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Abstract
The security of Internet-of-Things (IoT) is a growing concern,
with IP cameras like those from Eufy promising robust secu-
rity through military-grade encryption. While Eufy’s claims
are strong, independent verification of these claims is crucial
to confirm the integrity and resilience of its systems against
potential vulnerabilities and extend the lessons learned to the
broader IoT landscape, ensuring practices keep pace with
technological advancements.

We unveiled the inner workings and security measures in
the Eufy ecosystem through reverse engineering, particularly
focusing on its smart doorbell and Homebase, and evaluated
the proprietary peer-to-peer protocol and encryption methods.

This paper offers a comprehensive analysis of the Eufy
ecosystem, offering insights into the broader implications of
IoT device security. Our investigation revealed critical vul-
nerabilities within the ecosystem, which were responsibly
disclosed and confirmed by Eufy. The vulnerabilities could
compromise end-user privacy by allowing unauthorized ac-
cess to the end users’ private network within seconds. A key
tool in our research was dAngr, a symbolic debugger we de-
veloped to facilitate the reconstruction of encryption keys
in intricate cross-architecture binaries, thus enabling a more
efficient reverse engineering process.

The research revealed vulnerabilities in Eufy’s ecosystem,
leading to serious privacy and security concerns, and suggests
effective countermeasures, stressing the need for continued
vigilance in IoT device security.

1 Introduction

Smart doorbells have experienced a remarkable surge in sales,
reaching a market value of USD 16.2 Billion in 2023, and
are expected to grow at an annual rate of 33.4% from 2023
to 2030 [1]. To give an idea of their popularity, Amazon sold
more than 400.000 smart doorbell devices and accessories
during the pandemic [34]. Smart doorbells empower end users
to monitor and interact with people at their doorstep remotely,

enhancing both convenience and physical security. However,
this surge in popularity has brought concerns regarding se-
curity, safety and privacy to the forefront, forcing doorbell
manufacturers to invest in bolstering their security measures.

Eufy [12], a rapidly emerging player, is a part of Anker
Innovations. Anker is one of the leading electronics brands
in America. Founded in 2016, Eufy is already among the ten
most popular IP Camera brands in 2022 [23],

Eufy distinguishes itself with its emphasis on security, of-
fering secure local storage (as it eliminates the need for cloud
storage subscriptions), as well as promising military-grade
encryption and end-to-end encryption [13].

In this work, we present an in-depth security analysis of the
Eufy ecosystem which was studied for more than 9 months.
Our research is based on the Eufy Homebase 2 in combina-
tion with the Eufy video doorbell 2K. However, our findings
extend beyond those devices, affecting a whole array of Eufy
devices (including its IP Cameras). Our security analysis
includes several techniques including network analysis, sym-
bolic execution, static and dynamic analysis of the firmware
and reverse engineering. This combined effort of analysis
methods enabled us to dissect the complete ecosystem. We
exposed a series of critical vulnerabilities across various areas
of the ecosystem, encompassing the peer-to-peer protocol,
authentication, networking, encryption and the pairing pro-
cess. These vulnerabilities pose a substantial threat to the
ecosystem’s confidentiality, integrity and availability.

We present a major attack on the Eufy Homebase, exploit-
ing distinct vulnerabilities, and endangering the network and
privacy of all end users using the Eufy ecosystem. The only
requirement of the attack is being in proximity (i.e., up to
miles away using specialized hardware) of an Eufy device
and the attack takes no longer than 20 seconds. No network
connection is required. The result of the attack is unrestricted
access to the end user’s home network. Prompt and thorough
remediation of these vulnerabilities was of the utmost impor-
tance considering the gravity and scale of the attack.

Furthermore, we present dAngr, a debugger built upon the
symbolic execution engine angr [40]. It simplifies and en-
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hances the manual analysis of cross-architecture binaries,
abstracting away the complexities of the symbolic execution
engine. dAngr was used to reconstruct the media AES en-
cryption keys allowing us to recover all video and media
sent from the Homebase. Additionally, the ease with which
the encryption keys for proprietary peer-to-peer communica-
tion can be recovered undermines the assertion of providing
military-grade encryption.

To address these vulnerabilities and shortcomings, we pro-
pose countermeasures and best practices for each specific
issue within the Eufy ecosystem. Following responsible dis-
closure, Eufy has acknowledged the identified vulnerabilities,
and we have provided input to mitigate the various vulnera-
bilities.
Outline. In the remainder of this paper, we start an overview
of the Eufy Ecosystem in Section 2. Section 3 presents the
attacker model and methods used for the attacks performed
in Section 5. Countermeasures are presented in Section 6
followed by Section 7 with general insights and recommenda-
tions. Related work is discussed in Section 8, and we conclude
with Section 9.

2 The Eufy Ecosystem

The Eufy ecosystem encompasses several components. First,
the smart devices, including the smart- doorbells, lights, cam-
eras, vacuums, entry sensors and more, are connected through
a closed and dedicated wireless Eufy network with the Eufy
Homebase, a central component of the Eufy ecosystem. This
core element of the ecosystem acts as a local hub for the
management of connected smart devices and handles encryp-
tion, networking, firmware updates, and connects to the cloud
through the end users’ wired local network. The end user
can interact with the Homebase using a mobile App which
connects to the Homebase (either through the cloud or via the
local network). Alternatively, the Eufy web application can
connect to the Homebase through the cloud. The Eufy ecosys-
tem studied in this work is depicted in Figure 1. During our
study, we focus on two Eufy devices, namely the Homebase 2
and the video doorbell 2K. However, our findings go beyond
these devices, affecting the complete Eufy ecosystem.
Before explaining the details of the various findings and vul-
nerabilities, we provide essential context for understanding
and interpreting the subsequent findings and vulnerabilities
related to the Eufy ecosystem.

2.1 Video Streaming and Communication

Commands and video streams are transferred at various points
in the ecosystem. Commands consistently use a proprietary
peer-to-peer protocol (P2P). Video streams use the P2P proto-
col or other protocols depending on the network location and
application retrieving the stream.

2.1.1 Doorbell Communication

The doorbell solely communicates with the Homebase, and
this communication occurs over a dedicated hidden Eufy Wi-
Fi network. The traffic is secured at the data link layer using
wireless communication security. Authentication to this net-
work is established using WPA2-PSK, a pre-shared key of
eight characters generated during the initial setup of the Eufy
Homebase. This wireless network’s SSID follows a pattern
consisting of the string "OCEAN_XXXXXX" where XXXXXX
represents the last 24 bits of the Homebase’s MAC address.

Pairing mechanism. The pairing mechanism, as depicted
in Figure 2, leverages soundwaves as an out-of-band channel
to pass sensitive information to the doorbell. The Eufy App
instructs the end user to bring the doorbell in close proximity
to the Homebase. Next, the Homebase emits a soundwave
carrying both SSID and WPA2-PSK of the dedicated Eufy
network. The doorbell retrieves the information contained in
the soundwave and connects to the Eufy wireless network.
The Homebase and doorbell are subsequently connected via a
wireless network protected with a pre-shared key. Afterwards,
the Homebase and doorbell exchange their P2P connection
information (serial number, licenses, etc.) through the Eufy
network, and store this information in flash memory, complet-
ing device pairing. Finally, the Homebase and doorbell can
exchange commands and pass the camera feed.

Streams and messages. Within this wireless network, var-
ious streams and messages are transmitted in the clear. P2P
commands allow, for instance, to notify the end user when
someone rings the doorbell, or to control the camera of the
doorbell. We identified a UDP stream containing a continuous
stream of JFIF video data and a smaller TCP stream contain-
ing JFIF image data. JFIF can be considered as a successor
of the original JPEG format [16].

Once the doorbell and the Homebase are paired, both JFIF
streams are persistent, even when the user is not watching
the feed. Upon reaching the Homebase, the feed undergoes
analysis by a motion detection and facial recognition module.
Upon detecting movement, the Homebase promptly notifies
the user and subsequently encrypts and stores the video and
images locally. Optionally, the user may choose to backup the
encrypted media in the cloud.

2.1.2 Communication with the End User

Eufy employs several methods to communicate with the end
user depending on the location and application in use. While
commands are always sent encrypted over the P2P protocol
using a symmetric P2P AES key, the protocols used for trans-
mitting video and images between the Homebase and the
end user differ. Figure 3 illustrates the scenarios, which are
discussed below in more detail.
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Figure 1: Eufy ecosystem

Mobile App. The first scenario, depicted at the bottom of
Figure 3, occurs when the end user uses the mobile App to
view the stream. The Homebase employs the proprietary peer-
to-peer protocol (P2P) over UDP to communicate the media
to the App. The JFIF stream is encrypted with a symmetric
P2P AES key. When the end user uses the mobile App to view
the stream while connected to the end user’s home network
(i.e., not using the Internet), communication between both
devices is direct. When, on the other hand, the user wants to
connect remotely (i.e., a direct connection to the Homebase is
infeasible), communication between both devices is relayed
through a custom cloud server.

Web viewer. When the end user uses the web viewer (see at
the top of Figure 3) independent of the user’s location, media
is sent using Web Real-Time Communication (WebRTC) [2],
an open-source web-based application technology. It is pri-

Homebase
OCEAN_XXXXXX Doorbell

Sound wave (SSID,WPA2-PSK)

Connect (SSID,WPA2-PSK)

DHCP

Exchange P2P connection information

Connection established

Figure 2: Pairing process

marily used for establishing real-time, peer-to-peer commu-
nication. It is always encrypted using vetted algorithms (e.g.,
DTLS, SRTP [7, 39]) and leverages standard protocols for
NAT Traversal (ICE, STUN and TURN [18, 33, 38]) using
another cloud server.

The more secure WebRTC is only used in the communi-
cation between the Homebase and the web application. The
mobile App always relies on the proprietary P2P protocol
to propagate the media stream, and as we will discuss in
Section 5.4, these AES keys are insecure, endangering the
confidentiality of the ecosystem.

2.2 Homebase Firmware

To understand the functioning of the Homebase, its firmware
was thoroughly analyzed. The platform uses a MIPS architec-
ture, running a custom Linux built with Buildroot [3]. Multi-
ple binaries developed by Eufy are present on the firmware.
The main binary called home_security handles all major
functionalities of the Homebase. This binary has multiple
instances running concurrently.

3 Attack Vectors & Methods

Our analysis involved various techniques to analyze the Eufy
ecosystem. Studying the device from distinct angles allows
for a comprehensive analysis of the ecosystem. Our research
encompasses three methods of analysis: network analysis,
firmware analysis and symbolic analysis. While we conducted
an in-depth analysis of the smart doorbell and Homebase, the
mobile App and web viewer were only used during network
analysis.
Attacker model: In our analysis, we consider two types of
adversaries, as illustrated in Figure 1:
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Figure 3: Video streaming in the Eufy ecosystem

1. The outdoor adversary operates within reach of the wire-
less Eufy network but is not connected to either the Eufy
or the end user’s home network.

2. The indoor adversary has access to the home network,
including the Homebase. It allows interception and ma-
nipulation of communication between the Homebase
and other devices in the home network, including the
Internet gateway.

Network analysis. The initial phase of our investigation
involves the analysis of the network traffic within the Eufy
ecosystem. The objective is to uncover the ecosystem’s func-
tionality, employed protocols, interactions with external en-
tities, and identification of cleartext communication. This
process involves capturing and analyzing the communication
between the Homebase and the home gateway along with
testing man-in-the-middle attacks (MITM) from an indoor
adversary’s perspective. From an outdoor adversary’s stand-
point, the Eufy wireless communication is analyzed using a
WiFi dongle.

Firmware analysis - reverse engineering. The process
of firmware analysis involves disassembling the devices and
scrutinizing debug ports and other hardware peripherals that
may facilitate firmware extraction. Upon successful extrac-
tion, the firmware undergoes a series of tests, encompass-
ing both automated and manual analysis. Initially, automated
analysis of the firmware is conducted using EMBA, an open-
source firmware analyzer [24].

Following the automated analysis, an exhaustive manual
analysis is performed, selecting proprietary, custom-built bi-
naries for in-depth inspection. To facilitate this reverse en-
gineering step, we employ Ghidra, an open-source reverse
engineering tool [11]. Leveraging the Ghidra decompiler to
provide insights into the program logic, focusing on areas
such as the proprietary peer-to-peer protocol, authentication

mechanisms, encryption and decryption processes, and cloud
communications.

Selective execution. During our analysis of the key genera-
tion mechanism employed for encrypting media, challenges
arose during the decompilation of the embedded MIPS binary.
Ghidra faced difficulties in generating proper decompiled
code for the more intricate functions. While other decom-
pilers may have better support for these types of embedded
binaries, we opted for a distinctive approach. We aimed to
execute the embedded code to recreate the media keys. How-
ever, executing binaries of an embedded device presents its
own set of challenges. In the upcoming Section, we introduce
the use of dAngr to execute a specific function with chosen
inputs and retrieve the media encryption key.

4 Selective and Platform Independent Execu-
tion with dAngr

Running a selected function in an embedded binary allows for
several opportunities for testing and analysis. Potential ben-
efits include analysis of the behaviour of the function under
various conditions, testing for vulnerabilities, and automated
testing procedures. In this Section, we discuss existing tech-
niques’ benefits and issues and introduce a novel technique.

4.1 Existing Approaches
Selective execution of embedded functions. The aim of
selective execution is to execute a function in a binary of an
embedded device, leveraging known inputs to reconstruct, for
instance, AES encryption keys. Several techniques exist, each
with specific shortcomings. The most challenging approach
would be to reconstruct a binary by extracting code using
objdump. However, this approach is complex and may face
difficulties, particularly when dealing with global static vari-
ables. A simpler approach involves using a debugger such
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as radare2 or gdb to execute the required function with the
chosen inputs [31]. While with radare2 this may still be
complex, requiring the correct memory and register settings,
calling a function with chosen arguments in gdb is straight-
forward.

Unfortunately, a major disadvantage of these solutions is
platform dependency. Both binary reconstruction and debug-
gers require a matching platform and dependencies (e.g.,
libc) to execute the function.

Platform-dependent execution. Most solutions require ei-
ther full or partial execution of the binary, necessitating a
platform and libraries that match the binary. This requirement
poses challenges, particularly for binaries from IoT devices
that may use less common platforms. Executing, for instance,
a MIPS binary on a standard platform is not straightforward.

To overcome the challenges some solutions propose to
run a debugger on the physical device. However, access to
such a device may not always be feasible. Another approach
involves using a hardware platform with a matching archi-
tecture, but this requires a bootable binary that simulates all
peripheral initialization and hardware communication, which
can be complex and time-consuming. Likewise, emulating the
hardware platform using, for instance, QEMU, in which either
the binary or the full device may be emulated [29], suffers
from this same issue.

An alternative approach is to perform binary lifting into
an intermediate representation (IR) and either recompile to
another platform or perform virtual execution (interpretation)
of the IR code. However, both approaches suffer from issues
with simulating actual devices.

Our approach. To address the shortcomings of the existing
solutions, we combine both Selective execution and Platform-
agnostic execution using dAngr, a debugger for angr (see
Section 4.2). Platform independence is achieved through the
execution of VEX IR. Furthermore, to overcome the configu-
ration and hardware initialization challenges, we use selective
execution to simulate only the necessary functionality to exe-
cute the selected functions.

Table 1 summarizes the main points of comparison between
the traditional methods for selective and platform-independent
execution of embedded functions versus our approach using
dAngr. The dAngr approach combines the advantages of both
supporting selective execution and being platform agnostic,
offering a more streamlined and versatile solution for testing
and analyzing embedded devices.

4.2 dAngr: a Debugger for angr

To support our research, we developed dAngr, a debugger
built on top of angr. angr is a symbolic execution engine
implemented in Python. angr handles the complexities of

binary lifting and interpretation, while the debugger inter-
faces (a command line, and JSON interface) simplify its use,
requiring minimal knowledge about the underlying engine.

While for our attack we use dAngr for concrete execution
(i.e., with concrete inputs instead of symbolic inputs), it also
supports symbolic execution. The debugger contains common
debugging commands such as adding, removing, enabling/dis-
abling breakpoints, stepping and running. Note that since we
use angr as an interpreter, stepping occurs per basic block
instead of per instruction as in other debuggers. Similar to
other debuggers, the run command performs execution until
the next breakpoint or the end of the binary. However, in the
case of symbolic execution, the debugger may stop if a fork-
ing state is reached, allowing the user to choose the branch to
take.

Moreover, dAngr supports setting and retrieving registers
or memory at specified addresses. Instead of starting the ex-
ecution upon the binary’s entry point, it is possible to relay
the start of the execution to a selected address. Combining
memory and registry control with starting execution at a cho-
sen address enables selective execution of a function in the
binary.

However, this approach still requires some in-depth knowl-
edge of the platform e.g., to specify the function ar-
guments using the correct registers and calling conven-
tion. To simplify executing functions and make our tool
more accessible, we support three additional commands:
set_function_prototype, to specify the function proto-
type, set_function_call to set the debugger to the function
address and correctly set the arguments, and get_return_value
to retrieve the return value with the type as specified in the
prototype. Listing 1 shows an example of the commands to
execute a function with specified arguments.

Listing 1: dAngr example commands for calling a function
func with arguments� �
> set_function_prototype int func(char*, int)
> set_function_call func({"abc",2)
> run
> get_return_value� �

In addition, testers can pass hooks to the debugger to re-
place or implement specific functions called inside the exe-
cuted code. This feature was used to debug the binary and
attest certain parameters.

This novel approach simplifies the execution process and
aligns seamlessly with our goal of recovering the key genera-
tion algorithm, allowing the execution of a specific function
with concrete inputs without the need for an exhaustive and
complex setup.
dAngr is made open-source and available on GitHub 1.

1https://github.com/angr-debugging/dAngr
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Table 1: Comparison of Execution Approaches

Attribute/Approach Existing Techniques dAngr Approach
Selective Execution Requires binary reconstruction or

debugger (e.g., radare2, gdb)
Enables execution of specific func-
tions with chosen inputs

Platform Independence Highly dependent, requiring match-
ing platform and libraries

Utilizes VEX IR for platform inde-
pendence

Complexity of Setup Complex, may involve binary recon-
struction or setting memory and reg-
isters

Simplifies simulation, avoiding deep
knowledge of platform specifics

Simulation of Hardware/Peripheral Setup Requires accurate simulation or em-
ulation for execution

Only simulates the necessary func-
tionality for executing selected func-
tions

Suitability for Testing and Analysis Limited by platform dependency
and setup complexity

Enhanced by ease of executing spe-
cific functions and platform indepen-
dence

Approach to Execution Direct execution on hardware or
through emulation/simulation

Virtual execution of intermediate
representation (IR) code

5 Attacking and Identifying Vulnerabilities in
the Ecosystem

After analyzing the Eufy doorbell and Homebase, we uncov-
ered several flaws that undermine the security of the system.
In the following, we introduce the steps taken during the
analysis of the Eufy Homebase and smart doorbell.

5.1 Firmware Acquisition

To gain access to the Eufy ecosystem, our first step involves
acquiring the firmware.

Homebase. For the Homebase, the firmware acquisition
process commences with the disassembly of the device, reveal-
ing UART debug ports. Connecting a USB-to-TTL reader to
these ports, we discovered a password-protected UART shell.
However, during the boot process, a temporary recovery shell
can be accessed without authentication. Within this recovery
shell, we analyzed the filesystem, unveiling the password of
the root user. This password coincided with the WPA2-PSK
securing the dedicated Eufy network, highlighting a vulner-
ability in password reuse. These particular flaws had been
previously identified by other researchers conducting security
analysis on the Eufy ecosystem [5]. By using this password,
we gain entry to the password-protected UART shell, thereby
accessing the system. Consequently, the firmware is obtained
through a firmware dump in this shell.

Doorbell. Unlike the Homebase, the doorbell lacks obvious
UART ports. However, upon carefully analyzing the hardware
of the doorbell, SPI NOR flash is detected. Reading this NOR
flash chip is accomplished using an SPI reader. Specifically,

we used a CH314a flash programmer to acquire the firmware
of the doorbell [22].

While the doorbell primarily handles only essential func-
tions, such as capturing and sending media to the Homebase,
the Homebase manages more intricate operations such as
media processing, encryption and authentication. Hence, the
majority of the security analysis is concentrated on the Home-
base. Notably, an automated analysis of the firmware using
EMBA did not uncover any significant vulnerabilities.

5.2 Cracking the WPA2-PSK

To understand the construction of the WPA2-PSK key, we
located, through reverse engineering, the responsible func-
tions in the home_security binary found in the Homebase
firmware.

The WPA2-PSK of the Homebase has a fixed length of
eight characters, comprising both lowercase letters, uppercase
letters, plus, slash and numbers (64 possible values), yielding a
theoretical entropy of approximately 48 bits. This is already a
weak key strength to protect wireless network communication.
Nevertheless, as shown in Table 2, brute-forcing a key with
only commodity hardware may take several years.

However, weaknesses in the key generation process lower
the entropy of the WPA2-PSK even further. The WPA2-PSK
has a one-to-one mapping with a non-secret variable (i.e., the
serial number), making it susceptible to exploitation. Learning
or brute-forcing the serial number compromises the security
of the dedicated Eufy network.

The serial number can be discovered in at least three distinct
ways: it is printed on the device casing, it can be intercepted
in the LAN or WAN network when using the App, and it can
be brute forced.

The WPA2-PSK is derived by (1) computing the MD5 hash
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T8010P 000 0000000
(1) (2) (3)

Figure 4: Serial number format

of this serial number, (2) encoding the result using Base64,
and (3) taking the first eight bytes.

WPA2-PSK = B64(MD5(serial))[0 : 7]

An example of a key generation is shown below:

SN = T 8010P23224107B0
MD5(SN) = c4732772b06902 f e671689e f 92946675

B64(MD5(SN)) = Y zQ3MzI3NzJiMDY 5MDJmZTY...

WPA2-PSK = B64(MD5(SN))[0 : 7]
= Y zQ3MzI3

To brute force the WPA2-PSK by guessing serial numbers,
we can take advantage of the structure of the serial num-
ber. Upon scrutinizing the serial numbers of over 30 distinct
Homebases found online, a pattern emerges. Figure 4 shows
the various parts of the serial number: (1) device-type identi-
fiers, (2) batch identifiers and (3) device-specific identifiers.

The device-type identifiers are uniform across distinct
Homebases. The only difference we detect is the character fol-
lowing the device-type identifiers (i.e., T8010), which may be
either "P" or "N". For the batch identifiers, we consistently ob-
serve numbers ranging from zero to three. The device-specific
identifiers consist of seven hex numbers. However, extrapo-
lating the entire range based on only 30 analyzed devices
may lead to inaccuracies. Therefore, we adopt a pragmatic
approach, considering both a best-case (BC) scenario, where
only batch identifiers are considered to be in the range of zero
to three, and a worst-case (WC) scenario, where batch iden-
tifiers consist of all possible hexadecimal values. While the
former, using our commodity hardware takes approximately
11 hours, the latter may need 30 days.

Upon further investigation of the WPA2-PSK key genera-
tion process, we discovered an even worse vulnerability al-
lowing the recovery of the WPA2-PSK in only 20 seconds.

A closer look at the code revealed that only the first six char-
acters of the MD5 hash affect the WPA2-PSK: by definition
of Base64 encoding, the first eight characters of the Base64
encoded string only depend on the first six characters of the
MD5 hash. To make things worse, the MD5 hash function
outputs hexadecimal characters. Hence, the WPA2-PSK is
based on only six hexadecimal characters (16 possible values
each). The example above simplifies to the following:

Possibilities Entropy (Bits) Time to crack*
WPA2PSK 648 = 2.18∗1015 48 17 years

Serial number (WC) 2∗163 ∗167 = 2.2∗1012 41 30 days
Serial number (BC) 2∗43 ∗167 = 34∗109 35 11 hours

Shortened MD5 166 = 16.8∗106 24 20 seconds

Table 2: Entropy of distinct WPA2-PSK phases
* (Using our commodity hardware testing @ ± 800K keys/sec)

SN = T 8010P23224107B0
MD5(SN) = c4732772b06902 f e671689e f ...

MD5(SN)[0 : 5] = c47327
B64(MD5(SN)[0 : 5]) = Y zQ3MzI3

= WPA2-PSK

This vulnerable key derivation process diminishes the
WPA2-PSK’s entropy to a mere 24 bits. This low entropy
allows the creation of a custom password list containing all
±16.8 million potential eight-character passwords for Eufy’s
dedicated networks. By exploiting this vulnerability, an at-
tacker can leverage a dictionary attack on the WPA2-PSK.

Exploit: Executing a brute force attack on a dedicated Eufy
network protected with a WPA2-PSK involves cracking the
four-way handshake between the client and access point (i.e.,
the Homebase). To obtain this handshake, a de-authentication
attack on the doorbell is executed [17]. Simultaneously de-
authenticating the doorbell and monitoring the wireless net-
work enables us to capture the handshake. Such attacks are
common for leveraging an offline attack on WPA and WPA2
security protocols. While brute-forcing WPA3 is more chal-
lenging, the key’s limited entropy of only 24 bits makes a
brute-force attack feasible, even in the case of WPA3.

The Aircrack-ng tool suite is employed for this pur-
pose [26]. Subsequently, the captured handshake is cracked
offline using Hashcat [30], a password-cracking tool, and our
custom password list. Using commodity GPU hardware 2,
Hashcat successfully cracks the WPA handshake within 20
seconds.
The vulnerability in the WPA2-PSK generation has been as-
signed CVE-2023-37822.

5.3 Lack of Network Security

Insecure communication. Armed with the password list
crafted earlier, the previously deemed secure dedicated Eufy
network now faces a significant threat. Engaging in wardriv-
ing for hidden wireless networks with an SSID starting with
"OCEAN_", we gain unrestricted access to the network of

2We reach about 800k tests per second using the AMD Ryzen 9 5950X,
NVIDIA RTX 3080 10GB, 64GB DDR4 3600Mhz
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any Eufy Homebase 2 ecosystem. Furthermore, all commu-
nication, including commands, video streams and images,
is sent unprotected, in cleartext on this dedicated network.
Compromising the confidentiality and integrity of the Eufy
ecosystem.

Lack of isolation. Despite the insecure communication, the
most critical networking flaw of the Homebase lies in its use
as a pivot. The lack of isolation between the dedicated net-
work and the end user’s home network through the Homebase
is a significant vulnerability. Acting as a proxy, the Homebase
permits traffic to flow from the dedicated Eufy network to the
end user’s home network without any restrictions. Since the
end user lacks visibility into the dedicated Eufy network, a ma-
licious actor joining this network could go unnoticed. In such
a scenario, the complete private network of the user becomes
accessible to the outdoor attacker, turning the Eufy ecosys-
tem into an easy and stealthy entry point for adversaries into
the private networks of end users. When combined with the
vulnerabilities discussed earlier, the potential consequences
of this flaw become enormous.

5.4 Breaking the Encryption Schemes

Eufy states to ensure the users’ privacy and promises military-
grade encryption. This Section delves into the subsequent
measures taken by Eufy to achieve these goals and how we
compromised them.

AES encryption in Eufy’s ecosystem. Eufy predominantly
uses the weaker ECB version of the AES encryption as
its cryptographic foundation for data protection. Within the
ecosystem, two distinct symmetric AES encryption keys play
pivotal roles in safeguarding user information: the P2P AES
encryption key dedicated to securing P2P communication
(commands and messages), and the media key used to encrypt
media (images and videos for both storage and communica-
tion). Both the Homebase and client applications reconstruct
the AES keys using obscure key generation processes.
Before discussing the distinct key generation methods, it is
imperative to introduce the so-called PPCS identifier (also
denoted as PPCS_ID). Next to the serial number, this device-
specific identifier is stored in flash memory. It consists of
three distinct parts separated by dashes, among others, used
to derive encryption keys. The 20-character string contains
three parts: the first part consists of uppercase characters that
identify the device type, the second part is made up of unique
numbers related to the device, and the third part contains
uppercase characters. It takes the following format:

AAAAAAA−000000−BBBBB

5.4.1 Breaking Encrypted P2P Traffic

Encrypted P2P traffic exchanged between the Homebase and
the mobile App (local or remote) uses AES ECB encryption.
The AES key is created containing device-specific informa-
tion as follows:

Key = PPCS_ID[0 : 15]+ serial[9 : 15]

Here, the key is a combination of the first 16 characters of
the PPCS identifier, and the last seven characters of the serial
number. It is crucial to note that all parameters used in the
key derivation process can be observed in the network traffic
between the Homebase and the App (local or remote). This
information is transmitted in plain text. Given that all key
material is pre-shared over the same network, the encryption
of the P2P traffic brings no additional security.

5.4.2 Generating the Media Encryption Key

In the encryption of media, Eufy adopts a more intricate
method for generating the AES encryption keys. Although the
encryption of videos and images slightly differ (i.e., storage
format), the encryption key is the same. This Section focuses
on the encryption process of images to demonstrate how the
Eufy ecosystem secures its media.

Encrypted image format. Before delving into the encryp-
tion process of an image, it is essential to understand the
format of an encrypted image. An encrypted image is a file
that starts with a plaintext Eufy header containing the serial
number of the Homebase (serial) and a random value (rand).
Both are used in recovering the encryption key. The format
of the Eufy header is represented as follows:

eu f ysecurity :< serial >: 01 < rand >:

The cleartext Eufy header is succeeded by 256 encrypted
bytes, being the encrypted JFIF header. Subsequently, this
encrypted header is followed by the remainder of the unen-
crypted JFIF image. Since only the JFIF header is encrypted,
leaving the rest of the image unencrypted, there is a potential
for information leakage.

Media AES encryption key generation algorithm. The
reconstruction of the media encryption key is more com-
plex. Since the Homebase binaries do not contain code to
decrypt media, we focus on the encryption process. The pri-
mary function responsible for encrypting images is denoted
jpg_encrypt. This function first constructs the encryption
key using create_pic_code_v1, and next, encrypts the im-
age.

The generation of the media key entails three steps, de-
picted in pseudocode in Algorithm 1. First, a Homebase
unique baseCode is created based on the serial number and
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Algorithm 1 Critical key generation functions in the
create_pic_code_v1 algorithm (pseudo code)

1: function GETHOMEBASECODE(serial,PPCS_ID)
2: s f x = getPPCSSuffix(PPCS_ID) ▷ See Alg. 2
3: baseCode = concat(serial[0 : l],str(s f x))
4: return baseCode
5: end function
6: function GETRANDSEED(PPCS_ID)
7: s f x = getPPCSSuffix(PPCS_ID)
8: rndStr = ”01”||str(random())||str(1000− s f x)
9: seed = Obfuscate1(MD5(rndStr))

10: return (seed,rand)
11: end function
12: function CREATEIMAGEKEY(baseCode,seed)
13: h = SHA256(”01”+baseCode+ seed)
14: encKey = Obfuscate2(h)
15: return encKey
16: end function

PPCS identifier. Next, a seed is generated from the same
PPCS identifier along with a freshly generated random integer.
Finally, the encryption key is derived from the combination
of baseCode and the seed.

Both genHomebaseCode and genRandSeed use PPCS_ID
to compute a suffix s f x. Then, the baseCode is constructed
by concatenating a substring of the serial (where the length
l depends on the last byte) with this suffix. Similarly, the
seed is computed by concatenating the random integer with
a value derived from the suffix (i.e., 1000− s f x). The resul-
tant string is then hashed, followed by an obfuscation step.
This obfuscation is essentially transforming bytes. Finally, in
createImageKey, the baseCode and the seed are hashed and
again obfuscated with a custom deterministic algorithm. It is
evident that each of these steps, including the obfuscations, is
reproducible given the serial, PPCS_ID and rand are known.

5.5 Reconstructing the Media Encryption Key
Using dAngr

As outlined earlier, the intricacies involved in the encryption
key derivation pose significant challenges to manual reverse
engineering. The first attempts were ineffective due to the
complexity and inaccuracies found in the decompiled Ghidra
code. Specifically, the Ghidra decompiler encountered diffi-
culties with certain sections of the MIPS code, resulting in
unreliable decompiled output.

As discussed in Section 4.1, we adopt a novel ap-
proach to recover the encryption keys. We leverage dAngr
for a concrete and platform agnostic execution of the
create_pic_code_v1 function required to reconstruct the
key. Listing 2 shows the commands passed to dAngr to recon-
struct encryption keys given the correct inputs.

Since the binary only contains the encryption part, we use

this function to reconstruct the keys. However, in this case,
during the actual key generation, a fresh random value is
generated to create a unique key for each image. To be able
to decrypt an encrypted image, we need to reconstruct the
key given a specific random (included in the Eufy header in
the encrypted image). Therefore, we take advantage of the
hooking functionality of dAngr to replace the call to generate
a random (i.e., random) with a stub that returns the random
number included in the encrypted image.

Listing 2: dAngr commands to reconstruct a media encryption
key� �
> load_hooks hooks.py
> set_function_prototype void

create_pic_code_v1(char*, int, char*,
char*, char *)

> set_function_call create_pic_code_v1('
T8010P123DEADBEA ', 0x10, 'ZYXABCD
-456789-TSRQP', '0'*10, '0'*32)

> run
> get_string_memory 0x5000� �

In Listing 2, a function is set up and configured with the
correct parameters. The first argument is the serial number,
the third is the PPCS_ID and the final two parameters are
character arrays of 10, respectively 32 characters for the re-
turned random value and the encryption key. The first 16
characters of the latter hold the actual key. To read out the
key, we need to access the memory of the last parameter of
which the address (0x5000) is printed during debugging.

To decrypt a given image, we extract the serial and rand,
and together with the PPCS_ID, we can easily recover the
encryption key. The PPCS identifier can be intercepted from
the network traffic between the Homebase and the mobile
App.

Alternatively, we can eliminate the dependency on the
PPCS_ID. After further investigation, we successfully recov-
ered the algorithm to generate the s f x suffix derived from the
PPCS identifier (see Algorithm 2).

Algorithm 2 getPPCSSuffix(PPCS_ID)

1: s = PPCS_ID[0 : 15].split(′−′)[1]
2: s f x = int(s[0])+int(s[1])+int(s[3])+int(s[5])
3: if s f x < 5 then
4: s f x = s f x∗2
5: end if
6: return s f x

This function calculates the sum of four of the six digits
in the middle part of the PPCS identifier. Next, the result is
doubled when the sum is smaller than five, further diminishing
the already limited entropy. Thus, instead of monitoring the
network traffic and waiting for the PPCS_ID to leak, we can
opt for a brute-force approach on the parts of the PPCS_ID
being used.
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We simply hook the getPPCSSuffix function and gener-
ate the 480 potential s f x values output by getPPCSSuffix.
We can easily verify the correctness of a key based on the
presence of the magic bytes (i.e., 0xFFD8 for JFIF images)
in the decrypted JFIF header. Once we find a match, we also
have a valid s f x which can be used to decrypt further images.

Using this brute-force approach, we can decrypt any en-
crypted image without requiring any additional information
beyond the encrypted image itself.

The media key derivation process is clearly flawed, en-
abling an indoor attacker or the cloud server to decrypt all
media. It is important to note that other researchers indepen-
dently uncovered the encryption mechanism while reverse
engineering the mobile App [6]. Their motivation primar-
ily focused on facilitating access to the ecosystem through
open-source tools. In contrast, our objective was to identify
weaknesses in their encryption process. Notably, we achieved
this goal, even generating Eufy keys leveraging the lack of
entropy without requiring the device identifiers.

6 Countermeasures

Considering the vulnerabilities outlined in the previous sec-
tion, defining countermeasures for fortifying the Eufy ecosys-
tem is crucial. For each vulnerability, we propose countermea-
sures:

• Password reuse: Avoid reusing the WPA2-PSK. To pro-
tect the UART boot sequence, the debug port should be
disabled.

• Password has one-to-one mapping: Ensure passwords
do not have a one-to-one mapping with public variables.
These variables should be kept secret. Alternatively, pass-
words should be randomly chosen using a secure random
generator.

• Low entropy password: Although rectifying low-entropy
passwords presents a challenge. A solution would be
to discreetly transmit a new high-entropy WPA2-PSK
to each paired device after updating each Eufy device.
This must be done before changing the Wireless network,
allowing background updates without user interaction or
breaking the connection with the smart devices.

• Lack of isolation: Prevent attackers from pivoting be-
tween networks by implementing Linux iptables func-
tionality on the Homebase. The Homebase should act
solely as an Internet gateway restricting traffic to flow
between isolated networks. If necessary, only essential
ports should be forwarded.

• Cleartext traffic: Augment WPA2-PSK as a protection
mechanism with additional protection. Encrypt network
communication using established protocols such as TLS

to introduce an extra layer of security and end-to-end
encryption. This should be implemented for all commu-
nication, including P2P traffic.

• Bad encryption keys: Enhance the key derivation pro-
cess, by adopting standard and secure key derivation and
encryption schemes. Refrain from using proprietary DIY
algorithms and AES ECB mode. Furthermore, a proper
key management solution must be implemented such that
keys must not be derived from non-secret information
such as serial numbers.

Additionally, instead of only encrypting the media head-
ers, the entire payload should be encrypted.

7 General Insights & Recommendations

Conducting an in-depth security analysis has provided valu-
able insights into the Eufy ecosystem, unveiling both its vul-
nerabilities and strengths. Several key lessons can be learned
from this comprehensive examination.

To evaluate the impact of our research, we initially assessed
the alignment of the Eufy Homebase and doorbell with the
OWASP IoT Top 10 [28] before and after our investigation.
Initially, the Eufy ecosystem showcased strong compliance
with the OWASP IoT Top 10, boasting standardized AES en-
cryption and secure WPA2-PSK-protected network communi-
cation. Only an unprotected UART recovery shell and having
open UART debug ports were left unaddressed. However, as
revealed in our analysis, critical flaws in data encryption, net-
work architecture weaknesses and the use of weak guessable
passwords are uncovered. Consequently, Eufy’s standing on
the Top 10 shifted after our in-depth analysis, now failing in
several key areas.

Our analysis revealed that in IoT, particularly in the realm
of consumer IoT, security is still often treated as an af-
terthought, especially in teams lacking security expertise. This
often results in reliance on security by obscurity and do-it-
yourself (DIY) solutions.

For instance, our work revealed several weak key gener-
ation methods. Notably seeking compliance with security
standards such as EN 303 645 (ETSI Consumer IoT) may not
have been sufficient to prevent the flaws discovered in this
study. The recommendation stemming from these insights
is clear: IoT manufacturers should invest in comprehensive
IoT security training. They must adopt industry-standard, vet-
ted protocols to comply with established security standards.
Rather than resorting to custom solutions, strict adherence to
best practices is crucial.

Enforcing unique keys per device has become mandatory
for compliance with prominent security standards. In turn,
security compliance will be required to enter markets world-
wide. For instance, embedded devices can only be sold on
the EU market after having received a CE label, and demon-
strating security compliance will be part of the certifying
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process from August 2024. The aforementioned requirement
– i.e. unique device keys – is imposed by the realistic attacker
model in which a malicious stakeholder with physical access
to one IoT device cannot undermine the whole ecosystem.
Well-established mechanisms and protocols exist and many
standards point to very concrete tactics (without enforcing a
specific solution or technology).

However, many developers still develop proprietary solu-
tions instead of relying on widely recognised mechanisms.
The major reason is the often recurring complex tension be-
tween security and manageability. To decrease the key man-
agement burden, obscure mechanisms are often constructed
in which keys are unique per device but can still be derived
by having knowledge of the device firmware. This implies
that an attacker with physical access to an IoT device no
longer directly undermines the security of the whole ecosys-
tem (as keys are no longer shared across devices) but can
indirectly derive the keys of other devices by inspecting the
device firmware. This is possible if an attacker has physical
access to one device and can rely on firmware inspection tools
which are becoming easily accessible. To tackle this evolution,
standards and even legislation should become stricter in the
sense that they do not only impose requirements concerning
general characteristics of the device but also on feasible and
non-feasible mechanisms to enforce it. Although this may
restrict the degrees of freedom at design and development
time and may result in more advanced key management (ulti-
mately resulting in a more expensive lifecycle), it will result
in improved security.

The community, particularly in consumer IoT, would bene-
fit from the availability of reference architectures and proof
of concepts that depict commonly encountered use cases and
scenarios. These should encompass essential aspects such
as the proper use of STUN, TURN and ICE services for re-
mote access; secure pairing of smart devices, gateways and
mobile devices; correct use and implementation of public
key infrastructure; secure update procedures; and the secure
use of cloud services and API’s. Such resources would de-
ter developers from resorting to DIY strategies and obscure
solutions.

Securing IoT devices is undoubtedly a substantial endeavor,
requiring expertise across various domains, including embed-
ded hardware and software, network security, cloud communi-
cation, and mobile or web development. The commitment to
strong security practices is essential for the sustained integrity
of IoT ecosystems.

8 Related Work

We discuss in this Section relevant and previous research and
studies that influenced our approach to analyzing the Eufy
ecosystem.

State of the art of IoT security. Costin et al. performed the
first large-scale analysis on IoT devices [10], examining over
683 firmware images, unveiling vulnerabilities on 123 distinct
products. Another large-scale analysis is done by Neshenko
et al. [25], they focus on discovered IoT vulnerabilities and
classify the various vulnerabilities and weaknesses inherent to
IoT devices. Performing new large-scale analyses has become
increasingly challenging, due to a recent trend where manufac-
turers strive to maintain the secrecy of their device’s firmware.
This approach may result in fostering security through obscu-
rity, which fails to deter attackers equipped with sufficient
resources.

In a more targeted study, Schwartz et al. analyze the secu-
rity of 16 popular IoT devices leveraging reverse engineering
techniques [41]. Their systematic application of reverse engi-
neering techniques uncovered distinct vulnerabilities, empha-
sizing the importance of this method in identifying security
weaknesses. Obermaier et al. focus on cloud-based video
surveillance systems, analyzing four distinct IP Cameras [27]
through a combination of network and firmware analysis. This
approach led to the uncovering of various vulnerabilities re-
lated to authentication, proprietary encryption algorithms and
weak certificate validation. Rondon et al. delved into the secu-
rity of E-IoT systems scrutinizing proprietary protocols used
in E-IoT settings [36]. Collectively, these studies indicate the
urgent need for enhanced security measures in IoT devices.

WPA attacks. The landscape of wireless security, partic-
ularly in the context of Wi-Fi networks, has been a subject
of extensive research and exploration. Lorente et al. scru-
tinized WPA2 password-generation algorithms in Wireless
routers and discovered that many routers used weak password-
generation algorithms [21]. Reversing the algorithms, Lorente
et al. discovered that in most algorithms known parameters
were used as input and that they had a simple deterministic
password-generation process. One of the vulnerabilities we
uncovered is similar to this work. However, we go further
than discovering a one-to-one mapping, identifying multiple
weaknesses in Eufy’s password generation algorithm.

Reversing engineering. Several studies discuss methodolo-
gies for discovering and analyzing vulnerabilities [14, 19, 20,
42]. In this related work, reverse engineering is considered
an efficient but exhaustive method for analyzing embedded
devices. Techniques for more efficient reverse engineering
and methodologies for performing a complete device analysis
are discussed. Thomas et al. present a framework to reduce
the upfront effort in analyzing and reverse engineering using
static and dynamic analysis techniques [45].

In case studies, Casagrande et al. applied reverse engineer-
ing methodologies to unveil vulnerabilities in the Xiaomi
ecosystem. Their work exposed issues in both the pairing pro-
cess and in applications developed by Xiaomi [8, 9]. In their
work, they reverse-engineered the Xiaomi companion App
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and the Bluetooth Low-Energy communication. The reverse
engineering led to the uncovering of various vulnerabilities in
the pairing process of the Xiaomi Fitness tracking system and
the Xiaomi E-scooters. The vulnerabilities they discovered
are cleartext keys, unauthenticated pairing and modifying the
password without authentication. Ullrich et al. reversed the
Neato vacuum and discovered an attack leveraging weak se-
cret keys and a buffer overflow via the cloud to break the
Neato ecosystem [46]. Giese et al. reverse engineer using
hardware hacking the Amazon Echo Dot and perform IoT
forensics to uncover bad practices that lead to personal data
leakage [15]. Other examples of high-impact attacks uncov-
ered by reverse engineering are the Zigbee worm exploiting
Philips Hue lamps [37], and breaking glucose monitoring
systems thanks to weak proprietary protocols [35]. In our
research, we employ a similar methodology to uncover vul-
nerabilities, focusing on reversing the binaries, networking,
and internal operations of the Eufy ecosystem. Contrary to the
above work, we present a novel approach leveraging a new
cross-platform debugger to assist manual reverse engineering
in embedded devices.

Symbolic execution. Yadegari et al. and Banescu et al. em-
phasize symbolic execution as a potent mechanism to cir-
cumvent obfuscation techniques [4, 48]. Symbolic execution
proves invaluable in identifying weaknesses and vulnerabil-
ities. Nevertheless, symbolic execution faces its own set of
challenges, notably in the analysis of cryptographic functions,
which is inherently complex. Vanhoef et al. demonstrate that
simulating cryptographic primitives during symbolic execu-
tion can be done to find weaknesses in cryptographic func-
tions [47]. Ramos et al. develop an under-constrained sym-
bolic execution framework to analyze individual functions
rather than whole programs, bypassing several weaknesses of
symbolic execution engines [32]. Contrary to prior work, this
work leverages the binary lifting and interpretation provided
by angr to make debugging platform-independent. While our
attack only requires concrete execution, our debugger also
supports symbolic execution.

Case studies including the Eufy doorbell. P. Moore an-
alyzed the web interface of the Eufy doorbell [44]. Moore
proved that Eufy uploads images to the cloud without autho-
rization. Moore also discovered that the video stream of the
Eufy doorbell was sent unencrypted. These vulnerabilities
were confirmed and patched by Eufy, ensuring that now all
video and images are end-to-end encrypted.

M.A. Stanislav examined various security frameworks to
determine the overall security posture of internet-connected
devices [43]. An analysis was performed on 40 internet-
connected cameras. This analysis includes information gather-
ing, disassembling the device, analyzing the various interfaces
of the device, and more. Eufy is one of the cameras being

analyzed, and comes out as one of the more mature brands,
having overall good security and conforming to best practices.

The open-source community also reverse-engineered the
Eufy App and reconstructed the P2P protocol. Allowing them
to replace the App or web interface, and connect it to a home
automation system [6]. The project primarily focuses on a
specific aspect of the P2P protocol related to communica-
tion between App and Homebase. However, the P2P protocol
within the ecosystem extends further than App Homebase
communication, the communication between the Homebase
and other Eufy devices is a critical part of the P2P protocol.
To build upon and expand the existing research of the Eufy
ecosystem, we dissect the firmware of the Eufy devices and
the Eufy ecosystem internals, while actively seeking vulnera-
bilities and weaknesses.

9 Conclusion

The reverse engineering and analysis of the Eufy ecosystem
provided insights into the intricate workings of its devices.
This investigation uncovered multiple weaknesses, highlight-
ing critical areas of one of the top players in the IP Camera
domain. The core of our work involved the analysis of the
proprietary peer-to-peer protocol, dissecting the encryption
mechanisms, and understanding the internal network’s be-
haviour through a combination of reverse engineering, binary
interpretation, and network traffic analysis.

We introduce a novel approach for key reconstruction in
embedded devices. We developed dAngr a symbolic debug-
ger that augments manual reverse engineering. By leverag-
ing angr, a symbolic execution engine that implements bi-
nary lifting and interpretation of the lifted code, our tool en-
ables platform-agnostic execution of specific functions, al-
lowing us to execute isolated cryptography functions in an
embedded cross-architecture binary without a complex or
time-consuming process. We demonstrate our novel approach
by reconstructing the AES keys for media encryption in the
Eufy ecosystem.

Our findings culminated in an attack on the Eufy ecosystem
requiring no network connectivity. The sole prerequisite is
proximity to the Homebase’s dedicated network. Leveraging
two vulnerabilities uncovered during our analysis, the attack
serves as a potential entry point into the end user’s private
home network. The ease and severity of this attack deem it
highly critical. We proposed appropriate countermeasures for
each identified flaw.
Eufy has confirmed the vulnerabilities and initiated security
patches, further bolstering their security.
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Responsible disclosure. In June 2023, we responsibly dis-
closed all newly identified vulnerabilities to Eufy. The com-
prehensive disclosure process was conducted through Anker’s
channels. In addition to providing a detailed write-up of the
vulnerabilities, we included recommendations for effectively
mitigating these issues. A condensed version of the recom-
mended mitigations can be found in Section 6.
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