
This paper is included in the Proceedings of the
18th USENIX WOOT Conference on Offensive Technologies.

August 12–13, 2024 • Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the
Proceedings of the 18th USENIX WOOT
Conference on Offensive Technologies

is sponsored by USENIX.

Attacking with Something That Does Not Exist:
‘Proof of Non-Existence’ Can Exhaust DNS Resolver CPU

Olivia Gruza, Elias Heftrig, Oliver Jacobsen, Haya Schulmann, and Niklas Vogel,
National Research Center for Applied Cybersecurity ATHENE, Goethe-Universität Frankfurt;

Michael Waidner, National Research Center for Applied Cybersecurity ATHENE,
Technische Universität Darmstadt, Fraunhofer Institute for Secure Information Technology SIT

https://www.usenix.org/conference/woot24/presentation/gruza

Attacking with Something That Does Not Exist:
‘Proof of Non-Existence’ Can Exhaust DNS Resolver CPU

Olivia Gruza*†, Elias Heftrig*†, Oliver Jacobsen*†, Haya Schulmann*†, Niklas Vogel*†,
Michael Waidner*‡§

*National Research Center for Applied Cybersecurity ATHENE
†Goethe-Universität Frankfurt

‡Technische Universität Darmstadt
§Fraunhofer Institute for Secure Information Technology SIT

Abstract

NSEC3 is a proof of non-existence in DNSSEC, which pro-
vides an authenticated assertion that a queried resource does
not exist in the target domain. NSEC3 consists of alphabeti-
cally sorted hashed names before and after the queried host-
name. To make dictionary attacks harder, the hash function
can be applied in multiple iterations, which however also
increases the load on the DNS resolver during the computa-
tion of the SHA-1 hashes in NSEC3 records. Concerns about
the load created by the computation of NSEC3 records on
the DNS resolvers were already considered in the NSEC3
specifications RFC5155 and RFC9276. In February 2024, the
potential of NSEC3 to exhaust DNS resolvers’ resources was
assigned a CVE-2023-50868, confirming that extra iterations
of NSEC3 created substantial load. However, there is no pub-
lished evaluation of the attack and the impact of the attack on
the resolvers was not clarified.

In this work we perform the first evaluation of the NSEC3-
encloser attack against DNS resolver implementations and
find that the NSEC3-encloser attack can still create a 72x
increase in CPU instruction count, despite the victim resolver
following RFC5155 recommendations in limiting hash itera-
tion counts. The impact of the attack varies across the different
DNS resolvers, but we show that with a sufficient volume of
DNS packets the attack can increase CPU load and cause
packet loss. We find that at a rate of 150 malicious NSEC3
records per second, depending on the DNS implementation,
the loss rate of benign DNS requests varies between 2.7% and
30%. We provide a detailed description and implementation
of the NSEC3-encloser attack. We also develop the first anal-
ysis how each NSEC3 parameter impacts the load inflicted on
the victim resolver during NSEC3-encloser attack.

We make the code of our NSEC3-encloser at-
tack implementation along with the zonefile and
the evaluation data available for public use: https:
//github.com/Goethe-Universitat-Cybersecurity/
NSEC3-Encloser-Attack.

1 Introduction

On 13 February 2024 a vulnerability,1 termed Preparing an
NSEC3 closest encloser proof can exhaust CPU resources,
was registered as CVE-2023-50868 (short for Common Vul-
nerabilities and Exposures) in a list of publicly disclosed
information security flaws. The description of the CVE
says that the processing of responses sent by nameservers
authoritative for DNSSEC signed zones can exploit mali-
ciously crafted NSEC3 records to cause CPU exhaustion on a
DNSSEC-validating resolver. By flooding the target resolver
with queries, an adversary can trigger responses to the target
resolver with specially crafted NSEC3 records exploiting this
flaw. Computation of those NSEC3 records can significantly
impair the resolvers’ performance. In this work, we provide
the first analysis of the vulnerability and an evaluation of the
attack against popular DNS resolvers. We explain the impact
on the resolvers’ implementations using code analysis as well
as monitoring of the CPU instruction count and measurements
of the latency incurred on requests from benign clients.

Vulnerabilities in proof of non-existence. Domain Name
System Security (DNSSEC) RFC4033 – RFC4035 was de-
signed to protect the Domain Name System (DNS) against
manipulation attacks by attaching digital signatures to DNS
records. The DNS resolvers can use the public keys of the cor-
responding domains to authenticate the DNS records that they
receive in responses. To provide an authenticated proof for
resources that do not exist, RFC3845 defined NSEC records,
which list the hostname before and the hostname after the re-
quested hostname. The listing of hostnames in NSEC records
exposed the domains to zone enumeration attacks, discussed
in RFC4470. To mitigate zone enumeration attacks, the IETF
standardized NSEC version 3 (NSEC3) in RFC5155. NSEC3
computes hashes over the hostnames and the resulting NSEC3
record lists the hashed names instead of plaintext names. Nev-
ertheless, NSEC3 too was found vulnerable to zone enumera-
tion attacks [3,5,10]. Although the privacy aspects of NSEC3
records were substantially explored, there was no evaluation

1https://kb.isc.org/docs/cve-2023-50868

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 45

https://github.com/Goethe-Universitat-Cybersecurity/NSEC3-Encloser-Attack
https://github.com/Goethe-Universitat-Cybersecurity/NSEC3-Encloser-Attack
https://github.com/Goethe-Universitat-Cybersecurity/NSEC3-Encloser-Attack
https://kb.isc.org/docs/cve-2023-50868

of the performance impact of NSEC3 records on DNS re-
solvers. In this work, we provide the first evaluation of the
performance load induced on the resolvers by attacks with
specially crafted NSEC3 records, which we dub the NSEC3-
encloser attack. Although the potential degradation of perfor-
mance by NSEC3 records was considered in RFC5155#§8.3,
there was no evaluation of the impact on performance by
attackers and the role of the NSEC3 parameters on the effec-
tiveness of the attack. A recently registered CVE-2023-50868
does not explain the impact of the attack on the resolvers nor
provides the evaluation of the attack.

NSEC3-encloser can exhaust CPU and lead to loss. We
implement and evaluate an NSEC3-encloser attack that leads
to increased CPU instruction counts on the affected resolvers,
and also to loss of packets from legitimate clients. In our
implementation of the attack, the NSEC3 records use the
maximum number of iterations supported by the DNS
resolver implementations, which follow the recommendation
counts listed in RFC5155. We experimentally observe that
using salt in the calculation of hashes in NSEC3 results in a
more effective attack than attacks without the salt. The reason
is that the salt value creates an additional input block which
leads to an increased calculation time since the blocks are
processed sequentially. At the same time, the salt value does
not substantially increase the resilience to zone enumeration
attacks since, in contrast to the traditional uses of the salt
in hash computations like for passwords, the hashes are im-
plicitly salted per zone by including the domain name in the
computation process. This is also stated in RFC9276, and
limits the benefit of using a salt in the first place.

Our contributions can be summarized as follows:
• We develop a tool for automated evaluation of the CVE-

2023-50868 attack, expanding on the proof-of-concept in the
CVE, and providing an automated setup to generate zones
and queries. Our implementation creates multiple NSEC3
configurations setting different values for NSEC3 parame-
ters, including a novel method for maximizing the number of
NSEC3 records in DNS responses and varying salt length, all
of which allow for testing different aspects of the resolvers’
behavior. We make our tool open-source to facilitate repro-
duction of our work [6].

• We provide the first evaluation of an attack that exploits
NSEC3 records for creating a load on DNS resolvers. In our
evaluation, we also analyze the resolvers’ behavior and limits
introduced in RFC5155 and explain how the resolvers react to
different values of NSEC3 parameters. We find that the salt in-
creases the load on the resolvers by 30%, an aspect which was
previously overlooked and not included in either CVE-2023-
50868 or the PoC that the CVE made public. Our full fledged
and automated attack evaluation allowed to identify the role of
salt in increasing the CPU instruction counts on the resolvers.
We also explore the limitations of the NSEC3-encloser attack,
i.e., the high query rate required to load resolvers and the
relatively low impact on traffic loss.

• We perform the first comparison of the NSEC3-encloser
attack to other attacks on DNS, and explain the differences
in performance and load, as well as in the vulnerabilities in
resolvers’ behavior that are exploited.

• We perform measurements of NSEC and NSEC3 configu-
rations on DNSSEC-signed domains and find that 56% of the
domains use NSEC which is vulnerable to zone enumeration,
while 41% use NSEC3. 77% of those NSEC3 domains use a
high number of hash iterations which exposes those domains
for abuse to create load on victim resolvers.

Organization. This paper is organized as follows. In Sec-
tion 2, we provide an overview of DNSSEC and the proof of
non-existence with NSEC and NSEC3. We provide the details
of the NSEC3 attack in Section 3. We evaluate the NSEC3
attack in Section 4, demonstrating the role of the parameters
in the NSEC3 record on the impact of the attack. We measure
real-world DNSSEC and NSEC/3 in Section 5. Finally, we
review Related Work in Section 6 and conclude in Section 7.

2 Overview of DNSSEC and NSEC3

The IETF standardized DNSSEC RFC4033 – RFC4035 to
enable DNS resolvers to detect if DNS records in responses
are manipulated. The DNSSEC specification requires that
the records in a zonefile are digitally signed. The zonefile
contains DNS records as well as DNSSEC material, most
notably DNSKEY, RRSIG, and DS records.

DNSSEC signatures are stored in RRSIG-type DNS
records. The public keys used to validate the signatures are
sent in DNSKEY-type records. DS records from a parent
zone are used to authenticate individual Key Signing Key
(KSK) type DNSKEY records in a child zone. This is done to
delegate trust from a parent zone public key to a child zone
public key. DS records use the same triple (owner name, algo-
rithm, key tag) to identify a subset of candidate DNSKEYs
as RRSIGs.

In additional to cryptographically attesting the validity of
DNS records, DNSSEC also enables proofs for non-existing
records, enabling authenticated denial of existence.

For this, RFC4035 defines Next Secure (NSEC) records for
a precomputed denial of existence, that prove that a requested
hostname does not exist. Each NSEC record contains a signed
pair of consecutive hostnames, sorted canonically. Each query
for a hostname not in the zonefile is answered by the name-
server with a suitable NSEC record. For instance, a query
for a non-existing hostname b.x.org is responded with a
signed NSEC record for a pair of existing hostnames sorted
canonically before and after the queried hostname: a.x.org
and c.x.org. The resolver can then confirm the requested
hostname does not exist as the NSEC record attests no do-
main name exists between a.x.org and c.x.org, proving
non-existence of b.x.org. An example of a NSEC record is
given below.

46 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

\\ Domain | TTL | RR type | Next hostname
x.org 700 NSEC a.x.org

\\ Resource record sets
NS SOA RRSIG NSEC DNSKEY

Research showed that NSEC was vulnerable to zone enu-
meration attacks [3, 5, 10]. By enumerating a target zone, an
adversary learns the IP addresses of all resources in the target
zone. An enumerated list of resources can be exploited for
other attacks, such as spam. To mitigate the threat introduced
by NSEC records, RFC5155 designed NSEC3: a precomputed
denial of existence. The idea of NSEC3 is replacing clear-text
hostnames with hashes, which makes zone enumeration from
the names significantly harder. The knowledge of the hashed
hostname cannot be directly used for zone enumeration since
cryptographic hash functions do not allow for the reconstruc-
tion of the plaintext hostname through preimage resistance.
NSEC3 uses an additional record NSEC3PARAM which con-
tains parameters for the NSEC3 validation, including the hash
algorithm, the amount of iterations, and salt parameters. A
single NSEC3PARAM record dictates the parameters for the
entire set of NSEC3 records. This is needed to ensure that any
query for a non-existent hostname maps to an NSEC3 record.
The ‘salt’ contains hexadecimal digits and is appended to
the domain name to make offline dictionary attacks harder.
‘Iterations’ indicates the number of times the hash function
was computed.

The NSEC3 record contains a pair of ordered hashes. Ac-
cording to RFC5155, to create the NSEC3 records, the canon-
ical hostname is hashed once and the resulting hash is re-
hashed a number of times according to the iteration parame-
ters in the NSEC3PARAM. Upon a query for a non-existent
resource, the nameservers should return to the requesting re-
solvers a signed NSEC3 record that contains two hashes, one
before the requested hostname and one after. The resolver can
then hash the hostname to ensure the hashed hostname lies be-
tween the returned hashes, thereby proving the non-existence.
An example of an NSEC3 record is given below.

\\ Hashed domain | TTL | RR type | Algorithm
ej23jdn4jnd... 700 NSEC3 1 (SHA1)

\\ Flags | Iterations | Salt
0 150 64ccab74...

\\ Next hostname | Resource record sets
kev723jd... NS SOA RRSIG NSEC DNSKEY

RFC9276 defines the best current practice for setting and
dealing with NSEC3 parameters, including considerations of
Denial of Service (DoS) by Central Processing Unit (CPU)
resource exhaustion through NSEC3 hashing. The only hash
function standardized for use in NSEC3 records is SHA-1.2

2https://www.iana.org/assignments/
dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml

According to RFC5155#§7.2, the resolvers require a proof
of the closest encloser, which proves that a subdomain of the
requested hostname is the closest encloser of that name. The
proof consists of up to two NSEC3 records: An NSEC3 record
that matches the closest (provable) encloser and an NSEC3
record that covers the “next closer” name to the closest en-
closer. The first NSEC3 record proves that the encloser exists.
The second NSEC3 record proves that the possible closest en-
closer is the closest, and proves that the queried hostname (and
any subdomains between the queried hostname and the closest
encloser) does not exist. These NSEC3 RRs are collectively
referred to as the “closest encloser proof” RFC5155. An ex-
ample in RFC5155 describes the closest encloser proof for the
nonexistent hostname alpha.beta.gamma.example.: The
owner might prove that gamma.example. is the closest en-
closer. The response contains the NSEC3 record that matches
gamma.example., and also contains the NSEC3 record that
covers beta.gamma.example. (which is the “next closer”
name).

According to the specification in RFC5155 to prove the
nonexistence of a hostname in a query, a closest encloser
proof and an NSEC3 record covering the (nonexistent) wild-
card record at the closest encloser MUST be included in the
response. This collection of (up to) three NSEC3 records
proves both that the queried hostname does not exist and that
a wildcard that could have matched the queried hostname also
does not exist; if gamma.example. is the closest provable
encloser to the queried hostname, then an NSEC3 record cov-
ering *.gamma.example. is included in the authority section
of the response.

3 NSEC3-Encloser Attack

The NSEC3-encloser attack exploits computational complex-
ity in hash calculation for closest encloser proofs. The idea
behind the attack is to set up a malicious zonefile in a valid
DNSSEC signed domain, then to cause the victim DNS re-
solvers to issue DNS queries for a non-existent resource in
the domain of the adversary. We design our attack to be fully
RFC compliant; both the client requesting resolution from
the victim resolver as well as the nameserver containing the
malicious zonefile fully conform to all RFC requirements.
The goal is to create a zonefile that maximizes both the num-
ber of hash calculations and the computation effort per single
hash calculation. We construct an attack on NSEC3 instead of
NSEC as the former requires hash calculations for the closest
encloser proof, which significantly increases computational
load compared to NSEC. The core aspect of the NSEC3 at-
tack lies in the construction of the proof of non-existence with
NSEC3 records, which should lead to many hash calculations
in the victim resolver. The adversary requests a resource that
inflicts large complexity for the resolver to prove the closest
encloser. In the following, we illustrate the attack concept
with exemplary adversarial zonefiles.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 47

https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml
https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml

3.1 Zonefile Construction

In the configuration of the zone, we follow DNSSEC and
NSEC3 standard specifications. This ensures that the zonefiles
are accepted by all standard compliant resolvers.

To maximize the attack impact, the attacker needs to trig-
ger the maximum number of hash validations in a victim
resolver. Since each NSEC3 record obtained from a DNS
request results in a single hash calculation, this corresponds
to maximizing the number of NSEC3 records for a given re-
quest. Following RFC5155, this number is limited to up to
three NSEC3 records per DNS request, leading to a maxi-
mum of three hash calculations per request. Achieving this
maximum number of NSEC3 records in each resolver request
requires a specific zonefile configuration, which we illustrate
in Figure 1. For a configured zone origin, the generated zone-
file consists of the following non-NSEC3 (and non-RRSIG)
records:

▷ The SOA, NS and DS records of the zone, present at the
zone apex.

▷ Two DNSKEY records, one for the KSK and one for the
ZSK.

▷ One NSEC3PARAM record at the zone apex, signaling
NSEC3 usage to the authoritative nameserver.

▷ The A record for the nameserver domain.

The zone has two unique name entries, ATTACK.ER and
NS1.ATTACK.ER. Following specification, both of these
names require an NSEC3 record, proving the existence of
the Resource Record sets (RRsets) listed for the names. How-
ever, to achieve three NSEC3 records in the response for an
arbitrary resolver request, this is insufficient, as any domain
existence or non-existence proof would require between one
and two of these NSEC3 records. To validate an NSEC3 re-
ply, resolvers need three different values from the nameserver:
The closest encloser, proof that the “next closer” domain does
not exist, and proof that no wildcard record exists covering
the requested domain.

The closest encloser proves that a domain exists in the zone
that is the nearest ancestor of the queried name. It establishes a
context within which the non-existence of the queried domain
can be asserted. In our example, the NSEC3 record with the
hash of ATTACK.ER proves the existence of this hostname,
and all subdomains will receive this record as their closest-
encloser.

The next domain hash of an NSEC3 record provides evi-
dence of the numerically subsequent domain name hash in the
zone, confirming that no records exist between the domain
name hash of an NSEC3 record and this next domain. For ex-
ample, consider a nameserver has to proof the non-existence
of a domain with a hash of 0x123. In the zone, the next smaller
NSEC3 record has a hash of 0x111, with a next hash value of
0x222. Since the requested domain hash (0x123) is larger than
0x111 but not equal to 0x222, the requested domain provably
does not exist in the zone. The nameserver must provide the

;; ZONE ‘ATTACK.ER’

ATTACK.ER. 0 IN SOA NS1.ATTACK.ER. NS1.ATTACK.ER. 0 0 0
10 0

ATTACK.ER. 0 IN NS NS1.ATTACK.ER.

ATTACK.ER. 0 IN DS 35650 7 1 e8316...

ATTACK.ER. 0 IN DNSKEY 257 3 7 AwEA...
ATTACK.ER. 0 IN DNSKEY 256 3 7 AwEA...

ATTACK.ER. 0 IN NSEC3PARAM 1 0 150 -

HKHV...38AU.ATTACK.ER. 0 IN NSEC3 1 1 150 -
HKHV...38B0 1

HKHV...38B0.ATTACK.ER. 0 IN NSEC3 1 1 150 -
QCQC...7U45 2

NS1.ATTACK.ER 0 IN A 6.6.6.6

QCQC...7U45.ATTACK.ER. 0 IN NSEC3 1 1 150 - SN5U...89IT A
RRSIG 3

SN5U...89IT.ATTACK.ER. 0 IN NSEC3 1 1 150 - SN5U...89IU NS
SOA DS RRSIG DNSKEY NSEC3PARAM 4

SN5U...89IU.ATTACK.ER. 0 IN NSEC3 1 1 150 -
HKHV...38AU 5

[...] ;; RRSIG records

Figure 1: Generated attack zonefile example.

NSEC3 record proving that the “next closer” domain (the
ancestor of the queried name just below the closest encloser)
does not exist. The resolver can confirm that this domain
name does not exist by validating that the next hash in the
returned NSEC3 record is not the hash of the “next closer”
domain. By inference, the queried name cannot exist, too,
since the zone does provably not include one of its ancestors.

Finally, the resolver needs to ensure that no wildcard record
covers the requested domain. The nameserver thus includes
the NSEC3 record next-smaller of where the hash of the wild-
card record corresponding to the level of the enclosed domain
would be. These proofs may, however, overlap. For example,
if the next domain corresponds with the NSEC3 entry for the
closest encloser, the nameserver will only send the overlap-
ping entry once, reducing the resulting computational effort
in the resolver, thereby weakening the attack.

To force the authoritative nameserver to serve exactly three
NSEC3 records to every request for a non-existing domain
name and thereby maximize the impact of the attack, we
develop a new scheme for NSEC3 records in the zone. The
required records are described in the following. Note that H
is the NSEC3 hash function used, generally SHA-1.

(1) H(ATTACK.ER).ATTACK.ER with next hash (3)

(2) H(NS1.ATTACK.ER).ATTACK.ER

(3) (H(ATTACK.ER)+1).ATTACK.ER

(4) (H(*.ATTACK.ER)−1).ATTACK.ER with next hash (5)

(5) (H(*.ATTACK.ER)+1).ATTACK.ER

48 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

NSEC3 records (1) and (2) are mandatory records and thus
must be included in the domain. Further, in the attack setup,
the adversary will trigger resolution of a non-existent sub-
domain of the ATTACK.ER domain, resulting in (1) always
contained in the reply as it is the closest encloser to all re-
quests. Note that this closest encloser NSEC3 record also
includes a next-hash value. If the resolver requests a domain
which is, by chance, hashed to a value directly “after” the
ATTACK.ER domain hash, the authoritative server would de-
tect the overlap and only send a single NSEC3 record (1) to
cover closest encloser and the next hash. To prevent this and
force an additional NSEC3 record in the answer, we include
an additional NSEC3 record (3) which covers the hash one
larger than (1). Thus, (1) always has (3) as next hash and
therefore never covers any other non-existent domain in the
zone. It will therefore never overlap with the required “next
closer” domain record.

Similarly, the attacker needs to ensure that none of the
above mentioned records, by chance, covers the wildcard
domain name, as the resolver would then, e.g., only need to
send a single record for “next closer” and wildcard proof. To
prevent this, a new record (4) is added, with a hash value just
below the hash of the wildcard domain name, as this record
will now always be included to proof non-existence of the
wildcard domain. Conversely, this new record now also has
a next hash value, which might by chance cover the “next
closer” domain of the requested domain, again leading to
overlap. Therefore, a new record (5) is added that ensures that
the record (4) only covers two hashes. Thus, for every request
to a non-existent domain, the nameserver must include three
NSEC3 records: (1) for closest encloser, then (2), (3) or (5)
for the “next closer” proof, and finally (4) for wildcard proof.

3.2 Maximizing the Impact

Using the above described zonefile as-is only results in three
hash computations. However, the impact can be increased,
both by adapting the DNS request from client to resolver, and
by adapting the malicious zone.

3.2.1 Adapting the request

When a client requests a non-existent domain from the re-
solver, the resolver needs to conduct the above described
checks to attest non-existence of the domain, including
the check for the closest encloser. Crucially, the resolver
cannot necessarily directly infer the closest encloser from
the NSEC3 records. For instance, consider a nested sub-
domain A.B.ATTACK.ER. The resolver receives a hash for
the closest encloser, but does not directly know if the hash is
for A.B.ATTACK.ER, B.ATTACK.ER, or ATTACK.ER. Instead,
the resolver has to attempt for each candidate individually
whether any of the NSEC3 records in the response proves the
existence for the encloser. The algorithm for this is listed in

RFC5155. The resolver hashes the query name and matches
the resulting hash against each NSEC3 record. If none of the
records fit, it has to slice away the next label and try again,
repeatedly hashing and matching. Therefore, the workload of
the closest encloser proof depends on the number of labels
below the closest encloser in the query name and, to a lesser
degree, on the number of NSEC3 records in the nameserver
response. Maximizing these numbers can incur a significant
workload of calculating hashes on the resolver. Note that the
maximum number of labels in the request is limited by the
maximum request size of 255 bytes in RFC1035.

3.2.2 Adapting the zone

Using NSEC3 parameters in a malicious zonefile, the per-
hash overhead can be greatly increased. In the following, we
highlight the two NSEC3 parameters that can be manipulated
to maximize impact.

3.2.3 Hash iteration count

NSEC3 supports hash iterations to increase computational ef-
fort for brute-forcing hash values. Hash iterations require that
the hash of a domain name is re-iterated through the respective
hash function for a set number of iterations. This mechanism,
while improving security through hardening brute-force pro-
tection, can be exploited to increase computational load per
calculation on the resolver, resulting in a stark increase in the
number of hash calculations in the attack. For example, if the
resolver needs to calculate three hashes for the three NSEC3
records in the zone, choosing an iteration count of 100 will
result in a total of 300 hash calculations.

3.2.4 Adding a salt

Additionally to iterations, NSEC3 also supports protection
against rainbow-table attacks [9] through the addition of a salt
value to the hash. The salt is added to the plaintext domain
name before hashing, which prevents pre-calculation of tables
of potential domain names. The salt additionally increases the
computational load for hash calculations, as SHA-1 (the only
currently supported hash algorithm) exhibits an increase in
computation time over longer plaintext inputs. The increase
in computation time stems from the underlying blocks that
are used as input to the hash functions; with more blocks of
plaintext, the hash function takes linearly more time. Notably,
when using iterations, the salt is not only added to the first
iteration of the hash function but to all subsequent inputs to
the function, increasing load for each of the iterations.

Our code-review yields that all investigated resolvers sup-
port both the hash iterations and the salting, following RFC
specification. An exemplary implementation of the hash func-
tion in Unbound DNS resolver is given in code Listing 1.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 49

Resolver Iteration Limits
Patched version 50 150

Unbound 1.19.1 — 1.13.2
Bind9 9.18.24, 9.19.19 9.18.24, 9.19.19 9.17.13

9.16.48 9.16.16
PowerDNS 5.0.0 5.0.0 4.5.2
Knot Resolver 5.7.1 5.7.1 5.3.1
Table 1: The limits introduced across resolvers over time.

1 nsec3_calc_hash(struct regional* region,
2 sldns_buffer* buf, struct nsec3_cached_hash* c) {
3 // [...] Init buffers and do sanity checks
4

5 // Write dname and salt to buffer
6 sldns_buffer_write(buf, c->dname, c->dname_len);
7 sldns_buffer_write(buf, salt, saltlen);
8

9 // Calculate first hash from buffer content
10 (void)secalgo_nsec3_hash(algo,
11 (unsigned char*)sldns_buffer_begin(buf),
12 sldns_buffer_limit(buf),
13 (unsigned char*)c->hash);
14

15 for(i=0; i<iter; i++) { // Iterate through number
16 // Insert previous hash and salt into buffer
17 sldns_buffer_clear(buf);
18 sldns_buffer_write(buf, c->hash, c->hash_len);
19 sldns_buffer_write(buf, salt, saltlen);
20

21 // Calculate hash from buffer content
22 (void)secalgo_nsec3_hash(algo,
23 (unsigned char*)sldns_buffer_begin(buf),
24 sldns_buffer_limit(buf),
25 (unsigned char*)c->hash);
26 }
27 }

Listing 1: Source code for NSEC3 iterations in Unbound.

The code snippet shows how the NSEC3 iterations are
performed. The hash is calculated and written into the result.
Then, a for-loop is entered which continuously writes the
result of the previous hash calculation into a clear buffer,
adds the salt and calculates the hash again, as long as the
iteration count is below the limit. The code-example shows
that Unbound, like all investigated resolvers, conforms to the
specification in iterating the hash and adding the salt in each
iteration.

Practical limits to iterations. The standard provides rec-
ommendations to the number of iterations a resolver may
allow on a given NSEC3 record. We find from code review
that these values are observed only in some resolvers; a subset
of resolvers do not enforce these limits, while other resolvers
set stricter limits in their standard configuration. This is not
surprising, as RFC9276 encourages resolvers to choose their
own limits to a value they seem adequate for current deploy-
ments. A detailed overview of enforced iteration limits in
different resolver versions is presented in Table 1.

Practical limits to salt length. Generally, a longer salt
value allows for longer calculation time of a given hash. How-
ever, the maximum length of the salt is limited by the available
space of the salt field in the NSEC3PARAM record, only al-
lowing up to 255 bytes of data for the salt. We find from code
review that all resolvers allow this maximum salt length, with
no resolver enforcing stricter length limits.

Resolver Version Iteration Limit
Bind9 9.16.1 RFC5155
Bind9 9.18.12 150

Unbound 1.17.1 150
PowerDNS 4.8.2 150

Knot 5.6.0 150
Table 2: Resolver versions and iterations limits in the test setup.

Thus the maximum attack impact can be achieved by query-
ing the resolver with a deeply nested sub-domain, configure
the nameserver to always deliver all three NSEC3 records,
and using both the maximum number of iterations allowed by
the resolver, and the longest possible salt length of 255 byte.

3.2.5 Generating the zonefile

To test different zone configurations with differing values for
the NSEC3 parameters, we develop a script that automatically
generates zonefiles from a singular JSON configuration file.
We make the script publicly available to facilitate reproduc-
tion of our work [6]. This configuration file used in the script
specifies the individual zones, the cryptographic parameters,
such as key size and NSEC3 iterations, nameservers, TTL
values, and relationship between the zones. The generation
script written in Python parses a configuration, generates the
defined records, creates all relevant DNSSEC signature and
key records, and exports each zone to a file to be hosted by a
nameserver implementation.

4 Evaluation of the Attack

To practically evaluate the impact of the attack, we deploy the
resolvers and a nameserver with the attack zones in a local
isolated setup. We send attack queries to the resolvers and
measure the impact of the attack under different scenarios.
Section 4.1 describes the test setup, Section 4.2 illustrates
the influence of different parameters on the impact of the
attack, and Section 4.3 delves into comparing the impact of the
attack between different resolvers, highlighting differences
in implementations that cause different reactions to attack
requests. Finally, in Section 4.4, we show that the attack can
sufficiently stall resolvers to cause a drop of benign client
queries.

4.1 Setup

We deploy the five resolvers in Table 2 as Docker containers
communicating via a network bridge with our nameserver for
the attack requests, and the internet for benign requests. We
additionally include the older Bind9 version 9.16.1 in our test
environment to compare the impact of the (historic) iteration
count limits defined in RFC5155 to the lower limits adopted
by the current implementations. To serve the attacker zones,
we set up an NSD 4.6.1 authoritative nameserver on our local

50 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

network which serves the generated zonefiles. This ensures
that we accurately measure the attack impact on the resolvers,
since the per-query overhead introduced by the authoritative
nameserver is negligible. The nameserver is not reachable
from the internet.

We generate and include zonefiles for different combina-
tions of parameters in NSD for each test, each having a unique
identifier as part of the domain name. The zones are gener-
ated as child zones EXii.NSEC3.EXAMPLE.ORG to a parent
zone NSEC3.EXAMPLE.ORG, where ii is the two-digit zone
identifier. It is unrealistic that an attacker can control zones
at the domain tree root or some top-level domain, but since
the impact of the attack depends on the length of the zone
domain name, we select the reasonable-length domain name
NSEC3.EXAMPLE.ORG. The parent zone contains signed DS
records with the digest of the child zone KSK’s, i.e., the zone
has a complete and valid DNSSEC configuration and follows
RFC specification.

Since the wire-format of the child zone domain is 24 bytes
(including the root label), there remain 231 bytes for addi-
tional labels in an attacker query QNAME. We use a randomly
chosen 4-byte label as the non-existent subdomain for the at-
tack to prevent the resolver from answering queries from the
caches. This effectively leaves 226 bytes for additional la-
bels. Hence, the attack query names to the resolvers have the
following format, resulting in 115 sub-labels:

(A.)113.abcd.EXii.NSEC3.EXAMPLE.ORG

Each resolver is configured to query the local NSD author-
itative nameserver for any queries to NSEC3.EXAMPLE.ORG
with the zone’s keys added to the set of trusted keys of the re-
solvers. Furthermore, the resolvers have DNSSEC validation
enabled and are run single threaded.

Our test setup is running Ubuntu 22.04 with a 12th Gen
Intel® Core™ i7-1280P CPU at 4.8GHz.

4.2 Comparison of Attack Parameters
To compare the impact of the attack parameters, we exe-
cute the resolvers in a controlled environment and measure
the attacker-induced CPU load for different rates of attacker
queries per second and different parameter configurations. In
our analysis, we identify how specific values for configurable
parameters influence the CPU exhaustion impact on the re-
solvers, illustrating how to maximize attack impact as well
as giving a numerical basis to choose appropriate limits for
attack mitigations.

Our analysis includes key sizes, the number of NSEC3
iterations, and the length of the NSEC3 hash, influenced over
the salt length. Each test case includes an incremental increase
of the rate of attacker requests on the resolver to illustrate
resolver behavior both under small scale and heavy attack.

We conduct multiple tests to find the ideal rate for increas-
ing the attack rate and the maximum rate of attack in the

(a) Unbound

(b) Bind9.16.1
Figure 2: Comparison of CPU workload for different key sizes.

experiments. We find increasing the attack rate too quickly
does not allow to distinguish the impact of a specific rate
from natural fluctuations in CPU load resulting from CPU
scheduling, while increasing it too slow wastes measurement
time. Following our evaluation, we find increasing the attack
rate every 3s as a suitable compromise. To identify a suitable
maximum attack rate for the experiment, we continuously
increase the rate of attack until we see artifacts caused from
the experiment hardware struggling to keep up with sending
enough requests to the nameserver. We find a value of 150
requests per second as a suitable maximum value were we did
not observe any kernel- or hardware-induced artifacts in our
measurement. A value of 150 requests per second is sufficient
to cause 100% CPU load in all investigated resolvers. Finally,
we choose to increase the attack rate with a delta of 10/3s to
cause a observable difference between measurement steps,
while also keeping the measurement fine-grained enough to
see detailed effects at different steps.

For Bind9.16.1, which poses no strict NSEC3 iteration limit
and therefore enables a much higher attack impact per request,
we reduce the attack rate to enable similar fine-grained in-
sights. We identify an attack rate delta of 0.5/s and an upper
bound of 7.5/s suitable for our setup.

In our experiments, we find that the impact of different
parameters is similar between the investigated resolvers. We
will thus in the following section focus on the parameter
impact on Unbound 1.17.1 and Bind9.16.1. The differences
between resolvers will be discussed in Section 4.3.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 51

(a) Unbound

(b) Bind9.16.1
Figure 3: CPU workload for different NSEC3 iteration counts.

4.2.1 Key Size

While no NSEC3 parameter per se, the key size influences the
maximum allowed number of NSEC3 iterations as defined in
RFC5155. We do not expect that the key size has a significant
impact on the induced CPU work load since the load stems
from the high number of hash calculations and not signature
validation. Nevertheless, we evaluate whether this assumption
holds for the tested resolvers. For this test, we fix the NSEC3
iterations at 150 and the salt length to 0 and compare the three
different supported RSA key sizes of 1024, 2048, and 4096.
The results are plotted in Figure 2. As expected, there is no
significant deviation between the three curves in CPU load.
Hence, for the subsequent tests, we use the key size 4096 as
it allows for a much larger range of NSEC3 iteration values.

4.2.2 NSEC3 Iterations

For Unbound, we evaluate different NSEC3 iteration counts
ranging between 0 and 165 in Figure 3a. We observe a clear
correlation between higher iteration counts and larger induced
workload which approaches a linear distribution as the attack
query rate increases. The exception is 165 iterations which
shows loads well below all other measurements. This is be-
cause the evaluated version of Unbound has a pre-configured
limit of 150 NSEC3 iterations and disregards the zone with a
higher iteration count as bogus without further validating the
NSEC3 records it receives from the authoritative nameserver.
Since processing the queries and validating the signatures has
some constant overhead, an iteration count of 0 incurs more
overhead than the rate 165.

(a) Unbound

(b) Bind9.16.1
Figure 4: CPU workload for different NSEC3 salt lengths.

In the case of Bind9.16.1, no limits are enforced for the
iteration values. As evident in Figure 3b, this allows us to
query zones with iteration counts well above the 150 limit
of all other tested resolvers. More significantly, we can use
values above the 2500 iteration limit of RFC5155 which illus-
trates a significant vulnerability in this version of the resolver.
At attack rates as low as 7.5 queries per second, we are able
to max out the CPU load at 100% for this iteration limit. But,
even for the standardized 2500 iterations, there is a significant
load on the resolver, reaching up to 90% at an attack rate of
7.5/s. Thus, higher iteration counts can significantly increase
the impact of the attack on resolvers.

4.2.3 NSEC3 Salt Length

Next, we compare different salt lengths in Figure 4. In this
test, we use a key size of 4096 and set the NSEC3 iterations
to the most impactful RFC5155-conform value of 150 for
Unbound and 2500 for Bind9.16.1, respectively. For Unbound,
we measure an increase of CPU load by approximately one
third and for Bind9.16.1 by about one half when increasing
the length of the salt from 0 to 255, with the load of the
intermediate values distributed uniformly in-between. This is
to be expected from the way the NSEC3 hashes are calculated.
Since the salt is appended to the hashed domain/digest at each
iteration, the additional workload of longer inputs to the hash
function applies to every iteration of the hash function. SHA-1
is a Merkle-Damgård hash function, hence, the calculation
overhead grows roughly linearly with the number of blocks
the hash function is calculated on. With a block size of 512
bit, every 64 bytes added to the hash function input require

52 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

(a) 150 iterations, 0 byte salt

(b) 150 iterations, 255 byte salt
Figure 5: Comparison of CPU workload between resolvers

one more calculation of the SHA-1 hash function to compute
the digest. Thus, a longer salt multiplies the total load on
the resolver for each NSEC3 hash calculation by the number
of blocks added through the concatenation of the salt to the
digest per hash function execution. Overall, the increased load
causes the CPU load to max out at 100% for Unbound at an
attack rate of 110/s and Bind9.16.1 at 4.5/s for a salt length
of 255 bytes.

4.3 Comparison of Resolvers
In this section, we compare the CPU load of the resolvers
under the most effective parameter choices. Since the high
iteration limit in Bind9.16.1 represents a special case, we limit
the comparative analysis to the resolvers with an iteration
limit of 150: Bind9.18.12, Unbound 1.17.1, PowerDNS 4.8.2,
and Knot 5.6.0. As in the previous section, we execute an
attack with an incrementally increasing attack rate of up to
150/s and measure the induced CPU load. We fix the zone
NSEC3 iterations at 150 and repeat the test with salt lengths
0 and 255. The test results are illustrated in Figure 5.

4.3.1 Salt Length 0

Figure 5a plots the CPU rates of all resolvers with a salt length
of 0. We can observe a clear differentiation of loads between
the resolvers with only Bind9.18.12 and PowerDNS reaching
the 100% CPU limit before the attack rate is maxed out, at 110
and 150 packets per second, respectively. Furthermore, we
observe that Bind9.18.12 remains at 100% CPU activity for 2

Resolver Attack Rate Total Loss Rate Adjusted Loss Rate∗

Bind9.18.12 150/s 5.10% 7.01%
Bind9.18.12 110/s 16.42% 22.99%

Unbound 150/s 24.75% 34.66%
PowerDNS 150/s 1.97% 2.76%
PowerDNS 120/s 5.62% 7.87%

Knot 150/s 12.87% 18.01%
(∗Total loss rate relative to the attack duration)

Table 3: Measured client request loss rate with an attack rate of 150/s
over 40s, 150 iterations, and 255 byte salt.

more seconds after the attack has concluded, indicating that
the resolver is falling behind processing the queries in real
time. Notably, Knot is able to process the attack queries more
effectively, only reaching a workload of up to 50% during the
test.

4.3.2 Salt Length 255

For the test case with the 255 byte salt, we illustrate the mea-
sured CPU load in Figure 5b. In this scenario, all resolvers
max out at 100% CPU load before the limit of 150 attack
queries per second is reached. Bind9.18.12 reaches full load
at 80/s, PowerDNS at 110/s, Unbound at 130/s, and Knot at
140/s. This confirms that the NSEC3 salt has a significant
effect on the impact of the attack on all resolvers, roughly
increasing the load by a third and — in the case of Knot – up
to one half. Once more, we observe continuing CPU load after
the attack has concluded, this time for all resolvers. The time
of continued stalling correlates with how early in the attack
the full CPU load is reached because, once rates continue to
rise above the rate at which the CPU is at 100%, the resolver is
unable to process the queries at the same rate as there are new
incoming queries. Bind9.18.12 continues processing queries
until after the measurement has concluded.

We can thus confirm that all examined resolvers are vulner-
able to the attack. Knot generally performs best when stressed
under the resource exhaustion attack for both attack configu-
rations, while Bind9.18.12 shows the greatest vulnerability to
the attack in terms of CPU load. In general, the effectiveness
of the attack scales linearly with the attack query rate per
second.

4.4 Effect on Benign Clients

Having established that high query rates are required for
achieving high CPU load on the resolvers, the question re-
mains whether the attack can be used to sufficiently stall the
resolvers such that they fail to answer benign client queries.
We evaluate this by continuously sending client queries at
a rate of 10/s to the resolvers while simultaneously attack-
ing the resolver with the NSEC3-encloser attack. The clients
query unique uncached records from the resolvers and log
whether they receive a reply. After 5s, we consider a client
request timed out, i.e., too old to be of value to the client and

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 53

(a) Unbound attacked with rate 150/s (b) Knot attacked with rate 150/s

(c) Bind9.18.12 attacked with rate 110/s (d) PowerDNS attacked with rate 120/s
Figure 6: Comparison benign query delays and drops with 150 iterations and 255 byte salt

therefore lost. This is in line with the timeouts used by dig3

and glibc.4 Figure 6 shows the results for all tested resolvers,
Table 3 lists the measured client loss rates.

We measure the resolvers at attack rates of up to 150/s, start-
ing the attack 10s into the test and executing it for 40s. For
both Unbound (Figure 6a) and Knot (Figure 6b), we achieve
adjusted loss rates — the total loss rate during the entire test
relative to the attack time — of 34.66% and 18.01%, respec-
tively. For Bind9.18.12, 150/s is well above the attack rate at
which CPU utilization reaches 100%, hence, the high num-
ber of stalled NSEC3 validations tend rapidly exhaust kernel
and hardware resources and interfere with the measurement
results yielding an adjusted loss rate of 7.01%. Bind9.18.12
reaches a peak adjusted loss rate of 22.99% at the rate of 110/s
(Figure 6c). Similarly, PowerDNS, when attacked at 150/s,
reaches a point where there are too many stalled attacker
queries leading to lower loss rates in our setup. The evaluated
peak rate for PowerDNS is 120/s where we measure a loss of
up to 7.87% of queries at 100% CPU utilization (Figure 6d).

The results show that, even with full CPU exhaustion, the
attack achieves no full client query loss, i.e., no comprehen-
sive DoS. The key limitation of the attack is that every indi-
vidual attacker query only causes a relatively minor load on
the resolver, leaving ample opportunities to process and re-
ply to client queries in-between the attacker-induced stalling
periods.

3https://linux.die.net/man/1/dig
4https://linux.die.net/man/5/resolv.conf

We measure the number of instructions of all resolvers for
2000 queries over a span of 40s for uncached benign queries
and attack queries. In their blog post,5 the developers from the
Internet Systems Consortium (ISC) mention that the discov-
ery of the NSEC3-encloser attack enables scaling the attack
to 125 times as previously thought possible. In theory, the
overhead of one attack query is made up of some constant
portion (e.g., for querying the authoritative nameserver and
verifying the signatures) and the hash calculation. The latter
is dependent on the number of iterations, multiplied by the
number of enclosed labels in the request (up to 125), roughly
multiplied again by the hash operations incurred by hashing
the digest plus salt (up to 4 additional hash blocks leading to
a factor of approximately 3–5). This leads to an increase of
instructions by a factor of up to 125 ·5 = 625 compared to a
single query with a high NSEC3 iteration count and no addi-
tional labels/salt. In practice, hash operations are relatively
cheap in terms of instructions, especially compared to asym-
metric cryptography. Hence, compared to an uncached benign
query, which incurs considerable overhead through recursive
querying of nameservers, retrieving keys, and validating sig-
natures, we measure an increase of instructions by a factor of
72 for Unbound, 41 for Bind9.18.12, 33 for PowerDNS, and
13 for Knot. The high factor for Unbound is mostly due to the
low number of instructions for the benign queries, which is
on average 65% lower compared to the other resolvers.

5https://www.isc.org/blogs/2024-bind-security-release

54 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://linux.die.net/man/1/dig
https://linux.die.net/man/5/resolv.conf

4.5 Comparison to PoC in CVE-2023-50868
Following our evaluation, we also look into CVE-2023-50868,
which made the NSEC3 vulnerability public and contains a
Proof of Concept (PoC) implementation of the attack.

To the best of our knowledge, neither the CVE-2023-50868,
nor related blog posts contain any detailed evaluations of the
impact of the attack on different resolvers. We contribute this
evaluation, showing that resolvers differ in their vulnerability
to the attack. For example, we find that Unbound is more vul-
nerable to the attack due to its internal scheduling of NSEC3
compared to e.g., PowerDNS.

We further identify the impact of different NSEC3 parame-
ters on the severity of the attack. The PoC correctly identifies
that maximizing the iteration count greatly improves impact
on resolvers, which we confirm in our evaluations. However,
the PoC lacks utilization of a salt value, which we show to
also substantially increase the attack impact. Since salts ex-
tend the length of the hash-function input, they increase the
required computation in every iteration of the hash, signifi-
cantly increasing effort for the resolver.

We experimentally demonstrate that a query rate in the
low hundreds is sufficient to exhaust a single CPU core on
unmitigated, open-source resolver implementations at vary-
ing degrees. Using the attack, we were not able to achieve
full DoS on any resolver. Our findings illustrate that the at-
tack is not as powerful in stalling resolvers as other attacks,
such as KeyTrap [7] and find that this is mainly due to the
linear scaling of the workload induced relative to the attacker
queries, compared to a quadratic increase in load for KeyTrap.
However, an attacker can still use the NSEC3 to inflict harm
on resolvers and achieve a degradation of service for benign
clients using the victim resolver.

5 Measurements of Signed Domains

RFC9276 raises the best practice of omitting the use of both
hash iterations and salts. We measured how NSEC3 is used in
domains on the Internet and investigate their NSEC3 parame-
ter configurations. To shed a light on how domains conform
to RFC9276 and whether they use NSEC3 parameters which
are suitable to be exploited in an attack, we next quantify
how many domains on the Internet use NSEC3 and which
parameter configurations they employ. During the week fol-
lowing 2024-03-10, we queried the nameservers of the Tranco
Top-1M domains6 for the SOA, DNSKEY as well as DS
records (located at the parent) and analyzed the DNSSEC
configurations of the domains they serve. To collect infor-
mation on the NSEC version and parameters used by the
domains, as they are presented to the resolvers, we addition-
ally issued queries for the records PTR-type RFC2317 at the
according Tranco domain names. PTR-type records are used
for reverse-mapping IP addresses to domain names and are

6https://tranco-list.eu/list/Z333G/1000000

Figure 7: Share of zones which meet or exceed the configured Salt
Length / Iteration Count in signed DNS zones.

most commonly located below the IN-ADDR.ARPA. domain.
Therefore, we expect negative responses for these queries,
indicating that no such resource exists. Our evaluations con-
firm that this methodology yields negative responses, i.e.,
containing either first-version NSEC or NSEC3 records, for
98.15% of the signed domains. We find 66339 (6.63%) of
the Tranco Top1M domains to be signed. Out of these, 27761
(41.85%) use NSEC3 while 37354 (56.31%) use NSEC in its
first version. 21522 (77.53%) of the domains using NSEC3
send records with an iterations count field value higher than
0, with a median of 5 iterations and a maximum of 500 itera-
tions, while 21248 (76.54%) of the domains utilizing NSEC3
employ a salt. Where employed, the median salt length is 8
bytes and the maximum we find in our dataset is 64 bytes. We
show the share of zones with salt lengths and iteration counts
greater or equal to the respective value on the x-axis in Fig-
ure 7. The combination of both parameters, which imposes the
highest NSEC3 hashing burden on resolvers is 500 iterations
with a salt of 16 bytes length. According to the results of our
evaluations, these domains can impose substantial load on the
resolvers even with benign responses. Such domains could
potentially be abused by adversaries to degrade the service
of a vulnerable resolver by employing a moderate volume of
malicious queries per second.

6 Related Work

DNS has a long history of Denial of Service (DoS) attacks
which exploit different aspects of the DNS protocol to launch
attacks against the DNS servers [1, 2, 4, 11]. Many of the
attacks exploit a lack of limits on the functionalities per-
formed by the DNS servers. For instance, [4] create a chain
of CNAME records and force DNS resolvers to perform deep
name resolutions, hence overloading the target victim author-
itative nameserver with requests and achieving an amplifica-
tion of 8.51. NXNSAttack [1] exploited a vulnerability that
generated a flood of queries between the recursive resolver
and the authoritative server creating a load on them both.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 55

https://tranco-list.eu/list/Z333G/1000000

Subsequently [2] showed how to exploit delegations to an
unresponsive authoritative server to cause computational load
on DNS resolvers. Their attack differs from the NSEC3 attack
in that they use plain DNS instead of DNSSEC, and create
computational load through memory lookups and IO over-
head instead of computational effort. Their attack achieves
a higher instruction count amplification of 5600x over 70x
with NSEC3. Still, the NRDelegation attack requires a high
attack traffic volume of 500 requests per second to achieve
substantial degradation of service, likely because the attack
includes many IO operations, which allow the resolver to
answer benign queries while waiting for IO responses. This
explains why the NSEC3 attack, while resulting in a smaller
instruction count amplification, can still achieve comparable
degradation of service to NRDelegation.

The concept of complexity attacks on DNSSEC, specifi-
cally exploiting signature validations and hash computations
was first introduced by [7]. Their work showed that DNSSEC
was vulnerable to a new class of attacks that can exhaust
CPU resources and thereby achieve Denial of Service on any
DNSSEC validating resolver. Their most impactful attack,
KeyTrap, achieves a full DoS of DNS resolvers for between
2min and 16h by exploiting colliding key-tags and a large
number of signatures, leading to quadratic complexity in vali-
dating DNSSEC signatures. Further, their findings include an
attack exploiting hash computations over the DS hash that con-
nects a parent zone to a child zone. Specifically, in their attack,
they include a large amount of DS hash records in the parent
zone and point them to a single entry in the child-zone with
a specific key-tag value. Exploiting colliding key-tags, they
achieve quadratic complexity in hash computations, requiring
the resolver to try each DS record in the parent zone against
each DNSKEY in the child-zone. This computational effort
allows for a DoS of the resolver. The NSEC3-encloser attack
that we study in this work differs significantly in its single-
request impact from the attacks described in [7]. Comparing
to the KeyTrap attack, the NSEC3-encloser attack inflicts a
modest 72x increase in CPU instruction count,7 while Key-
Trap increases CPU instructions by a factor of 2000000x.
Thus, with KeyTrap, a single attacker is able to DoS a re-
solver for an extended period of time, whereas with NSEC3,
a large attack traffic volume is necessary, consisting of hun-
dreds of DNS requests per second to exhaust the CPU of a
victim resolver. This is expected, as KeyTrap exploits com-
putationally heavy public key cryptography, while NSEC3
only uses hash calculations, which require less CPU resources.
However, while requiring more traffic, the NSEC3 attack can
still harm DNS resolvers, as it can create a heavy load on the
attacked resolver and therefore lead to substantial degradation
of service.

Our work is also related to downgrade attacks against
DNSSEC [8]. The DNSSEC downgrade attacks however fo-

7Measured on Unbound, average over 5 measurements

cus on disabling DNSSEC validation but do not have adverse
effects on the availability of the victim resolvers.

7 Conclusions

We perform extensive evaluations of NSEC3-encloser attack
and find that it can create a 72x increase in CPU instruction
count on victim DNS resolvers. This is much less than the
recently disclosed KeyTrap attack, which creates a factor of
2000000 increase in CPU instructions count. Our experimen-
tal evaluation shows that even the improved implementation
of the NSEC3-encloser attack that we developed creates a rel-
atively minor packet loss (between 2.7% and 30% depending
on the resolver implementation), yet requires a high traffic vol-
ume from an adversary and can be easily detected. Therefore
we do not expect to see such attacks in the wild. Nevertheless,
our study shows that NSEC3-encloser attack points to a poten-
tial problem in the resolvers, that was also raised by the NSEC
standard specification. In this work, we explore the practical
aspects of NSEC across DNS resolver implementations.

We experimentally analyze the role of the different param-
eters in NSEC3 on the load created on the resolvers and show
how to adjust the parameters to optimize the impact of the
attack. Although the increase in CPU instruction set is lower
than previous attacks on DNS, such as KeyTrap or NRDelega-
tion, using about a hundred packets per second, the adversary
can still create a sufficient load on the resolvers, eventually
leading to packet loss. The load is created by the iterative
application of the hash in NSEC3, and is further exacerbated
by the application of salt to the computation of the hash. Mul-
tiple hash iterations with salt make zone enumeration attacks
more difficult, requiring more resources from the attackers.

Such records can be exploited to exhaust resources on vic-
tim resolvers, as we experimentally demonstrate in this work.
The effect of resource exhaustion may become even more
severe with the new proposal NSEC5 which uses public key
operations [12]. Our research essentially shows that there
is a tradeoff between the privacy and the load on DNS re-
solvers, which can be exploited for attacks. This tradeoff is
also aligned with the question raised by RFC9276: do the
increased performance costs justify applying additional hash
operations.

As RFC9276 points out, most of the names published in
DNS are typically public and are rarely secret or unpredictable.
RFC9276: “They are published to be memorable, used and
consumed by humans. They are often recorded in many other
network logs such as email logs, certificate transparency logs,
web page links, intrusion-detection systems, malware scan-
ners, email archives, etc. Many times a simple dictionary
of commonly used domain names prefixes (www, mail, imap,
login, database, etc.) can be used to quickly reveal a large
number of labels within a zone.”

The fundamental question of the tradeoff between privacy
of the resources in the DNS zones vs load on the DNS re-

56 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

solvers poses an important decision that the research and
operational community need to take.

Acknowledgements

This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

References

[1] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. NXN-
SAttack: Recursive DNS inefficiencies and vulnerabili-
ties. In 29th USENIX Security Symposium (USENIX Se-
curity 20), pages 631–648. USENIX Association, 2020.

[2] Yehuda Afek, Anat Bremler-Barr, and Shani Stajnrod.
NRDelegationAttack: Complexity DDoS attack on DNS
recursive resolvers. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pages 3187–3204. USENIX
Association, 2023.

[3] Jason Bau and John C Mitchell. A security evaluation
of DNSSEC with NSEC3. Cryptology ePrint Archive,
2010.

[4] Jonas Bushart and Christian Rossow. DNS unchained:
Amplified application-layer DoS attacks against DNS
authoritatives. In Michael Bailey, Thorsten Holz, Mano-
lis Stamatogiannakis, and Sotiris Ioannidis, editors, Re-
search in Attacks, Intrusions, and Defenses, pages 139–
160. Springer, 2018.

[5] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos,
Leonid Reyzin, Sachin Vasant, and Asaf Ziv. Stretching
NSEC3 to the limit: Efficient zone enumeration attacks

on NSEC3 variants. Technical report, Boston University,
2015.

[6] Olivia Gruza, Elias Heftrig, Oliver Jacobsen, Haya
Schulmann, Niklas Vogel, and Michael Waidner.
Goethe-Universitat-Cybersecurity/NSEC3-Encloser-
Attack: WOOT’24 Artifact, May 2024.

[7] Elias Heftrig, Haya Schulmann, Niklas Vogel, and
Michael Waidner. The Harder You Try, The Harder You
Fail: The KeyTrap Denial-of-Service Algorithmic Com-
plexity Attacks on DNSSEC. In ACM Conference on
Computer and Communications Security (CCS), 2024.

[8] Elias Heftrig, Haya Shulman, and Michael Waidner.
Downgrading DNSSEC: How to Exploit Crypto Agility
for Hijacking Signed Zones. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 7429–7444,
2023.

[9] Himanshu Kumar, Sudhanshu Kumar, Remya Joseph,
Dhananjay Kumar, Sunil Kumar Shrinarayan Singh,
Ajay Kumar, and Praveen Kumar. Rainbow table to
crack password using MD5 hashing algorithm. In 2013
IEEE Conference on Information & Communication
Technologies, pages 433–439. IEEE, 2013.

[10] Harrison Mitchell. Taking the DNS for a walk; NSEC3
prevalence and recoverability.

[11] Giovane C. M. Moura, Sebastian Castro, Wes Hardaker,
Maarten Wullink, and Cristian Hesselman. Clouding
up the internet: how centralized is DNS traffic becom-
ing? In Internet Measurement Conference, pages 42–49.
ACM, 2020.

[12] Dimitrios Papadopoulos, Duane Wessels, Shumon
Huque, Moni Naor, Jan Včelák, Leonid Reyzin, and
Sharon Goldberg. Making NSEC5 practical for
DNSSEC. Cryptology ePrint Archive, Paper 2017/099,
2017. https://eprint.iacr.org/2017/099.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 57

https://eprint.iacr.org/2017/099

	Introduction
	Overview of DNSSEC and NSEC3
	NSEC3-Encloser Attack
	Zonefile Construction
	Maximizing the Impact
	Adapting the request
	Adapting the zone
	Hash iteration count
	Adding a salt
	Generating the zonefile

	Evaluation of the Attack
	Setup
	Comparison of Attack Parameters
	Key Size
	NSEC3 Iterations
	NSEC3 Salt Length

	Comparison of Resolvers
	Salt Length 0
	Salt Length 255

	Effect on Benign Clients
	Comparison to PoC in CVE-2023-50868

	Measurements of Signed Domains
	Related Work
	Conclusions

