transform a dy-
namically linked ELF binary into a shared library. We called
this methodology “libification”.

We then introduced a very simple debugger able to load
such a libified executable within its own address space, hence
rendering nonstatic functions within the binary callable. We
named this technique facilitating the invocation of arbitrary
functions in isolation and out of context “procedural debug-
ging”.

Thus, a security analyst seeking to experiment with a pos-
sible vulnerability within an executable manually may now
directly invoke the function featuring the vulnerability via
procedural debugging without needing to produce user in-
puts traversing the application’s call graph before reaching
the vulnerable function. This is notable since the reachability
problem is undecidable in general.

We verified the reproducibility of the libification process on
some of the most complex user-mode binaries available under
GNU/Linux, as well as across an entire widespread Linux
distribution, which validates the generality of the approach.

In the future, we hope to be able to automatically generate
scripts to trigger a vulnerability within a compiled binary,
which would save significant time for Product Security teams.

Availability

The Witchcraft Compiler Collection [3], including the
Witchcraft Linker described in this article, is published under
a permissive dual MIT/BSD open-source license. The frame-
work is available from https://github.com/endrazine/wcc and
via the package managers of several GNU/Linux distributions,
including at least Debian, Ubuntu, and Arch Linux.
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