
This paper is included in the Proceedings of the 
18th USENIX WOOT Conference on Offensive Technologies.

August 12–13, 2024 • Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the 
Proceedings of the 18th USENIX WOOT 
Conference on Offensive Technologies 

is sponsored by USENIX.

Breaking Espressif’s ESP32 V3: Program Counter 
Control with Computed Values using Fault Injection

Jeroen Delvaux, Technology Innovation Institute; Cristofaro Mune, Raelize; 
Mario Romero, Technology Innovation Institute; Niek Timmers, Raelize

https://www.usenix.org/conference/woot24/presentation/delvaux



Breaking Espressif’s ESP32 V3:
Program Counter Control with Computed Values using Fault Injection

Jeroen Delvaux1, Cristofaro Mune2, Mario Romero1, Niek Timmers2 ∗
1 {Jeroen.Delvaux, Mario.Romero}@tii.ae, Technology Innovation Institute, Abu Dhabi, UAE

2 {cristofaro, niek}@raelize.com, Raelize, Rotterdam, The Netherlands

Abstract

Espressif introduced the ESP32 V3, a low-cost System-on-
Chip (SoC) with wireless connectivity, as a response to earlier
hardware revisions that were susceptible to Fault Injection
(FI) attacks. Despite its FI countermeasures, we are the first to
bypass all security features of the ESP32 V3 with an FI attack,
including Secure Boot and Flash Encryption. First, we alter
encrypted flash contents to set the 32-bit outcome of a Cyclic
Redundancy Check (CRC) on the bootloader signature to an
arbitrary value, which we then load into the Program Counter
(PC) register of the Central Processing Unit (CPU) using a
single Electromagnetic (EM) glitch. This allows us to jump
to Download Mode in Read-Only Memory (ROM), which
provides arbitrary code execution and access to unencrypted
flash contents. As far as we know, this is the first successful
FI attack, bypassing both Secure Boot and Flash Encryption
with a single glitch, on a target with FI countermeasures. As
the vulnerabilities are in hardware, they cannot be fixed, and
a new hardware revision would be required. In response to
our findings, Espressif issued a Security Advisory, AR2023-
005, and requested a Common Vulnerabilities and Exposures
(CVE) identifier, CVE-2023-35818.

1 Introduction

Espressif’s ESP32 is a low-end System-on-Chip (SoC) with
Wi-Fi and Bluetooth connectivity, which sparked commercial
use in millions of embedded devices. Notable security features
such as Secure Boot and Flash Encryption are supported. As
shown in Fig. 1, the Secure Boot implements a chain of trust
where code stored in internal Read-Only Memory (ROM)
authenticates bootloader code stored in external Flash. The
latter, in turn, authenticates application code stored in Flash. A
chain of trust is needed as the ROM is made by Espressif and
the flash contents are made by customers of Espressif. Note

∗The four authors contributed equally and are ordered alphabetically by
last name.

that Flash is a Multi-Time Programmable (MTP) Non-Volatile
Memory (NVM).

ROM code Bootloader Application

Verifies Verifies

Stored in FlashStored in ROM

Figure 1: Chain of trust in a Secure Boot.

Vulnerabilities in the ROM code are particularly worrisome
because (i) they compromise the entire chain, and (ii) they
cannot be fixed by a software patch. The same holds for
vulnerabilities that are purely in hardware. In this work, we
attain this worst-case scenario of breaking the chain at the
root. We leverage several weaknesses in the design of the
ROM code through ElectroMagnetic Fault Injection (EMFI),
which corrupts the executed instructions. Before listing our
precise contributions, we situate our work into a brief history
of FI attacks on the ESP32.

1.1 History of FI Attacks on ESP32
The first version of the chip, the ESP32-V1, was released in
2016, and its CPU implements the Xtensa Instruction Set Ar-
chitecture (ISA) [32]. The following FI attacks were reported:

• In 2019, Riscure and LimitedResults [22] independently
disclosed the first FI attack on the ESP32-V1: the di-
gest verification of Secure Boot was skipped through a
precisely timed voltage glitch (CVE-2019-15894) [12].
If Flash Encryption is disabled, this allows executing a
modified bootloader.

• Still in 2019, LimitedResults [22] reported a second FI at-
tack using supply-voltage glitching (CVE-2019-17391):
bits stored in electronic fuses (eFuses), which is One-
Time Programmable (OTP) NVM configured by Espres-
sif’s customers, are corrupted while being transferred

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    229



to shadow registers. By corrupting read-protection bits
stored in eFuses, keys that are also stored in eFuses, can
be read out. In 2020, Raelize reproduced this attack using
EMFI instead of voltage glitching [27].

• In 2020, Raelize reported an FI attack to bypass Secure
Boot with Flash Encryption enabled, leveraging a pecu-
liarity of the ROM to leave the Universal Asynchronous
Receiver-Transmitter (UART) bootloader permanently
enabled (CVE-2020-13629) [28]. For their attack, they
leveraged retained data in the internal SRAM across
warm resets, in order to control the PC register of the
CPU.

In response to the above FI attacks, Espressif hardened
the security design of the ESP32 and released ESP32 Chip
Revision v3.0 in 2020 [7]. At the time of writing this paper,
this is the latest revision. For the sake of brevity, we refer to
this revision as ESP32 V3. Compared to the ESP32 V1, four
significant changes are made:

• Secure Boot transitioned from symmetric-key cryptogra-
phy, i.e., the Advanced Encryption Standard (AES), to
public-key cryptography, i.e., Rivest–Shamir–Adleman
(RSA) signatures. The ESP32 V3 only stores the public
key; the private key is stored externally.

• While analyzing the ROM code, which was publicly
released by Espressif as an ELF file [9], we identified
the insertion of numerous redundancies, e.g., eFuse bits
are read out multiple times. Such redundancies are often
used as FI countermeasures [2, 24, 35].

• The UART bootloader can now be disabled using a dedi-
cated eFuse bit.

• Enabling Flash Encryption is encouraged as part of the
newly introduced Release Mode. Stated otherwise, the
security of a chip with Flash Encryption disabled is con-
sidered suboptimal.

To the best of our knowledge, Espressif has not made any
statements about potential hardware countermeasures. De-
spite the above FI countermeasures, several FI attacks were
reported on the ESP32 V3:

• In 2022, Ledger’s Donjon [1] reported the first FI at-
tack on the ESP32 V3, targeting a hardware accelerator
of the Advanced Encryption Standard (AES) used for
decrypting the Flash contents [14]. Through Body Bias-
ing Injection (BBI), a fault analysis recovered the AES
key. The same result was also achieved with a pure Side-
Channel Attack (SCA): power-consumption traces were
found to be correlated with Hamming distances between
consecutive AES states. However, the authors were un-
successful in retrieving the AES key with EM-FI, likely

because of redundancies in the ROM code. More pre-
cisely, corrupting multiple OTP transfers with multiple
EM pulses was found to be infeasible.

• In 2023, we were the second to report an FI attack on the
ESP32 V3, albeit the first to succeed with EM-FI. The
benefit is that EM-FI is less invasive than BBI, i.e., the
latter technique requires opening the plastic chip pack-
aging so that a microprobe can reach the backside of the
die [26]. The prime reason for our attack to succeed is
that only a single EM pulse is required, i.e., the complex-
ity of jointly optimizing the glitch parameters of multiple
pulses is avoided. Instead of AES and OTP transfers, we
target ROM code running on the CPU, shortly before
the RSA signature of the Flash contents is verified. This
article describes this attack in more detail.

Several new releases of the ESP32 use RISC-V as ISA
instead of Xtensa. In 2023, Courdesses [3] combined SCA
and FI to achieve arbitrary code execution on two of these
releases: the ESP32-C3 and the ESP32-C6 [15]. First, a power
analysis recovered the AES key that encrypts the first 128-
byte block of the Flash, which allows to insert arbitrary code
into this block. Next, a voltage glitch bypasses Secure Boot
such that the inserted code is executed. More precisely, the
glitch causes a stack buffer to overflow, thereby overwriting a
function return address with a pointer to the code.

1.2 Contributions
We present a novel FI attack against the ESP32 V3, which
chains multiple vulnerabilities and uses a single EMFI glitch
to access the decrypted flash contents. Our attack works on
the most secure configuration and bypasses all countermea-
sures. Using commercially available tooling, our attack can
be reproduced in minutes once effective glitch parameters
such as timing and location are found.

By modifying the encrypted flash contents, we force the
ROM’s Cyclic Redundancy Check (CRC32) outcome to an
arbitrary 32-bit value, which is then loaded into the CPU’s
Program Counter (PC) using an EM glitch. This way, we
redirect the code execution to the ROM’s Download Mode,
which provides access to the decrypted flash contents. We
are the first to load a computed value into the PC register of
a CPU using a glitch. Moreover, as far as we know, this is
the first example of a successful bypass of both Secure Boot
and Flash Encryption using a single glitch, on a target with
FI countermeasures.

1.3 Disclosure Timeline
The attack described in this paper was responsibly disclosed:

• A technical report specifying the attack was sent to
Espressif on April 7, 2023.

230    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



• Espressif requested a Common Vulnerabilities and Expo-
sures (CVE) identifier, which was created as CVE-2023-
35818 on June 17, 2023.

• Espressif published Security Advisory AR2023-005 on
its website on July 11, 2023 [16].

• Espressif transferred a bug bounty of USD 2229 on
September 25, 2023.

1.4 Structure
The remainder of this paper is structured as follows. Sec-
tion 2 provides preliminaries on the ESP32 V3. Section 3
provides the theory of our attack. Section 4 provides practical
experiments. Section 5 concludes this work.

2 Preliminaries on Espressif’s ESP32 V3

2.1 System Overview
As is shown in Fig. 2, the ESP32 V3 chip communicates with
an external MTP NVM in the form of a Serial Peripheral In-
terface (SPI) Flash chip. This Flash chip stores the bootloader
and the application, which can be signed and/or encrypted.
The symmetric encryption key is stored in OTP NVM in the
form of fuses. The public key for verifying signatures is stored
in Flash, and to protect its integrity, a hash digest of the public
key is stored in OTP NVM.

SRAM

Crypto
accelerators

Xtensa
CPU

FusesROM

SPI
Flash

Figure 2: Relevant components of the ESP32 V3.

2.2 Xtensa Instruction Set Architecture
The CPU implements the Xtensa ISA [32]. Instructions are
encoded in a 24-bit format, or if it concerns a common use
case, in a so-called narrow (n) 16-bit format that can freely
be intermixed with the 24-bit format. For example, the 24-bit
move instruction movi, which sets a register to a 12-bit con-
stant, has a 16-bit alternative movi.n, which sets a register
to a 7-bit constant.

The ISA features 64 general-purpose registers of 32 bits
each. However, only 16 registers are visible at any given time
through a rotating window, and are labeled a0 to a15. As
illustrated in Fig. 3, the window moves back and forth with
each function return and function call respectively. For any
given subroutine, the return address is stored in register a0,
the stack pointer is stored in register a1, and the input/output

operands are stored in registers a2 to a7. Hence, a caller that
causes the window to shift with 8 registers, as is the case for
the call8 instruction, passes operands in registers a10 to
a15 to physically match the subroutine.

call8retw.n a0
a1

a
0a
1

Figure 3: Xtensa rotating window, where the caller and the
subprogram are colored orange and cyan respectively.

Given that the shift in window can be either 4, 8, or 12
registers, the two most significant bits of a0 encode the shift,
whereas the 29 least significant bits determine the return ad-
dress.

2.3 Secure Boot V2

Once an ESP32-based product is fully developed and ready
for commercial release, Espressif recommends configuring
the chip in Release Mode. Consequentially, Secure Boot and
Flash Encryption are both enabled. As illustrated in Fig. 4, the
order of operations for constructing the Flash contents is sign-
then-encrypt, not encrypt-then-sign. We make abstraction of
the application in Fig. 1, given that a forgery of the bootloader
inherently compromises the application. Below, the crypto-
graphic algorithms for Secure Boot and Flash Encryption are
specified.

bootloader

signature

checksum

e7

RSA-PSS

CRC32

AES

Figure 4: Signed and encrypted Flash data.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    231



2.3.1 Secure Boot: Digital Signatures

Signatures are based on the RSA public-key algorithm, whilst
adopting recommendations from Public-Key Cryptography
Standards (PKCS) version 2.2, which is published as Request
for Comments (RFC) 8017 [21]. More precisely, RSA-3072
is used, in which the public modulus and the signature are
each 3072 bits, or 384 bytes. Instead of signing the bootloader
image itself, the image is first fed into a Secure Hash Algo-
rithm (SHA) and its digest is signed instead. More precisely,
SHA-256 is used, which has a digest of 256 bits, or 32 bytes.
The digest is encoded by the Probabilistic Signature Scheme
(PSS).

As detailed in Table 1, the produced signature block con-
tains 1216 bytes, starting with the magic byte 0xe7 and end-
ing with a 32-bit checksum. The magic byte is aligned with a 4
KB boundary, i.e., its physical address is an integer multiple of
0x4000. The public key of RSA is part of the signature block
and consists of a modulus, an exponent, and pre-calculated
constants that accelerate verification. A SHA-256 digest of
the public key is burned into eFuses. The CRC is computed
over the 1196 preceding bytes.

Table 1: Signature block format [6].

Offset
(bytes)

Size
(bytes) Description

0 1 Magic byte, 0xe7
1 1 Version number, 0x02
2 2 Zero padding, 0x0000
4 32 SHA-256 digest of image

36 384 RSA public modulus
420 4 RSA public exponent
424 384 Pre-calculated constant
808 4 Pre-calculated constant
812 384 Signature

1196 4 CRC32
1200 16 Zero padding, 0x00...00

As can be seen from the publicly released ROM code [9],
verification at boot time consists of five consecutive checks.
If any of them fails, an error message is printed via UART,
and the device is reset. The first check compares the first byte
of the signature block to the magic byte 0xe7. The second
check compares the recomputed CRC-32 checksum to its
stored counterpart. The third check compares the recomputed
SHA-256 digest of the public key to its counterpart stored in
fuses. The fourth check compares the recomputed SHA-256
digest of the bootloader image to its stored counterpart. The
fifth and last check is the verification of the RSA signature.

2.3.2 Flash Encryption

Flash encryption [5] relies on AES-256. The 256-bit key is
stored in eFuses. Espressif adopted a custom mode of oper-

ation which is fully parallelizable, i.e., consecutive 128-bit
blocks can be encrypted independently of one another, and the
same holds for the decryption. Note that this entails random
access.

The key for each 128-bit block is derived by XORing the
master key stored in eFuses with the physical address of the
256-bit block. Hence, each derived key encrypts two adjacent
blocks. For performance reasons: Flash encryption, which
is an infrequent operation, uses AES decryption, whereas
Flash decryption, which happens on every boot, uses AES
encryption.

3 Theory of the Attack

3.1 PC Control Through FI
Originally, PC control through FI was performed in absence
of Flash encryption, which is an easier setting than ours. We
first describe the original technique, and then introduce our
workaround for tackling Flash encryption.

3.1.1 Without Flash Encryption

In 2016, Timmers et al. [34] described an FI attack that sets
the PC register to a controlled value on CPUs implementing
ARM’s AArch32 execution state. These controlled values
originate from a source that is under control of an attacker,
e.g., unencrypted flash. In ARM’s AArch32 execution state,
the PC register can be used as a destination register for many
instructions, which was found to be ideal. Only a single load
instruction needs to be corrupted by a glitch in order to load
a controlled value directly into the PC register. An effective
approach [33] is described below:

• Overwrite the original bootloader in flash with a code
payload and sled of pointers. These pointers point to the
destination address in executable memory at which the
code payload is be copied to.

• As a result, when the device is powered, the ROM code
will copy the code payload and the pointers to the same
destination as the original bootloader. Then, assuming
Secure Boot is enabled, the signature check would fail
and the target is reset.

• For the attack, a glitch is injected after the code pay-
load is copied, but while the pointers are being copied.
This glitch modifies the destination operand of a load
instruction such that a controlled value is loaded into the
PC register. This effectively executes the code payload
well-before the signature is verified.

The above approach is also possible on CPU architectures
where the PC register is not directly addressable, including
ARM’s AArch64 and Xtensa. For these type of architectures,

232    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



the PC register can only be controlled indirectly, e.g., by cor-
rupting the operand of a branch, jump or return instruction.

3.1.2 With Flash Encryption

On modern SoC where Flash contents are encrypted, the tech-
nique in Section 3.1.1 might still work, on the condition that
the CPU operates directly on ciphertext. Then, a controlled
value can be loaded into the PC register simply by overwriting
the ciphertext.

However, on the ESP32, the flash contents are decrypted on-
the-fly by a hardware implementation of AES. This process is
done completely transparent to the CPU, which never operates
on the encrypted contents, only on the decrypted contents.
Therefore, any modification in the external flash will end
up in the context of the CPU as gibberish. In theory, a brute-
force attack on the 32-bit address space might still be possible,
i.e., the ciphertext is randomly manipulated until the pointer
of interest is found. In practice though, the time needed for
performing this search is likely excessive, given that devices
typically take a few milliseconds to boot.

Therefore, we decided to find another method for slipping
in one or more controlled values, which we intend to load into
the PC register using a glitch. On the ESP32 V1, Raelize [28]
leveraged the UART bootloader, which could not be disabled.
However, Espressif patched this vulnerability on the ESP32
V3. We decided to slip in a controlled 32-bit value into the
context of the CPU by tampering with the CRC operation
that is performed over the signature block. Setting the PC
register of the CPU to the result of this CRC32 operation
using a glitch is the main novelty of this paper. Gratchoff [19]
previously described this as a potential approach, however, to
the best of our knowledge, this has never been performed in
practice.

3.2 Modifying the Flash

We demonstrate our attack on a bootloader which prints
“Hello, World!”. There is no application, as shown in Fig. 1,
because being able to execute a modified bootloader com-
promises the application by default. The boot log observed
on the UART is given in Fig. 5. Additional line breaks have
been inserted to accommodate the two-column format of this
paper.

The ROM code reports explicitly that secure boot is enabled
and the secure boot verification succeeded. Even though not
specifically reported, flash encryption is enabled as well. Any
change to the bootloader or its signature block, both of which
are stored encrypted in flash, causes an error message to be
displayed in the boot log. If the signature block is modified,
the checksum verification fails, and the error message in Fig. 6
is printed. The key observation is that that the checksum
verification is done in the plaintext domain.

ets Jul 29 2019 12:21:46
rst:0x1 (POWERON_RESET),boot:0x13
(SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,
hd_drv:0x00,wp_drv:0x00
mode:2, clock div:2

secure boot v2 enabled
secure boot verification succeeded
load:0x3fff0020 len:0xc8c
load:0x40078000 len:0x2020
load:0x40080400 len:0xeac
entry 0x40080640
I (41) boot: ESP-IDF v5.0.1-397-g3050ea656f 2nd
stage bootloader
I (41) boot: compile time 16:51:07
I (41) boot: chip revision: v3.0
I (45) boot.esp32: SPI Speed : 40MHz
I (50) boot.esp32: SPI Mode : DIO
I (54) boot.esp32: SPI Flash Size : 2MB
I (59) boot: Enabling RNG early entropy source...
Hello, World!

Figure 5: UART for a bootloader that prints “Hello, World!”.

...

secure boot v2 enabled
Sig block 0 invalid: Stored CRC 0xbaaeaf78

calculated 0xdeadbeef
secure boot verification failed

Figure 6: UART boot log where the CRC fails.

We refrain from corrupting the first 16-byte block of the
signature as this includes a byte at offset 0 which is used as a
magic value. Whenever this value is not 0xe7, the signature
block is not considered a signature block and the checksum
verification is not performed. The error message that is printed
when the magic value is modified is shown in Fig. 7.

...

secure boot v2 enabled
No signature block magic byte found at signature
sector (found 0xc3 not 0xe7). Image not V2 signed?

secure boot verification failed

Figure 7: UART boot log where the magic byte is corrupted.

By performing manipulations of the ciphertext, we can
solve a system of linear equations and set the recomputed
checksum to any 32-bit value of choice. In fact, the hexspeak
value 0xdeadbeef in Fig. 6 is no coincidence, and serves
to demonstrate this ability. For our attack, we modify this
hexpspeak value into a pointer, i.e., a memory address, which
we then load into PC using a glitch.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    233



3.3 Solving Equations

We now specify how the system of linear equations is con-
structed. As this section is mathematical, unlike the rest of
this paper, a notation system is introduced. Variables and con-
stants are denoted by characters from the Latin and Greek
alphabets respectively. Orthogonal to this convention: scalars
are denoted by regular lowercase characters, binary vectors
are denoted by bold lowercase characters, and binary matri-
ces are denoted by bold uppercase characters. All vectors are
column vectors.

We leverage that CRC-32 is an affine function, as formal-
ized in Eq. (1), where ⊕ denotes XORing and where constant
γγγ∈ {0,1}32 only depends on the size of the input xxx. For inputs
xxx ∈ {0,1}9568, which corresponds to the first 1196 bytes of
the signature block, it holds that γγγ = 0x6b691bc6. Given
that γγγ, eventually, cancels out, its value is inconsequential.

CRC-32(xxx1⊕ xxx2) = CRC-32(xxx1)⊕CRC-32(xxx2)⊕ γγγ. (1)

Input xxx ∈ {0,1}9568 spans 75 AES plaintext blocks ppp ∈
{0,1}128, as formalized in Eq. (2) where ∥ is the concatena-
tion operator. The first block, ppp0, contains the magic byte
0xe7. The last block, ppp74, shares only 96 bits with xxx, and
the 32 excluded bits comprise the stored checksum sssstored =
CRC-32(xxx).

xxx ≜ ppp0 ∥ ppp1 ∥ · · · ∥ ppp73 ∥ (ppp74 mod 296). (2)

The external Flash contains the corresponding ciphertexts
ccc0, ccc1, · · · , ccc74, which we can alter. The first block, ccc0, is unal-
tered. Otherwise, the magic byte is not found with probability
255/256, and the UART boot log is uninformative, as shown
in Fig. 7.

Instead, we consecutively alter blocks ccc1 to ccc32. In the first
iteration, we overwrite ccc1 with a value ccc⋆1 that is selected
uniformly at random from {0,1}128. Consequentially, the cor-
responding plaintext block ppp1 changes to an unknown value
ppp⋆1 ≜ ppp1⊕ eee1. By booting the ESP32 with this modification,
and parsing the UART log, we obtain the checksum difference
ddd1 ≜ ssscalculated,1⊕ sssstored. From linearity in Eq. (1), it follows
that the difference ddd1 only depends on plaintext error eee1, as
specified in Eq. (3). Nevertheless, eee1 ∈ {0,1}128 cannot be
recovered from ddd1 ∈ {0,1}32 due to the 96-bit difference in
length, i.e., there are many eee1’s that result in the same ddd1.
This is fine: eee1 does not need to be recovered, and we merely
store the pair (ccc⋆1,ddd1) for further use.

ddd1 = CRC-32(0128 ∥ eee1 ∥09312)⊕ γγγ. (3)

Now, the same principle is repeated to obtain pairs (ccc⋆2,ddd2)
until (ccc⋆32,ddd32), as formalized in Eq. (4). Again, recovery of
eee2 until eee32 is unnecessary.

ddd2 = CRC-32(0256 ∥ eee2 ∥09184)⊕ γγγ.

...
ddd32 = CRC-32(04096 ∥ eee32 ∥05344)⊕ γγγ.

(4)

Instead, we linearly combine the known differences ddd1 un-
til ddd32 into a desired difference ddd ≜ ssspointer⊕ sssstored, where
ssspointer is the memory address we want to jump to. This is
achieved by solving the system of linear equations in Eq. (5)
for zzz ∈ {0,1}32. Note the absence of constant γγγ. Each bit zi
of zzz, where i ∈ [1,32], determines whether or not the corre-
sponding ciphertext block should be corrupted: if zi = 0, the
original cipertext is ccci remains in place, otherwise, the random
value ccc⋆i is used.

DDDzzz = ddd, where DDD =
(
ddd1 ddd2 · · · ddd32

)
. (5)

One problem remains though: the matrix DDD ∈ {0,1}32×32

is not necessarily invertible. Under the assumption that DDD
is selected uniformly at random from {0,1}32×32, which is
a reasonable abstraction, the probability that DDD is invertible
given in Eq. (6). The proof is straightforward and imagines
that columns are added one-by-one [25]: if the previous i−1
columns are linearly independent, the addition of column i
causes linear dependence with probability 2i−33. For exam-
ple, the first and last columns cause linear dependence with
probability 1/232 and 1/2 respectively. Logarithms help with
numerical evaluation, and result in a probability of around
28%.

Pr(rank(DDD) = 32) =
32

∏
i=1

(1−2−i)

= exp

(
32

∑
i=1

(
log(2i−1)− log(2i)

))
≈ 28%.

(6)

To ensure that DDD is invertible, we check whether its rank
increases for each column dddi that is added, as formalized in
Algorithm 1. If the rank does not increase, a new corrupted
ciphertext ccc⋆i is selected uniformly at random. As can be seen
from the invertibility proof [25], it are usually the last few
columns that require a retry. Observe that there is no need to
retake measurements if we would want to build images for
more than one pointer of interest.

Alternatives to Algorithm 1 could be devised. For example,
instead of gathering pairs (ccc⋆i ,dddi) for 32 AES blocks, pairs
could be gathered for, say, 40, blocks. From these 40 blocks,
32 blocks that result in an invertible DDD are then retained.

Although solving a system of equations is the canonical ap-
proach, it is only possible because the signature block happens
to be long. Originally, we disclosed an alternative method to
Espressif that would also have worked for small signature
blocks, at the minor inconvenience of a 32-bit brute-force

234    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



Algorithm 1: Measurement for CRC insertion
Input: Original bootloader, bbb ∈ {0,1}∗
Input: Index of magic byte, m ∈ N
Input: Pointer of interest, ssspointer ∈ {0,1}32

Output: Modified bootloader, bbb⋆ ∈ {0,1}∗
1 CCC← 00032×128
2 DDD← 00032×32
3 for i← 1 to 32 do
4 bbb⋆← bbb
5 do
6 ccci←{0,1}128

7 bbb⋆[m+ i128 : m+ i128+127]← ccci
8 Program bbb⋆

9 Fetch ssscalculated and sssstored from UART
10 DDD[:, i]← ssscalculated⊕ sssstored

11 while rank(DDD) ̸= i
12 CCC[:, i]← ccci

13 bbb⋆← bbb
14 zzz← DDD−1(ssspointer⊕ sssstored)
15 for i← 1 to 32 do
16 if zzz[i] then
17 bbb⋆[m+ i128 : m+ i128+127]←CCC[:, i]

search. In this method, we perturb η≥ 4 blocks of the signa-
ture, and for each block, we select λ≥ 2 ciphertexts ccc⋆ uni-
formly at random from {0,1}128, where λη > 232. We store
pairs (ccc⋆i, j,dddi, j), where i ∈ [1,η] and j ∈ [1,λ], and where dddi, j
is given in Eq. (7).

dddi, j = CRC-32(0128·i ∥ eeei, j ∥09440−128·i)⊕ γγγ. (7)

Next, the goal is to find indices j1, j2, · · · jη ∈ [1,λ] such
that ddd1, j1 ⊕ ddd2, j2 ⊕ ·· · ⊕ dddη, jη = ddd. This search took less
than one hour on a laptop. The corresponding ciphertexts
ccc⋆1, j1 ,ccc

⋆
2, j2 , · · · ,ccc

⋆
η, jη are applied.

3.4 Attack Surface for FI
The result of the checksum operation, i.e., the pointer of inter-
est, propagates through several CPU registers before the chip,
eventually, resets. This propagation path can be followed with
relative ease, given that Espressif published the ROM code in
ELF format [9]. If the ROM code would not have been pub-
lished, the code would have to be extracted from the device
through either delayering [17, 18] or an exploit [4, 31]. The
ELF file is loaded in Ghidra, which is reverse-engineering
software that decompiles assembly instructions into C, among
other features. Our analysis reveals that the proverbial attack
surface for FI comprises three subroutines.

The first subroutine is crc32_le, which computes the
checksum, and is shown in Fig. 8. The XOR operation at

address 0x4005d019 writes the computed checksum into
register a2. If this instruction could be corrupted such that
the destination register a2 changes to the return address a0,
as formalized in Corruption 1, the pointer of interest would
be loaded into the PC register of the CPU. Given that a2 and
a0 are encoded as four-bit fields 0x2 and 0x0 respectively,
this would only require a single bit flip.

crc32_le()
0x4005cfec entry a1, 0x20
0x4005cfef movi.n a8, 0xff
0x4005cff1 xor a2, a8, a2
0x4005cff4 l32r a9, 0x4005cfe8
0x4005cff7 movi.n a8, 0x0
0x4005cff9 j 0x4005d014
0x4005cffc add.n a10, a3, a8
0x4005cffe l8ui a10, a10, 0x0
0x4005d001 addi.n a8, a8, 0x1
0x4005d003 xor a10, a10, a2
0x4005d006 extui a10, a10, 0x0, 0x8
0x4005d009 addx4 a10, a10, a9
0x4005d00c l32i.n a10, a10, 0x0
0x4005d00e srli a2, a2, 0x8
0x4005d011 xor a2, a10, a2
0x4005d014 bne a8, a4, 0x4005cffc
0x4005d017 movi.n a3, 0xff
0x4005d019 xor a2, a3, a2
0x4005d01c retw.n

Figure 8: ROM code of crc32_le.

Corruption 1. At address 0x4005d019, the instruction
xor a2, a3, a2 with encoding 0x302320 is corrupted into
xor a0, a3, a2 with encoding 0x300320.

The second potential target for FI is subroutine ets_
secure_boot_verify_signature, which is the
caller of crc32_le, and the relevant part is shown in Fig. 9.
Due to the shifting window, the pointer is returned in register
a10 after the call8 instruction at address 0x4006547e,
and is copied to register a13 at address 0x40065485. If the
contents of a10 differ from the stored checksum in register
a12, a branch is taken at address 0x40065488 to resume
normal operation. Otherwise, the subroutine ets_printf
is called at address 0x40065491 to print the CRC error
message. The unconditional jump at address 0x40065565
results in a reset.

Again, taking PC control by overwriting the return address
a0 is plausible. Most notably, the move instruction at address
0x40065485 could be corrupted such that the destination
register changes from a13 to a0, as formalized in Corrup-
tion 2. Although this entails three bit flips, the probability of

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    235



0x40065474 movi a12, 0x4ac
0x40065477 movi.n a10, 0x0
0x40065479 mov.n a11, a6
0x4006547b movi a2, 0x4ac
0x4006547e call8 crc32_le
0x40065481 add.n a2, a6, a2
0x40065483 l32i.n a12, a2, 0x0
0x40065485 mov a13, a10
0x40065488 beq a10, a12, 0x40065498
0x4006548b l32r a10, 0x40065428
0x4006548e mov a11, a7
0x40065491 call8 ets_printf
0x40065494 j 0x40065565

Figure 9: ROM-code fragment of ets_secure_boot_
verify_signature.

occurrence could be significant depending on the unknown
fault model: all flips are of the type 1→ 0, and they all occur
within a single 4-bit field. Different fields are processed by
different circuits, so there is no reason why setting an entire
field to zero would be unrealistic.

Corruption 2. At address 0x40065485, the instruction
mov a13, a10 with encoding 0x20daa0 is corrupted into
mov a0, a10 with encoding 0x200aa0.

Alternatively, it might be possible to corrupt the opcode of
the move instruction and turn it into an unconditional register
jump jx, as formalized in Corruption 3. Although this entails
four bit flips, it equates to setting two out of six fields to zero.

Corruption 3. At address 0x40065485, the instruction
mov a13, a10 with encoding 0x20daa0 is corrupted into
jx a10 with encoding 0x000aa0.

The third and last subroutine for potential FI is ets_
printf, which prints a formatted string similar to its C
counterpart printf. The pointer of interest is passed as an ar-
gument through register a13. The ROM code is not analyzed
here due to its length.

3.5 Pointers of Interest
As listed in Table 2, we jump to two ROM functions. The
first function, ets_fatal_exception_handler, pre-
pares a formatted string and calls ets_printf, as shown
in Fig. 10. The relative simplicity of a print enables us to
efficiently tune EM-FI glitch parameters later-on: the delay,
the power, and the XY coordinates. Furthermore, because
the value of five registers is printed, useful insights about the
injected fault can potentially be gained.

Once suitable glitch parameter values are found, we change
the Flash image of our target device and jump to Download

Table 2: Pointers of interest in the ROM code.

Address Function
0x40006864

ets_fatal_exception_handler
0x80006864
0x40008ceb

UartDwnLdProc
0x80008ceb

0x40006864 l32r a10, 0x3ff9e820
0x40006867 mov.n a11, a6
0x40006869 mov.n a12, a5
0x4000686b mov.n a13, a4
0x4000686d mov.n a14, a3
0x4000686f mov.n a15, a2
0x40006871 call8 ets_printf

Figure 10: ROM-code fragment of ets_fatal_
exception_handler.

Mode instead, i.e., the ROM function UartDwnLdProc.
The latter jump is more restrictive than ets_fatal_
exception_handler because three input parameters
should have proper values.

Given that the windowing mechanism of the Xtensa ISA
has a crucial role in this matter, we experiment with addresses
of the form 0x4XXXXXXX and 0x8XXXXXXX. The return
instruction retw.n uses the two most significant bits of a0
are to determine the shift in window, whereas the 29 least
significant bits determine the next PC.

3.6 Simulating Faults with GDB
Before building the FI setup and performing the attack in prac-
tice, we simulated the desired faults with Espressif’s GNU
Debugger (GDB) to confirm their effect. For this purpose, we
prepared a bootloader where the signature block is corrupted,
and the recomputed checksum is, consequentially, incorrect.
Upon flashing this bootloader, Corruption 1 and Corruption 2
are simulated as shown in Fig. 11a and Fig. 11b respectively.
In both simulations, we set a hardware breakpoint at the tar-
geted instruction and overwrite register a0 with the desired
pointer during the break.

To determine whether or not ets_fatal_exception_
handler is reached, we merely need to observe the UART
output, and check whether or not the string is printed. For
Download Mode, there is no welcome message, but we can
check whether or not an additional hardware breakpoint deep
within this mode is reached. Our conclusion is that pointers of
the form 0x8XXXXXXX result in a successful jump, whereas
pointers of the form 0x4XXXXXXX do not.

For Corruption 3, we performed similar GDB experiments.

236    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



hbreak *0x4005d01c
continue
set $a0 = 0x80006864
continue

(a) Corruption 1

hbreak *0x40065485
continue
set $a0 = 0x80006864
continue

(b) Corruption 2

Figure 11: Simulation of (a) Corruption 1 in crc32_le
and (b) Corruption 2 in ets_secure_boot_verify_
signature with GDB.

However, the conclusion is different: pointers of the forms
0x4XXXXXXX and 0x8XXXXXXX both result in a successful
jump.

4 Practical Experiments

4.1 Target Preparation
We target an ESP32-DevKitC V4 [8] with an ESP32-
WROOM-32E module [13], which is a small-sized and com-
mercially available development board produced by Espressif.
To enable EM-FI, we removed the metal shield that covers
both the ESP32 V3 chip and the SPI flash chip with a KADA
852D+ hot air gun. No-clean flux is applied to facilitate this
process.

Upon confirming that the board survived the hot air, we
manually enable the security features of the ESP32 V3 by
burning eFuses. Although Espressif provides a partially auto-
mated process, the manual approach is more convenient for
developing an attack: the security features can be enabled one
by one, instead of altogether automatically. Figure 12a shows
the eFuses for enabling Secure Boot. The SHA-256 digest
of the RSA public key is obtained from the file rsa.pem.
Figure 12b shows the eFuses for enabling Flash encryption.
The 256-bit AES key is contained in the binary file aes.bin.
Figure 12c shows the eFuses for enabling Release Mode.

Burning the eFuses for enabling Flash Encryption, as
shown in Fig. 12b, is postponed as long as possible. Although
our attack works equally well with and without Flash En-
cryption, this allows us to gradually develop the attack and
compare timing in the two cases.

Likewise, burning the eFuse for disabling Download Mode,
as shown in Fig. 12d, is postponed as long as possible. Al-
though this security feature does not preclude our attack, in
which we enter Download Mode by directly jumping to ad-
dress 0x40008ceb, one cannot easily program the external
Flash anymore after the eFuse is burned. Recall from Algo-
rithm 1 that at least 33 manipulated Flash images need to be
programmed to set the recomputed checksum to an arbitrary
pointer. Starting from a valid signed and encrypted image,
where the bootloader prints “Hello, World!”, we created four
images that correspond to the four interesting jump locations
in Table 2. Only after tuning the glitch parameters, we burn

$ espefuse.py burn_key_digest rsa.pem

$ espefuse.py burn_efuse ABS_DONE_1 1

(a) Secure Boot.

$ espefuse.py burn_key flash_encryption aes.bin

$ espefuse.py burn_efuse FLASH_CRYPT_CNT 1

$ espefuse.py burn_efuse FLASH_CRYPT_CONFIG 15

(b) Flash Encryption.

$ espefuse.py burn_efuse DISABLE_DL_ENCRYPT 1

$ espefuse.py burn_efuse DISABLE_DL_DECRYPT 1

$ espefuse.py burn_efuse DISABLE_DL_CACHE 1

$ espefuse.py write_protect_efuse FLASH_CRYPT_CNT

(c) Release Mode.

$ espefuse.py burn_efuse UART_DOWNLOAD_DIS 1

(d) Download Mode.

Figure 12: Burning eFuses for (a) enabling Secure Boot, (b)
enabling Flash Encryption, (c) enabling Release Mode, and
(d) disabling Download Mode.

the eFuse. Because the Flash is external, programming in
principle remains possible, at the minor inconvenience of
soldering an SPI programmer to the chip.

4.2 EM-FI Setup
We used Riscure’s EM-FI setup [29]. The motorized XYZ
stage is shown in Fig. 13a. We used the large red Classic
probe tip, which has a diameter of 4 mm. The targeted ESP32
V3 board is stabilized with double-sided tape. A desktop
computer communicates with the board via the Micro-USB
connector; a Windows COM port provides the serial interface.
As is shown in Fig. 13b, an electric wire is attached to the
chip-enable pin from the SPI Flash chip, thereby providing a
timing reference (i.e.trigger) for the EM glitches.

4.3 Tuning Glitch Parameters
4.3.1 Coarse Timing: Execution Trace

The most crucial glitch parameter to be tuned is the timing.
As in prior work, we use the so-called chip-enable signal of
the Flash chip as a timing reference. As shown in Fig. 14,
the chip-enable signal is observed to consist of five relatively
large blocks where data is copied from Flash to SRAM. We
used a Teledyne LeCroy WavePro 804HD oscilloscope to
take these measurements.

Next, we determine when crc32_le is executed with
respect to these five copy blocks. For this purpose, we use
Espressif’s GDB to trace the program execution. We created a

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    237



(a) XYZ stage and Spider

(b) Target and glitch amplifier

Figure 13: Riscure EM FI setup.

Vo
lta

ge
[V

].

Time [ms].

Figure 14: Blocks of data copied from Flash to SRAM. The
reset signal is colored blue; the chip-enable signal is colored
red.

Python script that starts from a hardware breakpoint in main,
and then pauses at each instruction with stepi until the
program ends. At each pause, we log the function name, the
value of the program counter, and the value of registers a0 to
a15. This whole process takes less than two hours. As shown
in Fig. 15, crc32_le is executed shortly after block #5.

memcpy
ets_printf and subroutines

crc32_le
RSA

0 0.5 1 1.5 2 2.5

·105Time [instructions].

Figure 15: Execution trace when the CRC is correct (top) and
wrong (bottom).

Remark that execution traces are only one possible method
to obtain course timing information. An unexplored alterna-
tive is SCA, e.g., by taking power-consumption measurements.
In this approach, power traces are collected for the two classes,
where the recomputed checksum is correct and wrong for the
first and second class respectively. Initially, the two classes
should be quasi indistinguishable, and shortly after crc32_
le, the classes should diverge drastically.

4.3.2 Refined Timing: FI as Virtual Oscilloscope

Next, we refine the timing by using EM-FI as a virtual oscil-
loscope [20,23,30]. We inject glitches in a large time interval
while fetching the CRC error string from UART, both with
and without Flash Encryption. Because only tiny differences
could be observed, we only show results obtained with Flash
Encryption enabled in Fig. 16 and all subsequent scatter plots.

For Fig. 16 and all subsequent plots, we adopt the color
legend from Table 3. Green dots represent the baseline, i.e.,
the fault has no observable effect in the UART output, and the
device eventually resets because the stored and recomputed
checksums are different. Yellow dots represent fault-induced
crashes, i.e., the fault and not the checksum difference causes
the target device to reset. Cyan dots indicate that the CRC
error string is deformed, e.g., characters are missing or cor-
rupted. Orange dots indicate that the CRC error string is
well-formed, but the recomputed checksum is corrupted. Pur-
ple dots indicate that the stored checksum is corrupted instead.
Pink dots indicate that the recomputed and stored checksums

238    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



Delay [ns]

Po
w

er

Figure 16: FI as an oscilloscope.

are both corrupted. Red dots indicate successful PC control.

Table 3: Color legend for the scatter plots in Figs. 16 to 19.

green Nominal response.
yellow No response, i.e., a crash.
cyan Deformed CRC error string.

orange Altered recomputed checksum.
purple Altered stored checksum.
pink Altered recomputed and stored checksums.
red Successful jump.

For improved visibility, three measures are taken for all
scatter plots. Firstly, small random errors are added to the
shown pair of variables, which is also a common practice in
Riscure’s own visualization software, Spotlight. Otherwise,
most dots would coincide. Secondly, dots are drawn in the
order of the legend in Table 3. Otherwise, a small number of
red dots could be obscured by large numbers of green and
yellow dots, for example. Thirdly, dots with different colors
might be drawn with different diameters.

In Fig. 16, two regions are of particular interest. The re-
gion with the orange dots corresponds to crc32_le. The re-
gion with cyan dots is part of ets_printf. From the ROM
code execution trace analysis, we know that ets_printf
starts well before the cyan dots appear. The function ets_
secure_boot_verify_signature is likely executed
in the region between the orange and the cyan dots. This is
not visible because of the very small number of instructions
the function is composed of.

4.3.3 XY-Coordinates and Power

The XYZ-stage is used to scan the surface of the ESP32 chip.
Although the surface is approximately square, the EM-FI
probe is partially blocked by the neighboring Flash chip and
is free to move in a rectangular area of roughly 5 mm× 2 mm.

Because the Flash chip has only eight pins, displacement
though soldering is possible, but is unnecessary for the attack
to succeed. Within the rectangular area, the probe moves in a
30-by-30 grid.

Fig. 17 shows the result of our surface scan. For clar-
ity, only the green, yellow, and red dots are shown. Red
dots represent successes, i.e., the string in ets_fatal_
exception_handler is successfully printed. For this par-
ticular scan, we used the 0x8XXXXXXX address. The key
takeaway of Fig. 17 is that the probe can be placed inside
at a relatively large fraction of the chip’s surface in order to
inject a successful glitch. Stated otherwise, finding the prover-
bial needle in a haystack primarily applies to time, not space.
This is unsurprising because the CPU is relatively large and,
arguably, the centerpiece of the chip.

X [µm]

Y
[µ

m
]

Figure 17: Scan of the chip surface.

Figure 18 shows a similar scatter plot, now pairing the
glitch delay and the glitch power. The power randomly varies
between 20% and 100% of the physical maximum; 500 is
merely a scaling factor configured in software. The key take-
away of the plot is that two different instruction corruptions
result in the desired jump.

Our setup performs around 3.4 attempts per second. The
red dots can be reproduced with success rates of around 2%,
upon fixing the position (X ,Y ), the delay, and the power.

4.4 Root Cause Analysis
As for virtually all FI attacks described in the literature, there
is no absolute certainty about the exact instruction corruption
that caused the attack to succeed. Nevertheless, clues can be
obtained.

The easiest available source of clues is the UART log. Re-
call that ets_fatal_exception_handler prints reg-
isters a2 to a6. By matching the printed values to the GDB
execution trace, we conclude that a2 to a6 from ets_
secure_boot_verify_signature are printed. The
addition add.n a2, a6, a2 at address 0x40065481 is con-
firmed to take place, i.e., the instruction corruptions happen
from 0x40065483 onwards. Another clue obtained from
UART is that for the second cluster of red dots in Fig. 18,
the CRC error string is printed, whereas for the first cluster,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    239



Po
w

er

Delay [ns], minus 1641 µs.

Figure 18: Delay versus power.

this print is missing. Based on the above observations, we set
forth a hypothesis for each cluster:

1. For the first cluster, we corrupt an instruction in ets_
secure_boot_verify_signature between ad-
dresses 0x40065483 and 0x40065491. This cor-
ruption causes a jump to ets_fatal_exception_
handler with immediate effect, and without shifting
the register window. The above behavior is consistent
with jx in Corruption 3, but inconsistent with overwrit-
ing the return address a0 in Corruption 2.

2. For the second cluster, we corrupt an instruction in the
beginning of ets_printf. This corruption causes a
jump to ets_fatal_exception_handler with a
delayed effect, and rotates back the window with eight
registers. This behavior is consistent with overwriting
the return address a0.

A second source of clues is the aforementioned notion of
using FI as an oscilloscope. Figure 19 covers a narrow time in-
ternal around the two clusters of red dots. Purple dots indicate
that the stored checksum is wrong, whereas the recomputed
checksum is correct. Pink dots indicate that both checksums
are wrong. We see a stripe pattern with a period of around
25 ns. This corresponds to a frequency of 40 MHz, which is
also the frequency of the external crystal oscillator.

The first cluster of reds dots is located within a purple
region, which is consistent with Corruption 3. Note that the
stored checksum is loaded right before.

4.5 Jumping to Download Mode

After having tuned our parameters, we prepare the
0x80008ceb image for Download Mode and burn the eFuse
in Fig. 12d. If successful, we can leverage this mode to read
and write memory, and execute arbitrary code.

To verify that we are successful in getting into Download
Mode, we use UART to send the packet below, which is a
command for reading memory. As defined in Espressif’s Se-
rial Line Internet Protocol (SLIP) [11], each packet begins
and ends with byte 0xc0. The second byte is 0x00 and indi-
cates that the packet is a request. The third byte is 0x0a and
indicates the nature of the request: reading data from a mem-
ory address. Byte 4 and 5, with value 0x0400, indicate that
four bytes of data are attached to this packet, i.e., the memory
address. Bytes 6 to 9, with value 0x00000000, are unused.
Bytes 10 to 13 encode the memory address 0x3f401000
in little endian. This virtual address is mapped to physical
address 0x1000 of the external Flash, where the firmware
file header is written [10], starting with a magic byte 0xe9.

c0000a0400000000000010403fc0.

The ESP32 responds with the packet below. Unlike before,
the second byte is 0x01 and indicates that the packet is a
response. The third byte is still 0x0a, repeating the nature of
the request. Again, byte 4 and 5, with value 0x0400, indicate
that four bytes of data are attached. Byte 6 to 9, with value
e9030210, are decrypted Flash contents. Figure 20 displays
the Flash contents before and after encryption, which confirms
the match.

c0010a0400e903021000000000c0.

The success rate for jumping to Download Mode is
the same as for jumping to ets_fatal_exception_
handler: roughly 2%. Because an attacker only needs to
succeed once, further optimizing this success rate is unneces-
sary.

5 Conclusion

Our work demonstrates that the ESP32 V3, even though it
is specifically hardened against FI attacks, is still vulnera-
ble. Using a single EM glitch, we were able to bypass the
SoC’s most significant security features, i.e., Secure Boot V2,
Flash Encryption, the disabling of Download Mode by burn-
ing fuses, and the enabling of Release Mode by burning fuses.
We have no reasons to believe that a skilled and resourceful at-
tacker would be unable to perform this attack on a commercial
product that incorporates an ESP32 V3 chip.

Moreover, we believe to have demonstrated an FI technique
that is versatile enough to be applied to various architectures,
which includes vendors other than Espressif. Our approach

240    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



Delay [ns]

Po
w

er

Figure 19: FI as an oscilloscope, revisited.

00000000 E9 03 02 10 3C 06 08 40 EE 00 00 00 00 00 03 00 ....<..@........
00000010 00 FF FF 00 00 00 00 01 20 00 FF 3F C4 0C 00 00 ........ ..?....
00000020 FF FF FF FF 28 50 04 00 FF AC 00 00 01 00 00 00 ....(P..........
00000030 00 F0 F5 3F 00 00 00 00 04 00 00 00 05 00 00 00 ...?............
00000040 06 00 00 00 07 00 00 00 41 73 73 65 72 74 20 66 ........Assert f
00000005 61 69 6C 65 64 20 69 6E 20 25 73 2C 20 25 73 3A ailed in %s, %s:

(a) Unencrypted.

00000000 BB C3 FC 39 C1 52 A1 1B 05 D8 E9 FF A2 4E D3 64 ...9.R.......N.d
00000010 7C 55 95 FC DC 5C AA BB AC 81 38 A1 0F 99 62 42 |U...\....8...bB
00000020 98 D1 9C 13 66 1C 49 D1 E4 C4 42 6F D9 76 24 55 ....f.I...Bo.v$U
00000030 DD 4A C4 ED FB 01 05 18 29 02 4A 7A F4 01 4E 52 .J......).Jz..NR
00000040 C1 2C B9 02 77 6F DE 4B 72 24 1A DB 2D A9 1D 3E .,..wo.Kr$..-..>
00000005 39 E1 0D BB A3 6F BA B1 DA E5 02 A0 27 76 00 64 9....o......’v.d

(b) Encrypted.

Figure 20: Hexadecimal dump of a Flash image (a) before
encryption and (b) after encryption.

marks the first successful demonstration of loading an arbi-
trary value into the PC register of a CPU without being able
to directly control the value. Modifying ciphertext in order to
load the result of a computation on the plaintext into the PC
using a single glitch represents a previously unseen level of
complexity for such attacks.

The vulnerabilities we exploited on the ESP32 V3 require
a new hardware revision as they cannot be mitigated by a
software patch. If such a revision would be made, the attack
could be mitigated by simply not printing the checksum val-
ues on the serial interface. However, given that variations
on our FI technique are not limited to the checksum opera-
tion, the printing of any information on the serial interface

should be carefully assessed. Either way, Espressif indicated
that the attack presented in this article does not apply to the
ESP32-S2, ESP32-C3, ESP32-S3, and future chips. We did
not investigate what is different for those chips that would
yield our attack inapplicable.

Acknowledgments

We thank Espressif for establishing a smooth vulnerability-
disclosure process.

References

[1] Karim M. Abdellatif, Olivier Hériveaux, and Adrian
Thillard. Unlimited results: Breaking firmware encryp-
tion of ESP32-V3. Cryptology ePrint Archive, Paper
2023/090, January 2023. https://eprint.iacr.org/
2023/090.

[2] Hagai Bar-El, Hamid Choukri, David Naccache,
Michael Tunstall, and Claire Whelan. The sorcerer’s
apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[3] Kévin Courdesses (Courk). Fault injection attacks
against the ESP32-C3 and ESP32-C6, January
2024. https://courk.cc/esp32-c3-c6-fault-
injection#esp32-c3-c6-fault-injection [Ac-
cessed: Feb 9, 2024].

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    241

https://eprint.iacr.org/2023/090
https://eprint.iacr.org/2023/090
https://courk.cc/esp32-c3-c6-fault-injection#esp32-c3-c6-fault-injection
https://courk.cc/esp32-c3-c6-fault-injection#esp32-c3-c6-fault-injection


[4] derrek, nedwill, and naehrwert. Nintendo hacking 2016
– game over, December 2016. 33rd Chaos Commu-
nication Congress (33C3), https://media.ccc.de/
v/33c3-8344-nintendo_hacking_2016 [Accessed:
Mar 11, 2024].

[5] Espressif. ESP-IDF programming guide – flash encryp-
tion. https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/security/flash-
encryption.html [Accessed: Mar 12, 2024].

[6] Espressif. ESP-IDF programming guide – secure boot
v2. https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/security/secure-boot-
v2.html [Accessed: Mar 12, 2024].

[7] Espressif. ESP32 chip revision v3.0 – user guide.
https://www.espressif.com/sites/default/
files/documentation/esp32_chip_revision_v3_
0_user_guide_en.pdf [Accessed: Mar 12, 2024].

[8] Espressif. ESP32-DevKitC V4 getting started guide.
https://docs.espressif.com/projects/esp-
idf/en/stable/esp32/hw-reference/esp32/get-
started-devkitc.html [Accessed: Mar 12, 2024].

[9] Espressif. ESP32 series ROM ELF files.
https://github.com/espressif/esp-rom-
elfs/releases [Accessed: Mar 12, 2024].

[10] Espressif. Firmware image format. https:
//docs.espressif.com/projects/esptool/
en/latest/esp32/advanced-topics/firmware-
image-format.html [Accessed: Mar 12, 2024].

[11] Espressif. Serial protocol. https://docs.
espressif.com/projects/esptool/en/latest/
esp32/advanced-topics/serial-protocol.html
[Accessed: Mar 12, 2024].

[12] Espressif. Espressif security advisory concerning
fault injection and secure boot (cve-2019-15894),
2019. https://www.espressif.com/en/news/
Espressif_Security_Advisory_Concerning_
Fault_Injection_and_Secure_Boot [Accessed:
Mar 12, 2024].

[13] Espressif. ESP32-WROOM-32E – ESP32-
WROOM-32UE – Datasheet v1.6, 2023.
https://www.espressif.com/sites/default/
files/documentation/esp32-wroom-32e_esp32-
wroom-32ue_datasheet_en.pdf [Accessed: Mar 12,
2024].

[14] Espressif. Security advisory concerning breaking
the hardware AES core and firmware encryption
of ESP32 chip revision v3.0. Technical report,
2023. https://www.espressif.com/sites/

default/files/advisory_downloads/AR2022-
003%20Security%20Advisory%20Concerning%
20Breaking%20the%20Hardware%20AES%20Core%
20and%20Firmware%20Encryption%20of%
20ESP32%20Chip%20Revision%20v3.0%20-
%20V2.0%20EN.pdf [Accessed: Mar 12, 2024].

[15] Espressif. Security advisory concerning bypassing
secure boot and flash encryption using CPA and
FI attack on ESP32-C3 and ESP32-C6. Technical
report, 2023. https://www.espressif.com/sites/
default/files/advisory_downloads/AR2023-
007%20Security%20Advisory%20Concerning%
20Bypassing%20Secure%20Boot%20and%20Flash%
20Encryption%20using%20CPA%20and%20FI%
20attack%20on%20ESP32-C3%20and%20ESP32-
C6%20EN.pdf [Accessed: Mar 12, 2024].

[16] Espressif. Security advisory concerning bypassing
secure boot and flash encryption using EMFI. Technical
report, 2023. https://www.espressif.com/sites/
default/files/advisory_downloads/AR2023-
005%20Security%20Advisory%20Concerning%
20Bypassing%20Secure%20Boot%20and%20Flash%
20Encryption%20Using%20EMFI%20EN.pdf [Ac-
cessed: Sep 12, 2023].

[17] Travis Goodspeed. GameBoy ROM tutorial, March
2023. https://github.com/travisgoodspeed/
gbrom-tutorial [Accessed: Mar 12, 2024].

[18] Travis Goodspeed. Thread on X by @travisgoodspeed,
November 2023. https://threadreaderapp.com/
thread/1728420233050747287.html [Accessed:
Mar 12, 2024].

[19] James Gratchoff. Proving the wild jungle jump.
Technical report, University of Amsterdam, July
2015. https://www.os3.nl/_media/2014-2015/
courses/rp2/p48_report.pdf.

[20] Tim Hummel. Exploring effects of electromagnetic
fault injection on a 32-bit high speed embedded device
microprocessor. Master Thesis, University of Twente,
July 2014.

[21] Internet Engineering Task Force (IETF). RFC 8017
– PKCS #1: RSA cryptography specifications version
2.2. https://datatracker.ietf.org/doc/html/
rfc8017 [Accessed: Mar 12, 2024].

[22] LimitedResults. Fatal fury on ESP32: Time to
release hardware exploits. BlackHat Europe 2019,
December 2019. https://www.blackhat.com/eu-
19/briefings/schedule/#fatal-fury-on-esp-
time-to-release-hardware-exploits-17336.

242    18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://media.ccc.de/v/33c3-8344-nintendo_hacking_2016
https://media.ccc.de/v/33c3-8344-nintendo_hacking_2016
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/hw-reference/esp32/get-started-devkitc.html
https://github.com/espressif/esp-rom-elfs/releases
https://github.com/espressif/esp-rom-elfs/releases
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/serial-protocol.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/serial-protocol.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/serial-protocol.html
https://www.espressif.com/en/news/Espressif_Security_Advisory_Concerning_Fault_Injection_and_Secure_Boot
https://www.espressif.com/en/news/Espressif_Security_Advisory_Concerning_Fault_Injection_and_Secure_Boot
https://www.espressif.com/en/news/Espressif_Security_Advisory_Concerning_Fault_Injection_and_Secure_Boot
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://github.com/travisgoodspeed/gbrom-tutorial
https://github.com/travisgoodspeed/gbrom-tutorial
https://threadreaderapp.com/thread/1728420233050747287.html
https://threadreaderapp.com/thread/1728420233050747287.html
https://www.os3.nl/_media/2014-2015/courses/rp2/p48_report.pdf
https://www.os3.nl/_media/2014-2015/courses/rp2/p48_report.pdf
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017
https://www.blackhat.com/eu-19/briefings/schedule/#fatal-fury-on-esp-time-to-release-hardware-exploits-17336
https://www.blackhat.com/eu-19/briefings/schedule/#fatal-fury-on-esp-time-to-release-hardware-exploits-17336
https://www.blackhat.com/eu-19/briefings/schedule/#fatal-fury-on-esp-time-to-release-hardware-exploits-17336


[23] Nourdin Aït El Mehdi. Analyzing the resilience of mod-
ern smartphones against fault injection attacks. Master
Thesis, Delft University of Technology, June 2019.

[24] Nicolas Moro, Karine Heydemann, Emmanuelle En-
crenaz, and Bruno Robisson. Formal verification of
a software countermeasure against instruction skip at-
tacks. Journal of Cryptographic Engineering, 4:145–
156, 2014.

[25] The On-Line Encyclopedia of Integer Sequences.
A048651, July 2007. https://oeis.org/A048651
[Accessed: Mar 12, 2024].

[26] Colin O’Flynn. Low-cost body biasing injection (BBI)
attacks on WLCSP devices. In Pierre-Yvan Liardet and
Nele Mentens, editors, 19th Conference on Smart Card
Research and Advanced Applications (CARDIS 2020),
volume 12609 of Lecture Notes in Computer Science,
pages 166–180. Springer, November 2020. https://
eprint.iacr.org/2020/1228.pdf.

[27] Raelize. Breaking SoC security by glitching OTP data
transfers, 2020. https://hardwear.io/usa-2022/
speakers/cristofaro-mune.php.

[28] Raelize. Espressif ESP32: Bypassing encrypted
secure boot (CVE-2020-13629), September 2020.
https://raelize.com/blog/espressif-esp32-
bypassing-encrypted-secure-boot-cve-2020-
13629/.

[29] Riscure. EM-FI transient probe. https:
//www.riscure.com/products/em-fi-transient-
probe/ [Accessed: Mar 12, 2024].

[30] Albert Spruyt, Alyssa Milburn, and Łukasz
Chmielewski. Fault injection as an oscilloscope:
Fault correlation analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems,
2021(1):192–216, Dec. 2020.

[31] Michael Steil. 17 mistakes Microsoft made in the
Xbox security system. In 22nd Chaos Communication
Congress, 2005.

[32] Tensilica, Inc. Xtensa instruction set architecture (ISA)
– Reference manual, April 2010. https://0x04.net/
~mwk/doc/xtensa.pdf [Accessed: Mar 12, 2024].

[33] Niek Timmers and Cristofaro Mune. Using fault in-
jection to turn data transfers into arbitrary execution,
2019. https://powerofcommunity.net/poc2019/
Niek.pdf.

[34] Niek Timmers, Albert Spruyt, and Marc Witteman. Con-
trolling PC on ARM using fault injection. In Work-
shop on Fault Diagnosis and Tolerance in Cryptography

(FDTC 2016), pages 25–35. IEEE Computer Society,
August 2016.

[35] Marc Witteman and Martijn Oostdijk. Secure appli-
cation programming in the presence of side channel
attacks. In RSA conference, volume 2008, 2008.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    243

https://oeis.org/A048651
https://eprint.iacr.org/2020/1228.pdf
https://eprint.iacr.org/2020/1228.pdf
https://hardwear.io/usa-2022/speakers/cristofaro-mune.php
https://hardwear.io/usa-2022/speakers/cristofaro-mune.php
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/
https://www.riscure.com/products/em-fi-transient-probe/
https://www.riscure.com/products/em-fi-transient-probe/
https://www.riscure.com/products/em-fi-transient-probe/
https://0x04.net/~mwk/doc/xtensa.pdf
https://0x04.net/~mwk/doc/xtensa.pdf
https://powerofcommunity.net/poc2019/Niek.pdf
https://powerofcommunity.net/poc2019/Niek.pdf

	Introduction
	History of FI Attacks on ESP32
	Contributions
	Disclosure Timeline
	Structure

	Preliminaries on Espressif's ESP32 V3
	System Overview
	Xtensa Instruction Set Architecture
	Secure Boot V2
	Secure Boot: Digital Signatures
	Flash Encryption


	Theory of the Attack
	PC Control Through FI
	Without Flash Encryption
	With Flash Encryption

	Modifying the Flash
	Solving Equations
	Attack Surface for FI
	Pointers of Interest
	Simulating Faults with GDB

	Practical Experiments
	Target Preparation
	EM-FI Setup
	Tuning Glitch Parameters
	Coarse Timing: Execution Trace
	Refined Timing: FI as Virtual Oscilloscope
	XY-Coordinates and Power

	Root Cause Analysis
	Jumping to Download Mode

	Conclusion

