
This paper is included in the Proceedings of the 
18th USENIX WOOT Conference on Offensive Technologies.

August 12–13, 2024 • Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the 
Proceedings of the 18th USENIX WOOT 
Conference on Offensive Technologies 

is sponsored by USENIX.

Not Quite Write: On the Effectiveness 
of Store-Only Bounds Checking

Adriaan Jacobs and Stijn Volckaert, DistriNet, KU Leuven
https://www.usenix.org/conference/woot24/presentation/jacobs



Not Quite Write: On the Effectiveness of Store-Only Bounds Checking

Adriaan Jacobs
DistriNet, KU Leuven

Stijn Volckaert
DistriNet, KU Leuven

Abstract
Compiler-based memory safety enforcement for unsafe C/C++
code has historically suffered from prohibitively high over-
head. Despite regular advances in compiler optimization and
increasing hardware resources and hardware support, most
applications require too many checks to guarantee complete
memory safety at an acceptable performance level. Conse-
quently, researchers often propose relaxed policies where
not all memory accesses undergo equally rigorous checking.
One common suggestion is to omit pointer validity checks
for memory loads. This omission significantly reduces the
number of necessary checks and, thus, overhead. Moreover,
it should only sacrifice the detection of pure information dis-
closure vulnerabilities through invalid reads, which are left
unchecked.

This work challenges the perceived security benefits of
store-only bounds checking. We show that invalid reads often
suffice to take control of memory writes and bypass store-only
validity checks. We empirically demonstrate the problem on
SoftBound and qualitatively analyze the impact on a broad
scope of other work. We also perform a large-scale evaluation
on 1,000 popular C/C++ repositories and show that real-world
code readily satisfies the necessary preconditions for store-
only bypasses. Finally, we briefly discuss possible defenses
and adaptations that let complete bounds checkers regain a
part of the store-only overhead reduction potential without
dramatically losing security.

1 Introduction

Memory-unsafe programming languages continue to domi-
nate the composition of our modern software stack, from boot-
loaders, Operating System (OS) kernels, and system libraries
to user-facing applications like web servers and browsers. Pro-
grams written in these languages often contain memory errors
such as out-of-bounds (OOB) accesses [70, 72] or use-after-
free bugs (UAF) [71], which can be exploited by attackers to
leak or corrupt sensitive data, or to force the victim program
to execute attacker-chosen code [102].

Owing to these security risks, government bodies [80] and
industry leaders [89] are increasingly pushing for more mem-
ory safety in critical infrastructure and systems-level soft-
ware, encouraging the use of safe languages instead, such
as Rust [22]. Software vendors have already adopted these
recommendations for new software projects [61, 99]. How-
ever, for a vast amount of already existing C and C++ code,
translating it into safer languages is not feasible any time
soon [86], leaving a mountain of unsafe code currently de-
ployed in production environments for which no clear solution
exists.

Researchers and practitioners from academia and indus-
try alike have come up with many attempts to minimize the
security impact of this unsafety through compiler transfor-
mations that automatically harden the code against memory
error exploitation, e.g., by inserting checks on memory ac-
cesses or indirect control flow transfers. One such approach,
which has been thoroughly investigated for decades [97, 102],
is to retrofit memory safety into these languages by (semi-
)automatically instrumenting memory accesses with run-
time checks that validate pointer bounds (spatial memory
safety) and object lifetimes (temporal memory safety) [6,
9, 12, 14, 18, 25–27, 30–32, 35, 36, 42, 49, 51, 54, 57–
59, 63, 66, 74, 77–79, 90, 93, 94, 103, 116, 120, 121]. We
broadly refer to these memory safety enforcement mecha-
nisms as “bounds checkers” for short.

The design and implementation of bounds checkers has
been a long-standing and highly active area of research, fu-
eled by the promise of strong memory safety but plagued
by prohibitive run-time overhead and compatibility issues.
Despite steady advances over time, from optimizing the
storage structure of bounds and lifetime metadata [18, 39,
41, 67, 68, 75, 78, 111], to avoiding the branch predic-
tor pollution of typical compare-and-branch instrumenta-
tion [6, 18, 36, 58], or maximally reducing the number of
redundant checks through static code analysis and optimiza-
tion [12, 18, 44, 45, 52, 66, 100, 108, 112, 117, 122], the
overhead of comprehensive memory safety enforcement re-
mains well outside the stringent performance budget of typ-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    171



ical production deployments [102]. For this reason, some
prior work proposes to deliberately sacrifice some security
coverage to reduce the performance impact by selectively
eliding validity checks on memory accesses whose protection
is explicitly scoped out [15, 63, 75, 77, 78], or whose perfor-
mance impact is considered disproportional to their security
benefit [38, 50, 107].

One commonly suggested strategy is to place validity
checks on memory writes alone [36, 63, 75, 77, 78, 81, 94],
which significantly reduces performance overhead, as most
programs tend to read memory far more often than they write
to it [65, 81, 84, 115]. Naturally, this comes at the cost of
leaving pure information disclosure vulnerabilities out of
scope. Major security crises like Heartbleed demonstrate
that such confidentiality breaches are not necessarily of lesser
impact [87]. Still, they only represent a minority of possi-
ble attacks, while their mitigation frequently requires more
than double the amount of validity checks [78, 81]. Hence,
store-only bounds checking is often heralded as a straightfor-
ward option to curb overhead while keeping the vast majority
of memory vulnerabilities at bay by ensuring that attackers
can never abuse invalid memory writes to corrupt program
memory.

Store-only checking, which allows read operations
on out-of-bound locations and with dangling point-
ers, is sufficient to prevent all memory corruption-
based security vulnerabilities.

Nagarakatte et al. [77]

In this work, we argue that the intended integrity assur-
ance of store-only bounds checking does not hold in prac-
tice, as a direct consequence of the lack of protection on
memory reads. In short, the core issue is that store-only
bounds checkers do not suffice to secure the data and pointer
flow of the program, while their protection guarantees assume
they do. As just one striking consequence of this, we show
that attackers can corrupt arbitrary memory locations using
protected writes by loading valid pointers through invalid
memory reads. Our key finding is that the substituted, in-
validly loaded pointer will always pass the store-only validity
check, regardless of the bounds checker design or implemen-
tation. In summary, we make the following contributions:

• We outline four types of attacks that can corrupt memory
under store-only bounds checking, including one that
abuses protected writes.

• We empirically validate our attack on a SoftBound-
hardened program [75], and qualitatively analyze the
susceptibility of a representative selection of other work.

• We estimate the real-world feasibility of our attacks by
analyzing a large corpus of open-source code.

• We reflect on the security assurances of store-only
bounds checking and discuss possible improvements.

Listing 1: SoftBound’s pointer propagation instrumentation,
adapted from [75].

ptr = *some_loc; // pointer load
bounds = lookup(some_loc)->bounds;

*other_loc = ptr; // pointer store
lookup(other_loc)->bounds = bounds;

2 Background

Bounds checkers check if the pointers a program dereferences
still point to their intended referent [51]. This intended refer-
ent is usually the object whose address the program initially
derived the pointer value from. Two main bounds-checking
approaches can guarantee complete memory safety.

Pointer-based approaches explicitly track the intended
referent for each pointer as run-time information, either in a
disjoint metadata structure [25, 75, 76, 79, 81], or encoded as
part of the pointer itself (so-called fat pointers1) [9, 14, 49,
79, 109]. In the former case, the referent metadata is indexed
using the address of pointers in memory, and the compiler
explicitly instruments pointer copies in the program so they
update the metadata. Listing 1 shows the way this explicit
propagation happens in SoftBound [75].

Object-based approaches instead restrict pointer arith-
metic such that the program can always recover the address of
the original referent during memory accesses [26, 30, 51, 90].
Typically, this means not permitting a pointer to escape the
original bounds of its allocation [30, 78]. The program asso-
ciates safety metadata with every object’s base address and
inspects the currently-pointed-to object’s metadata whenever
it performs pointer arithmetic. Pointer propagation through
memory requires no special handling, as the program can re-
trieve the allocation bounds based on the pointer value alone.

It is worth noting that many bounds checkers, especially
recent ones [32, 58, 78, 93], do not perfectly fit either of
these categories but instead appear more of a hybrid. For
instance, Delta Pointers track the original referent per pointer
through a relative distance metric in the pointer’s unused top
bits (Pointer-Based) but can only do so for a limited range
of pointer arithmetic, after which the original referent is lost
(Object-Based) [58].

Secondly, as mentioned in Section 1, developers do not
always operate bounds checkers in their most secure, full-
coverage mode due to overhead concerns. Instead, bounds
checkers sometimes omit some checks, allowing developers
to accept a limited security risk to improve run-time perfor-
mance. For instance, Wagner et al. argue that the most fre-
quently executed memory accesses are the best candidates for

1For brevity, we also include “diet” pointers that do not extend the native
pointer width in this category.

172    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



bounds check elision [107], since they contribute to the over-
head the most. Yet, the code that contains these accesses is
likely the least bug-prone and best-tested code in the program,
given its frequent execution.

A more popular way to deploy bounds checkers selectively
is to restrict the checks to memory writes alone [63, 75, 77,
78, 81, 94], or to memory accesses that are permitted to access
a certain amount of sensitive data [3, 15, 60, 101], or only
certain regions of memory, e.g., the heap [30, 35, 45, 66]. The
overhead reduction factor naturally depends on the amount of
memory accesses that are left unchecked.

Store-only bounds checkers frequently report reduced over-
heads by a factor 2 or more [63, 75], while preventing all
out-of-bounds or dangling pointer writes. Prior work has
presented this as an attractive performance-security trade-
off [77, 81], primarily due to the ease of converting any
bounds checker design to a store-only working mode. Hence,
although not all published memory safety enforcement work
includes dedicated discussions and benchmarks of store-only
operating modes, the prevailing notion seems that any bounds
checker can readily be operated in a store-only mode when
performance requirements dictate so, with limited security
impact.

3 Risks of Store-Only Bounds Checking

The central thesis of this paper is that by leaving mem-
ory reads uninstrumented and freely exploitable, store-only
bounds checkers give up much more security guarantees than
“merely” the detection of pure information disclosure vul-
nerabilities such as Heartbleed [33, 87]. In this section, we
describe several additional vulnerabilities and attack vectors
spawned by the lack of protection on memory reads. In par-
ticular, we show that attackers can still arbitrarily corrupt
memory despite passing all store-only validity checks.

3.1 Threat Model and Assumptions
Throughout this paper, we assume that (i) the program con-
tains exploitable memory reads (e.g., out-of-bounds accesses
or reads through dangling pointers), and (ii) the program uses
a bounds checker of any type (i.e., pointer- or object-based, or
a combination of both) to protect its memory writes. As we
aim to break the intended integrity assurance of the store-only
working mode, we do not rely on sub-object overflows [34]
or vulnerabilities in external code or unprotected memory re-
gions since prior work usually considers such vulnerabilities
out of scope [30, 35, 45, 66]. We also assume that the attacker
knows the details of the deployed store-only hardening and
will adapt the attack to its design and implementation char-
acteristics. Finally, as repeatedly demonstrated by previous
work [73, 95, 98], we assume that any Address Space Layout
Randomization (ASLR) [83] can readily be bypassed through
information disclosure as a result of invalid memory reads.

3.2 Invalid Pointer Loads
A first, highly impactful security issue with store-only bounds
checking appears when the program loads pointers from mem-
ory through exploitable memory reads such as the one shown
in Listing 2. Attackers that can control the read on line 3 can
choose which pointer to load from memory and, thus, which
pointer gets dereferenced in the later memory write. Crucial
here is that, as long as the loaded pointer points to a valid
live object, the memory write will always pass the store-only
validity check on line 5. The fundamental problem is that
omitting the validity check for the memory read allows attack-
ers to load a pointer value illegitimately, yet ensures that the
pointer has valid bounds information when the program per-
forms the store validity check. This is true even if the loaded
pointer propagates through an arbitrary number of assignment
statements before it reaches the final store instruction because
the bounds checker will propagate the pointer metadata along
the way if necessary.

Listing 2: A vulnerable code pattern under store-only harden-
ing, with SoftBound instrumentation in red.

1 // exploitable pointer load
2 ptr = array[i];
3 bounds = lookup(&array[i])->bounds;
4 // ...
5 assert_in_bounds(ptr, bounds);
6 *ptr = ...;

Taking SoftBound as an example, Listing 2 shows that
the bounds of the pointer at the &array[i] memory location
are loaded and then checked against the value of the loaded
pointer itself. Given control over i, attackers can choose
which pointer is loaded, and due to the dynamic bounds prop-
agation, SoftBound will look up the correct bounds associated
with the accessed memory location. We stress that this is not a
design or implementation issue with SoftBound; these are the
intended bounds propagation rules for any bounds checker,
regardless of object- or pointer-orientation. In Section 6, we
describe the same issues against other types of bounds check-
ers.

To exploit this issue in practice, attackers must procure a
valid pointer in the program to use as a substitute for (one of
the) intended pointer values. Operating a bounds checker in
store-only mode dramatically facilitates the search for these
valid pointers since attackers can freely disclose large swaths
of application memory through invalid reads, explicitly per-
mitted by the threat model of these bounds checkers [77, 81].
Even without such capabilities, and depending on the type of
victim application, offline analysis on a local binary may be
sufficient to find useful pointers near the exploitable memory
read location. Such an attack would not even require defeating
ASLR in the first place, as a form of “Position-Independent

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    173



Address Reuse” [37].
Alternatively, attackers can craft valid pointers and inject

them in attacker-controlled memory regions as part of the
payload. This crafting option gives attackers even greater
flexibility to meet the constraints of the invalid memory load.
As far as we are aware, only pointer-based bounds checkers
that maintain disjoint metadata keyed on pointer addresses,
e.g., SoftBound [75], may be able to reject such crafted point-
ers during the store-only validity check, because the disjoint
metadata will only contain entries for addresses of existing,
valid pointers in the program. Any crafted pointers will not
have corresponding entries in the metadata, and, as such, fail
the metadata lookup itself. We note that modern pointer-based
bounds checkers rarely use disjoint metadata, as it hurts cache
locality [2, 81], can be a concurrency bottleneck in multi-
threaded programs, and leads to compatibility issues when the
bounds checker cannot reliably instrument all pointer copies
that should update the metadata, e.g., in external code [42].
Hence, most modern bounds checkers [63, 78, 81] fail to
detect the use of attacker-crafted pointers.

3.3 Arbitrary Code Execution Without Mem-
ory Corruption

No amount of validity checks on memory writes can help pre-
vent exploits that solely use invalid memory reads. Existing
store-only bounds checkers explicitly consider this in the case
of information disclosure vulnerabilities [63, 75, 77, 78, 81,
94], but overlook the broader implications of memory-unsafe
information flow. Consider the below snippet:

func = array[i];
func(args);

As previous work also noted [60, 102], code patterns such as
the above allow attackers to substitute func for other code
pointers, including crafted ones, by merely abusing a single
memory read. Such invalid function pointer reads suggest
that developers should at least complement store-only bounds
checks with defenses like Control Flow Integrity (CFI) [1].
In the original Code Pointer Integrity (CPI) paper [60], the
protection against invalid code pointer reads is the precise
difference between CPI and its less secure Code Pointer Sep-
aration (CPS) variant.

Store-only checking provides much better safety
than control-flow integrity with similar perfor-
mance overheads.

Nagarakatte et al. [77]

Interestingly, SoftBound also associates metadata with
function pointers [75], much like data pointers, and checks
on indirect calls whether the called address has a correspond-
ing metadata entry. As acknowledged by the authors, any

valid function pointer can still be substituted, enabling ex-
pressive Whole-Function Reuse (WFR) [88, 92, 104]. More
modern bounds checkers typically do not include any checks
on indirect branches at all since the memory safety offered
by the bounds checking itself should suffice to stop the initial
memory error leading to a code pointer overwrite.

3.4 Invalidly Loading Non-Pointer Data
Further generalizing the implications of memory-unsafe infor-
mation flow, attackers can also abuse invalid memory reads
to load plain, non-pointer data from an attacker-controlled
source. These invalid reads include pure information dis-
closure vulnerabilities like Heartbleed. However, they can
also be used to create a write-what primitive where there
previously existed none, as shown below:

1 int adminLvl = dangling_ptr ->lvl;
2 if (adminLvl > 2)
3 system("/bin/bash");
4 globalAdminLvl = adminLvl;

The use-after-free vulnerability on line 1 allows attackers
to take control of the value of the adminLvl variable follow-
ing the invalid load, typically by placing payload data at the
dangling_ptr location. Because that memory load is left
unchecked under store-only bounds checking, this snippet
allows attackers to control a privilege flag without corrupting
it, solely through an invalid read. In this case, the attack re-
sults in a privilege escalation. Note how this attack allows
attackers to overwrite memory, e.g., the globalAdminLvl on
line 4. Such an overwrite is entirely memory-safe.

3.5 Breaching Pointer Confidentiality
Some bounds checkers embed metadata in pointers (e.g., by
writing a key tag into their top bits) but, for the sake of com-
patibility, still allow the program to perform arbitrary pointer
arithmetic [42, 62, 63, 91, 105]. Unconstrained, this pointer
arithmetic could overwrite the metadata. Any such design
implicitly introduces a confidentiality requirement on pointer
values. Consider the below snippet:

int* adminLvl = ...;
ptr = &array[i];
*ptr = ...;

If attackers can leak the adminLvl pointer value and the
base address of the array, they can fill the difference be-
tween both in as i. The resulting ptr will then be equal
to array+(adminLvl-array) = adminLvl, which will be
a valid pointer to dereference, including all the necessary
in-pointer metadata.

To defend against this type of attack, affected bounds check-
ers enforce the confidentiality of pointer values by checking
memory reads to prevent information disclosure. In contrast, a

174    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



store-only deployment explicitly breaches this confidentiality
by eliding checks on memory reads, massively exacerbating
the applicability of this attack.

No matter how tempting it may sound to pro-
tect only writes, one must remember that buffer-
overread vulnerabilities will slip away from such
low-overhead checking.

Oleksenko et al. [81]

With the advent of low-latency cryptographic block ci-
phers in commodity hardware [10, 11, 56], we notice a grow-
ing trend towards such in-pointer metadata designs without
pointer arithmetic restrictions [42, 62, 63, 105]. We want to
stress that, even with full and store protection, these schemes
still struggle to guarantee pointer confidentiality when the
program is prone to sub-object overflows [34], or when it
inadvertently leaks pointer values without violating mem-
ory safety. Concurrent work [40, 46] already exploits this
precise weakness of the C3 defense [62]. On top of this, store-
only checking grants attackers reliable access to confidential
pointer values via information disclosure, thus presenting
a clear security incompatibility with this emerging trend in
low-overhead bounds checker design.

4 Ubiquity in Real-World Code

To assess whether existing code contains the necessary pat-
terns to enable our store-only bypass techniques, we con-
ducted an evaluation of the 1,000 most-starred C and C++
GitHub repositories. We tried to automatically identify the
generic vulnerable patterns described in Section 3 using cus-
tom CodeQL2 queries. We excluded two patterns from this
search. We did not search for invalid loads of non-pointer
data (Section 3.4), since its exploitable use, e.g., bypassing
a privilege check, is highly application-specific and hard to
infer automatically for a broad range of software. In addition,
we also disregarded pointer arithmetic sites that are prone to
the attack we described in Section 3.5 since we have no way
of realistically estimating attacker control over the pointer
offset.

Instead, we looked for loads of pointers that are later deref-
erenced in a memory write (Section 3.2), or called indirectly
(Section 3.3). We excluded patterns where the load opera-
tion was obviously safe (e.g., direct loads from a scalar local
variable). Instead, we focused on patterns (specifically on
reads from arrays), of which we assume a substantial por-
tion are exploitable. We then evaluated how many of them
suit the requirements of store-only bypasses. This selection
targets a large class of spatial C and C++ vulnerabilities but
may miss potential Use-After-Free (UAF) issues, which can
also appear without any indexing operations. However, these
temporal safety issues are much harder to distinguish from
obviously-safe pointer loads statically.

We match every pattern that contains direct data flow from
a loaded pointer value to the pointer operand of a memory
write (unsafe data pointer loads) or an indirect call (unsafe
funcptr loads). Figure 1 shows that the former pattern occurs
broadly across the entire suite of evaluated repositories. In
addition, many repositories have frequent occurrences, e.g.,
1,000 or more for over half of the evaluated programs. In con-
trast, the function pointer load pattern occurs less frequently,
in large part because indirect calls occur less frequently than
memory accesses. Hence, the store-only bypass based on
invalidly loaded data pointers significantly increases the at-
tacker’s options when facing a store-only bounds-checked
program.

5 Assurances of Store-Only Bounds Checking

Given the store-only bounds-checking risks we describe in
Section 3, one may ask whether the utility of store-only
bounds checking is defeated entirely. In this section, we ana-
lyze the expressiveness of the arbitrary write primitive granted
through our store-only bypass, and discuss cases where store-
only bounds checking is still useful.

After gaining some control over the target object of the
memory write, attackers can corrupt address data to bootstrap
a more powerful primitive [43], or corrupt key data struc-
tures directly, e.g., security-sensitive configuration data [16],
syscall arguments [43], or syscall-guard variables [113]. Al-
ternatively, attackers may seek arbitrary code execution by
corrupting a code pointer in the program [13, 82, 85]. Most of
these are already accessible through valid pointers in the pro-
gram, so attackers can disclose the target corruption address
more easily and obtain valid pointers to bypass the store-only
validity checks. However, some objects never appear as valid
overwrite targets in the bounds-checking metadata because
no instrumented write should ever be able to target them. We
describe a few examples here.

Return Addresses Overwriting return addresses can be dif-
ficult under store-only hardening since they are not part of any
live object. In addition, some bounds checkers “heapify” [79]
stack allocations to better control their memory layout [29], or
to simplify instrumentation. This effectively leaves the return
addresses on a safe stack [60], of which the location may be
harder to disclose, and, in turn, complicates the task of craft-
ing valid pointers. However, we find no such restrictions for
the corruption of function pointers, i.e., forward-edge control
flow hijacking, which is equally expressive [13].

Bounds Metadata An attractive option for adversaries
looking to bootstrap an initial store-only bypass into a more
expressive primitive may be to target the bounds or lifetime
metadata itself. Once again, however, no pointers will nat-
urally occur in the program for which any bounds checker

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    175



Figure 1: Occurrences of the enabling code patterns in the 1,000 most popular C/C++ GitHub repositories. The top axis counts
the black graph, representing the distribution of the lines of code of each repository. The bottom axis counts the yellow and blue
graphs, which show the distribution of unsafe data pointer loads, and unsafe function ptr loads respectively.

metadata is a valid target. Some defenses, e.g., CryptSan [42]
and Mid-Fat Pointers [57], even include dedicated Software
Fault Isolation (SFI) to explicitly outlaw invalid accesses to
the metadata, as a defense-in-depth measure.

Safe Objects As a way to reduce run-time overhead [29,
106] or to provide isolation [44, 45, 60, 64], defenses stati-
cally identify objects that can never be the source of memory
errors, because they are provably always accessed within their
bounds. Bounds checkers do so too, e.g., to avoid heapify-ing
many stack objects for performance reasons [29]. Similar to
return addresses, this leaves them separated on a safer stack,
which no bounds-checked memory writes can target.

For each of these cases, we notice a large difference be-
tween centralized/disjoint and decentralized/inline metadata.
For a typical fat pointer approach, e.g., Austin et al.’s [9], at-
tackers can craft fat pointers with any bounds attached to them,
including those permitting access to the stack, bounds table
metadata, or any other illegitimate targets, e.g., the Global
Offset Table (GOT) [118]. After disclosing the address of the
target object, such approaches pave the way for expressive
exploitation.

On the other hand, many bounds checkers contain at least
some metadata that is not kept inline with the pointer, and
thus hinders straightforward crafting. Among “diet pointer”
schemes, i.e., those that do not extend the native pointer
width, many include a small metadata key as part of the
pointer [18, 63, 78, 79, 91, 110], which can be used to retrieve
complete metadata information during validity checks. These
make it harder to craft arbitrary pointers to illegitimate tar-
gets, since it may require crafting a metadata entry, too. If all
metadata is stored in a centralized, disjoint location [63, 91],

this is near impossible using store-only hardened writes alone.
Alternatively, metadata can be stored inline with the objects
too, e.g., as allocation headers or footers [18, 78, 79]. Adver-
saries must then be able to craft the metadata in the expected
location, typically near the target object, to accompany the
crafted pointer. For some illegitimate targets, e.g., return
addresses, this can still be feasible when there are enough
attacker-controlled regions available nearby.

Note that our discussion in this section primarily concerns
illegitimate corruption targets, such as return addresses, to
which the bounds checker will never create any valid pointers,
as they are not supposed to be overwritten by application-level
memory writes. All other corruption targets, e.g., function
pointers, access control data, configuration data, etc., can
generally be targeted through hardened memory writes using
both crafted and reused pointers. In addition, store-only se-
curity risks that do not depend on invalid memory writes are
not affected by any limitations of the store-only bypass primi-
tive. For instance, loading attacker-chosen function pointers
enables expressive control flow hijacking, with which these
“illegitimate” targets can still be corrupted.

6 Analysis of Existing Store-Only Bounds
Checkers

We reviewed several prominent bounds checkers that include
a store-only mode and analyzed their susceptibility to the
security risks we identified in Section 3. We summarize our
findings in this section. Table 1 shows the condensed results,
with the properties of each evaluated defense, and the bypass
expressiveness it grants.

176    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



Property SoftBound [75] FRAMER [78] PACMem [63] Intel MPX [81]
Hardware None None Commodity Commodity
Type Pointer-based Object-based Pointer-based Pointer-based
Per-Pointer Metadata Disjoint In-pointer In-pointer Disjoint
Per-Object Metadata None Inline Disjoint None
Pointer Reuse 3 3 3 3
Pointer Crafting 7 3 3 3
Illegitimate Targets 7 7 7 3

Table 1: Comparison of selected bounds checkers that offer a store-only working mode. We highlight their respective design
properties and the expressiveness of the store-only bypass technique under each.

Listing 3: Vulnerable program.

1 int* adminLvl = ...; // *adminLvl = 0
2 struct user {
3 int age;
4 }* users[NUM_USERS] = ...;
5

6 id = input_user();
7 age = input_user();
8 // exploitable memory read
9 struct user* user = users[id];

10 // checked memory write
11 user->age = age;
12

13 if (*adminLevel > 2) {
14 printf("Shell for admin: \n");
15 system("/bin/bash");
16 }

SoftBound [75] SoftBound is one of the most well-known
spatial memory safety defenses in academic literature, with
much derivative work reusing or extending its techniques [15,
100, 101]. The basic design is pointer-based with disjoint,
centralized metadata. A large table, indexed by the storage
locations of program pointers, contains information about
the bounds of their intended referents. When pointers move
around in memory, SoftBound updates the metadata to move
around with them, and when they are loaded from memory,
their bounds metadata is, too. This propagation mechanism
allows SoftBound to check every pointer against the bounds of
its intended referent on memory accesses without constraining
or checking pointer arithmetic.

SoftBound, and the later review article by the same au-
thors [77], includes an evaluation of a store-only working
mode that reduces run-time overhead by a factor of 2 or more.
Using SoftBounds’ open-source prototype [23], we empir-
ically validated our store-only bounds check bypass on a
manually written vulnerable program, shown in Listing 3.
On line 9, attackers can use the id variable to control the

loaded pointer from the users array. After defeating ASLR
and disclosing the addresses of the objects involved, attackers
can load the adminLvl pointer on line 9 by out-of-bounds
indexing the users array, such that the bounds-checked write
on line 11 overwrites the admin level, leading to privilege
escalation in this case. We modeled this example after the
IE God Mode bug [7], where a single variable controlled the
privilege level of VBScript code executing in a sandbox.

We confirmed that we were able to successfully exploit the
native program, without any hardening applied, by passing
it the correct offset value for id, e.g., &adminLvl - &users,
and supplying an age larger than 2. When we repeated this
experiment on a fully hardened program version, SoftBound
successfully detected the exploitation at the initial out-of-
bounds memory read on line 9. We then turned off checks
on memory reads and were able to exploit the program again,
using the same technique as with the native program. During
the memory read, SoftBound looked up the bounds associated
with the actually-accessed memory location, i.e., &adminLvl,
and enforced those at line 11. Naturally, these bounds were
valid for the memory write to *adminLvl.

FRAMER [78] FRAMER is a spatial-only bounds checker
which implements a mostly object-based design. Small in-
pointer metadata keys track the location of per-object bounds
information, which is typically located close to the object.
FRAMER restricts pointer arithmetic to preserve the metadata
key and, thus, to remember the intended referent at all times.
FRAMER also supports a store-only working mode, which
incurs less than a third of the performance overhead of its full
instrumentation version.

As pointers store metadata keys in the unused top bits,
they contain all the necessary information to pass the validity
check. Naturally, pointer reuse is possible here to obtain valid
substitute pointers, like in the previous SoftBound exploita-
tion example. In addition, attackers can trivially craft pointers
with arbitrary metadata keys in the upper bits. The possibility
of pointer crafting makes FRAMER even more suitable for
store-only attack bypasses than SoftBound.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    177



PACMem [63] PACMem uses ARM’s Pointer Authentica-
tion (PA) feature [8] to bind pointers to their disjoint per-
object metadata entries cryptographically. During allocation,
PACMem generates a Pointer Authentication Code (PAC)
based on the object’s full validity metadata (base pointer, al-
location size, and a randomly generated temporal identifier
called a “birthmark”) and places it into the top bits of the
pointer. PACMem also stores per-object validity metadata in
a linear table, indexed by the PAC of pointers during memory
accesses. If the PAC does not match the looked-up validity
metadata, PACMem knows the pointer is no longer tracking
its intended referent, either due to out-of-bounds indexing or
due to an intervening deallocation.

The authors also evaluate PACMem in a store-only work-
ing mode, which more than halves run-time overhead. From
a store-only bypass perspective, PACMem behaves very sim-
ilarly to FRAMER. The PAC is essentially a metadata key,
protected from corruption through cryptographic integrity
checks, for which FRAMER uses pointer arithmetic checks
instead. In both cases, the metadata keys are revealed when
the attacker can leak memory contents, and attackers can craft
pointers using any metadata key to grant access to any bounds
stored in the metadata table. Hence, this design permits both
crafting and reuse to obtain valid pointers. To reiterate, what
we describe as pointer crafting still requires the disclosure
of authenticated pointers to the target object first to craft an
identical copy in a different place. However, this is entirely
in the scope of the store-only threat model, as mentioned in
Section 3.1.

Finally, PACMem is the only one out of our evaluated
schemes that suffers from the breach of its implicit pointer
confidentiality. As discussed in Section 3.5, pointers con-
tain their own metadata tags, and PACMem permits arbitrary
pointer arithmetic. Hence, leaking two PACMem pointers
and computing their offset gives attackers an index value with
which they can construct pointer A from pointer B and vice
versa.

Intel MPX [81] The now-deprecated Intel Memory Protec-
tion Extensions (MPX) were a hardware feature of select Intel
CPU microarchitectures that included dedicated bounds regis-
ters, as well as bounds checking and management instructions
that provided generic hardware acceleration for pointer-based
bounds checking schemes [120]. Several papers additionally
explored using MPX as a fast, coarse-grained intra-process
isolation mechanism [15, 55, 60], for which it was arguably
better suited.

MPX has architectural support for a centralized in-memory
metadata structure that contains bounds entries for the loca-
tion of every pointer in the program. In that regard, typi-
cal MPX-accelerated bounds checkers, such as those imple-
mented by the GCC and ICC toolchains in the past [19, 81],
are very similar to SoftBound, which itself was inspired by
a hardware implementation of the same idea [25]. Indeed,

Oleksenko et al. analyzed the performance characteristics
of Intel MPX when used for its intended bounds checking
purpose [81], and included a performance comparison with,
among others, SoftBound. They also evaluated a store-only
working mode of such an MPX-based bounds checker and
found that it reduces the performance overhead by a factor of
2.

A key difference between MPX’s design and SoftBound is
that MPX redundantly stores the pointer’s value in the bounds
entry that describes its intended referent. The goal is to allow
the detection of external uninstrumented code that overwrites
pointers in memory without updating their associated meta-
data entries, e.g., by re-assigning it to a different object. Dur-
ing loads of pointers, using the BNDLDX instruction [47], the
processor checks whether the bounds table entry is present
and holds a pointer value that matches its disjointly stored
copy as a way to verify whether the metadata is still up to date.
If it is not, MPX can take one of two implementation-defined
actions. On the one hand, MPX can update the bounds table
entry to cover the entire address space [47], i.e., the loaded
pointer value can point to any object in the program, as a
security concession that prioritizes compatibility with exter-
nal code [77]. This compatibility mechanism allows MPX
to gracefully handle calls to uninstrumented libraries, dy-
namically unbounding pointers when external code changes
them instead of terminating the program. On the other hand,
MPX can simply terminate the program. This latter option
prioritizes security over compatibility.

From a store-only bypass perspective, the aforementioned
compatibility option makes pointer crafting much easier than
it is with SoftBound, which strictly distinguishes between
valid pointer-holding locations and non-pointer data (cfr. Sec-
tion 3.2). In its store-only mode, MPX would then graciously
interpret any attacker-crafted pointer as a valid pointer for
any object in the program, which bypasses previous pointer
crafting limitations with SoftBound, yielding the single most
expressive store-only bypass primitive we have observed in
our review of the literature.

7 Discussion & Related Work

Until now, we described several attack vectors against store-
only bounds checkers that go beyond information disclosure,
in the hope of recalibrating the community’s expectations
about the security guarantees of such defenses. In this section,
we take a broader look at other types of store-only hardening,
and the impact of our findings on other areas of memory safety
enforcement.

Write Integrity Testing (WIT) [5] WIT is a notable mem-
ory safety hardening that solely provides store-only validity
checks. However, its enforcement mechanism fundamen-
tally differs from that of bounds checkers. At compile time,

178    18th USENIX WOOT Conference on Offensive Technologies USENIX Association



WIT assigns the same color to all memory writes that may
alias. This creates disjoint alias sets [53], each identified
with a unique color, that hold all objects in the points-to sets
of the aliasing writes. At run time, WIT tags each object
with the color of its alias set, and queries the color of the
actually-accessed object on memory writes. WIT’s store-only
validity check verifies that the looked-up color matches the
statically-assigned color of the write. This validity check en-
sures that the actually-accessed object is within the statically-
computed points-to set of the memory write. Within that set,
the memory write can corrupt all objects. Naturally, this per-
mits clear memory safety violations, and has been regarded
as strictly weaker than precise bounds checking for that rea-
son. However, because WIT establishes the set of accessible
objects statically, its validity checks cannot be fooled by our
store-only bypass. Contrary to bounds checkers, WIT does
not propagate any bounds or metadata information dynam-
ically. As such, its security guarantees are not affected by
any memory-unsafety from which the memory write operand
originates; the same, statically-determined set of objects will
be enforced regardless. WIT shows increased resilience over
bounds checkers in the face of arbitrary memory reads, which
makes it more suitable as a store-only hardening mechanism.

Impact on Static Analysis Bounds checkers typically in-
clude a range of compiler optimizations to suppress over-
head [12, 18, 44, 45, 52, 66, 100, 108, 112, 117, 122]. A
popular optimization is to check whether pointer operands
of memory accesses are always in bounds of any object they
could refer to [5]; if so, they are provably safe and do not
require a dynamic bounds check. This in-bounds analysis
typically requires statically tracing pointers backward to de-
termine their origin, accumulating any offsets they garner
along the way. Many pointers are loaded from memory even-
tually (Section 4), at which point thorough analyses perform
a Reaching Definitions Analysis (RDA) [4] to determine the
possible values of the loaded pointer. The in-bounds analy-
sis can then continue investigating all these possible loaded
pointer values. If all possible loaded values are in bounds,
the analysis will consider the original memory access as safe,
and leave it uninstrumented.

Again, a problem appears when the loaded pointer value
originates from an exploitable memory read. Attackers can
invalidly load a different pointer, and, due to the optimization,
there will not even be a bounds check left to bypass. The
underlying problem here is that many static analyses do not
account for the memory-unsafety of C and C++ [69], but are
still used to prove its safety properties. To avoid this specific
issue, we recommend only performing RDA on memory loads
which themselves are also provably in bounds.

Store-Only Testing In this paper, we have primarily dis-
cussed the weaknesses of bounds checkers as exploit miti-
gations, facing a sophisticated adversary that is motivated to

break the program’s protection through any means necessary.
However, some bounds checkers simply aim to catch mem-
ory safety violations that are triggered during development
or (fuzz) testing [17, 36, 67, 94]. The latter are commonly
referred to as “sanitizers” [97], and tend to use less secure
methods of catching memory errors, that nevertheless detect
violations more precisely, e.g., at object bounds instead of
allocation bounds [28]. Performance can still be important
here, e.g., to improve throughput during automated fuzz test-
ing [36, 48, 119, 122]. Indeed, the original AddressSanitizer
(ASan) paper, now integrated into popular compilers [20, 21],
included an evaluation of a “writes-only” instrumentation
mode, which reduced the run-time overhead threefold. How-
ever, since ASan is not meant to run in production, despite
a stint in the Tor browser [24], the impact of our attack is
limited. Still, our work undermines the assumption that when
a program is thoroughly sanitized/fuzzed for invalid write
bugs, attackers will not be able to corrupt program memory
or achieve arbitrary code execution.

Selective Bounds Checking Apart from store-only deploy-
ments, researchers have also proposed using bounds checkers
to protect only a security-critical, sensitive part of the data
space [3, 15, 60, 101]. These defenses generally include a
coarse-grained isolation mechanism in the non-sensitive part
to prevent access to the sensitive part, e.g. using SFI [114]
or Intel MPK [47]. Typically, a pointer analysis determines
which memory accesses are allowed to access the sensitive
region and which are not. Depending on the way the analysis
computes sensitivity, we believe that such selective bounds
checkers carry a similar vulnerability to their store-only sib-
lings. Consider the snippet below:

1 ptrToSens = nonSensArray[i];
2 *ptrToSens = ...;

The nonSensArray is non-sensitive, and it contains non-
sensitive pointers to sensitive objects. The load from the array
on line 1 is only instrumented with coarse-grained bounds
checks, since the pointer analysis correctly determined that it
accesses a non-sensitive object (nonSensArray). The store
on line 2 is bounds checked in a fine-grained way, since it
is supposed to access sensitive data. When the load on 1
is exploitable, however, attackers can load any valid pointer
to the sensitive region from the non-sensitive region, which
will pass the validity check on line 2, in true store-only by-
pass fashion. Hence, attackers can choose which sensitive
object gets written to on line 1, by abusing a memory error
they were permitted to exploit (coarse-grained bounds check).
Note that we bypass two layers of defense-in-depth at once
here: attackers are not supposed to write to the sensitive re-
gion (inter-sensitive isolation), and sensitive memory accesses
are not supposed to be exploitable, because they are bounds
checked (intra-sensitive isolation).

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    179



One option to address this issue is to include pointers to
sensitive objects in the sensitive region as well [15, 96], recur-
sively. However, this can quickly lead to a very large sensitive
region, with almost all memory accesses instrumented, and
the associated performance overhead.

8 Conclusion

In this work, we uncovered fundamental weaknesses of store-
only bounds checking, directly caused by the lack of protec-
tion on memory reads. In particular, we demonstrated that
invalid loads of pointers give attackers control over hardened
memory writes. We empirically validated our attack on a
prominent bounds checker prototype, and characterized the
same weakness in other bounds checker designs. Through
automated code analysis, we showed that a large corpus of
real software exhibits the vulnerable patterns that enable our
store-only bypass.

Looking ahead, we discussed potential avenues to rebal-
ance the security and overhead advantages of store-only hard-
ening. To this end, we recognized the resilience of Data
Flow Integrity (DFI) against malicious pointer loads. Given
the broader importance of efficient memory safety enforce-
ment, we encourage new research into store-only hardening,
keeping in mind the subversive effects of attacker-controlled
memory loads.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful feedback. In addition, we thank Silviu Vlasceanu
and Mahmoud Ammar from Huawei Trusted System Security
Lab Munich for the interesting conversations that led to this
work, and Dairo de Ruck for providing access to much-needed
computation resources. This research is partially funded by
the Research Fund KU Leuven, and by the Cybersecurity
Research Program Flanders.

Availability

Our attack experiments and code analysis queries are
available at https://github.com/ku-leuven-msec/
not-quite-write-experiments.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, CCS ’05, pages 340–353, New York,
NY, USA, 2005. Association for Computing Machin-
ery. ISBN 1595932267. doi: 10.1145/1102120.
1102165.

[2] Masab Ahmad, Syed Kamran Haider, Farrukh Hijaz,
Marten van Dijk, and Omer Khan. Exploring the per-
formance implications of memory safety primitives in
many-core processors executing multi-threaded work-
loads. In Proceedings of the Fourth Workshop on Hard-
ware and Architectural Support for Security and Pri-
vacy, HASP ’15, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450334839.
doi: 10.1145/2768566.2768572. URL https://doi.
org/10.1145/2768566.2768572.

[3] Salman Ahmed, Hans Liljestrand, Hani Jamjoom,
Matthew Hicks, N. Asokan, and Danfeng (Daphne)
Yao. Not all data are created equal: Data and
pointer prioritization for scalable protection against
Data-Oriented attacks. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1433–1450,
Anaheim, CA, August 2023. USENIX Association.
ISBN 978-1-939133-37-3. URL https://www.
usenix.org/conference/usenixsecurity23/
presentation/ahmed-salman.

[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jef-
frey D Ullman. Compilers: principles, techniques, &
tools. Pearson Education India, 2007.

[5] Periklis Akritidis, Cristian Cadar, Costin Raiciu,
Manuel Costa, and Miguel Castro. Preventing Memory
Error Exploits with WIT. In 2008 IEEE Symposium
on Security and Privacy (S&P 2008), pages 263–277,
2008. doi: 10.1109/SP.2008.30.

[6] Periklis Akritidis, Manuel Costa, Miguel Castro, and
Steven Hand. Baggy bounds checking: An effi-
cient and backwards-compatible defense against out-
of-bounds errors. In USENIX Security Symposium,
volume 10, page 96, 2009.

[7] Anit Anubhav and Manish Sardiwal. The
journey and evolution of god mode in 2016:
Cve-2016-0189, 2017. URL https://www.
virusbulletin.com/virusbulletin/2017/01/
journey-and-evolution-god-mode-2016-cve-2016-0189/.

[8] Arm Ltd. Arm Architecture Reference Manual Supple-
ment Armv9, for Armv9-A architecture profile, 2022.

[9] Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient Detection of All Pointer and Array
Access Errors. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design
and Implementation, PLDI ’94, pages 290–301, New
York, NY, USA, 1994. Association for Computing
Machinery. ISBN 089791662X. doi: 10.1145/178243.
178446. URL https://doi.org/10.1145/178243.
178446.

180    18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/ku-leuven-msec/not-quite-write-experiments
https://github.com/ku-leuven-msec/not-quite-write-experiments
https://doi.org/10.1145/2768566.2768572
https://doi.org/10.1145/2768566.2768572
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://doi.org/10.1145/178243.178446
https://doi.org/10.1145/178243.178446


[10] Roberto Avanzi. The QARMA block cipher family.
IACR Transactions on Symmetric Cryptology, pages
4–44, 2017.

[11] Yanis Belkheyar, Joan Daemen, Christoph Dobrau-
nig, Santosh Ghosh, and Shahram Rasoolzadeh. Bip-
bip: A low-latency tweakable block cipher with
small dimensions. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(1):
326–368, Nov. 2022. doi: 10.46586/tches.v2023.i1.
326-368. URL https://tches.iacr.org/index.
php/TCHES/article/view/9955.

[12] Lukas Bernhard, Michael Rodler, Thorsten Holz, and
Lucas Davit. xTag: Mitigating Use-After-Free Vulner-
abilities via Software-Based Pointer Tagging on Intel
x86-64. In 2022 IEEE 7th European Symposium on Se-
curity and Privacy (EuroS&P), pages 502–519, 2022.
doi: 10.1109/EuroSP53844.2022.00038.

[13] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-oriented programming: A new
class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS ’11, pages 30–40,
New York, NY, USA, 2011. Association for Com-
puting Machinery. ISBN 9781450305648. doi:
10.1145/1966913.1966919.

[14] Nathan Burow, Derrick McKee, Scott A. Carr, and
Mathias Payer. CUP: Comprehensive User-Space
Protection for C/C++. In Proceedings of the 2018 on
Asia Conference on Computer and Communications
Security, ASIACCS ’18, pages 381–392, New York,
NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450355766. doi: 10.1145/3196494.
3196540.

[15] Scott A. Carr and Mathias Payer. DataShield: Config-
urable Data Confidentiality and Integrity. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’17, pages
193–204, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349444. doi:
10.1145/3052973.3052983. URL https://doi.org/
10.1145/3052973.3052983.

[16] Shuo Chen, Jun Xu, and Emre C. Sezer. Non-
control-data attacks are realistic threats. In 14th
USENIX Security Symposium (USENIX Security
05), Baltimore, MD, 7 2005. USENIX Association.
URL https://www.usenix.org/conference/
14th-usenix-security-symposium/
non-control-data-attacks-are-realistic-threats.

[17] Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li,
Ruoyu Wang, Haixin Duan, Haoyu Wang, and Chao

Zhang. MTSan: A feasible and practical memory
sanitizer for fuzzing cots binaries. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 841–
858, 2023.

[18] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao,
Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé, and
Gail-Joon Ahn. Vik: practical mitigation of tempo-
ral memory safety violations through object id inspec-
tion. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 271–284,
2022.

[19] GCC Developers. Intel MPX support
in the GCC compiler, June 2018. URL
https://gcc.gnu.org/wiki/Intel%20MPX%
20support%20in%20the%20GCC%20compiler.

[20] GCC Developers. Program instrumentation options.
https://gcc.gnu.org/onlinedocs/
gcc/Instrumentation-Options.html#
index-fsanitize_003daddress, 2024.

[21] LLVM Developers. Addresssanitizer.
https://clang.llvm.org/docs/
AddressSanitizer.html, 2024.

[22] Rust Developers. Rust programming language, 2024.
URL https://www.rust-lang.org/.

[23] SoftBoundCETS developers. softboundcets-34,
2014. URL https://github.com/santoshn/
softboundcets-34.

[24] Tor Developers. Tor browser 5.5a4-
hardened is released, November 2015.
URL https://blog.torproject.org/
tor-browser-55a4-hardened-released/.

[25] Joe Devietti, Colin Blundell, Milo M. K. Martin, and
Steve Zdancewic. Hardbound: Architectural Support
for Spatial Safety of the C Programming Language.
In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XIII, pages 103–
114, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781595939586. doi:
10.1145/1346281.1346295. URL https://doi.org/
10.1145/1346281.1346295.

[26] Dinakar Dhurjati and Vikram Adve. Backwards-
compatible array bounds checking for c with very low
overhead. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages
162–171, New York, NY, USA, 2006. Association
for Computing Machinery. ISBN 1595933751. doi:

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    181

https://tches.iacr.org/index.php/TCHES/article/view/9955
https://tches.iacr.org/index.php/TCHES/article/view/9955
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.1145/3052973.3052983
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fsanitize_003daddress
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fsanitize_003daddress
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fsanitize_003daddress
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://www.rust-lang.org/
https://github.com/santoshn/softboundcets-34
https://github.com/santoshn/softboundcets-34
https://blog.torproject.org/tor-browser-55a4-hardened-released/
https://blog.torproject.org/tor-browser-55a4-hardened-released/
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/1346281.1346295


10.1145/1134285.1134309. URL https://doi.org/
10.1145/1134285.1134309.

[27] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
SAFECode: Enforcing alias analysis for weakly typed
languages. In Proceedings of the 27th ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, PLDI ’06, pages 144–157,
New York, NY, USA, 2006. Association for Com-
puting Machinery. ISBN 1595933204. doi: 10.
1145/1133981.1133999. URL https://doi.org/
10.1145/1133981.1133999.

[28] Baozeng Ding, Yeping He, Yanjun Wu, Alex Miller,
and John Criswell. Baggy bounds with accurate check-
ing. In 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Workshops, pages
195–200, 2012. doi: 10.1109/ISSREW.2012.24.

[29] Gregory Duck, Roland Yap, and Lorenzo Cavallaro.
Stack object protection with low fat pointers. In NDSS
Symposium 2017, 2017.

[30] Gregory J. Duck and Roland H. C. Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion, CC 2016, pages 132–142, New York, NY, USA,
2016. Association for Computing Machinery. ISBN
9781450342414. doi: 10.1145/2892208.2892212.

[31] Gregory J Duck and Roland HC Yap. EffectiveSan:
Type and memory error detection using dynamically
typed c/c++. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 181–195, 2018.

[32] Gregory J. Duck, Yuntong Zhang, and Roland H. C.
Yap. Hardening binaries against more memory er-
rors. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, pages
117–131, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450391627. doi:
10.1145/3492321.3519580. URL https://doi.org/
10.1145/3492321.3519580.

[33] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bai-
ley, and J. Alex Halderman. The matter of heart-
bleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference, IMC ’14, pages
475–488, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450332132. doi:
10.1145/2663716.2663755. URL https://doi.org/
10.1145/2663716.2663755.

[34] Ronald Gil, Hamed Okhravi, and Howard Shrobe.
There’s a hole in the bottom of the c: On the effec-
tiveness of allocation protection. In 2018 IEEE Cyber-
security Development (SecDev), pages 102–109, 2018.
doi: 10.1109/SecDev.2018.00021.

[35] Amogha Udupa Shankaranarayana Gopal, Raveen-
dra Soori, Michael Ferdman, and Dongyoon Lee.
TAILCHECK: A lightweight heap overflow detection
mechanism with page protection and tagged pointers.
In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 2023.

[36] Floris Gorter, Enrico Barberis, Raphael Isemann,
Erik van der Kouwe, Cristiano Giuffrida, and Her-
bert Bos. FloatZone: Accelerating memory er-
ror detection using the floating point unit. In
32nd USENIX Security Symposium (USENIX Secu-
rity 23), pages 805–822, Anaheim, CA, August 2023.
USENIX Association. ISBN 978-1-939133-37-
3. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/gorter.

[37] Enes Göktas, Benjamin Kollenda, Philipp Koppe,
Erik Bosman, Georgios Portokalidis, Thorsten Holz,
Herbert Bos, and Cristiano Giuffrida. Position-
independent code reuse: On the effectiveness of aslr in
the absence of information disclosure. In 2018 IEEE
European Symposium on Security and Privacy (Eu-
roS&P), pages 227–242, 2018. doi: 10.1109/EuroSP.
2018.00024.

[38] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer,
Cristiano Giuffrida, Herbert Bos, and Erik van der
Kouwe. TypeSan: Practical type confusion detection.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
pages 517–528, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. ISBN 9781450341394.
doi: 10.1145/2976749.2978405. URL https://doi.
org/10.1145/2976749.2978405.

[39] Istvan Haller, Erik van der Kouwe, Cristiano Giuf-
frida, and Herbert Bos. Metalloc: Efficient and
comprehensive metadata management for software
security hardening. In Proceedings of the 9th Eu-
ropean Workshop on System Security, EuroSec ’16,
New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450342957. doi:
10.1145/2905760.2905766. URL https://doi.org/
10.1145/2905760.2905766.

[40] Mohamed Tarek Bnziad Mohamed Hassan. Hardware-
Software Co-design for Practical Memory Safety. PhD
thesis, Columbia University, 2022.

182    18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/3492321.3519580
https://doi.org/10.1145/3492321.3519580
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/2905760.2905766
https://doi.org/10.1145/2905760.2905766


[41] Konrad Hohentanner, Florian Kasten, and Lukas Auer.
Hwasanio: Detecting c/c++ intra-object overflows with
memory shading. In Proceedings of the 12th ACM
SIGPLAN International Workshop on the State Of the
Art in Program Analysis, pages 27–33, 2023.

[42] Konrad Hohentanner, Philipp Zieris, and Julian Horsch.
Cryptsan: Leveraging arm pointer authentication for
memory safety in c/c++. In Proceedings of the
38th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC ’23, pages 1530–1539, New York, NY,
USA, 2023. Association for Computing Machin-
ery. ISBN 9781450395175. doi: 10.1145/
3555776.3577635. URL https://doi.org/10.
1145/3555776.3577635.

[43] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Pra-
teek Saxena, and Zhenkai Liang. Automatic generation
of data-oriented exploits. In Proceedings of the 24th
USENIX Conference on Security Symposium, SEC’15,
pages 177–192, USA, 2015. USENIX Association.
ISBN 9781931971232.

[44] Kaiming Huang, Yongzhe Huang, Mathias Payer,
Zhiyun Qian, Jack Sampson, Gang Tan, and Trent
Jaeger. The Taming of the Stack: Isolating Stack Data
from Memory Errors. In Proceedings of the 2020 ISOC
Network and Distributed Systems Security Symposium
(NDSS), February 2022.

[45] Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack
Sampson, Gang Tan, and Trent Jaeger. Top of the
heap: Efficient memory error protection for many heap
objects. arXiv preprint arXiv:2310.06397, 2023.

[46] Mohamed Tarek Ibn Ziad, Evgeny Manzhosov, and
Simha Sethumadhavan. C-4: Compromising crypto-
graphic capability computing. 2022. Work in progress.

[47] Intel Inc. Intel 64 and IA-32 Architectures. Software
Developer’s Manual, 2021.

[48] Yuseok Jeon, WookHyun Han, Nathan Burow, and
Mathias Payer. FuZZan: Efficient sanitizer meta-
data design for fuzzing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 249–
263. USENIX Association, July 2020. ISBN 978-
1-939133-14-4. URL https://www.usenix.org/
conference/atc20/presentation/jeon.

[49] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of c. In Proceedings of the
General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, pages 275–
288, USA, 2002. USENIX Association. ISBN
1880446006.

[50] X. Jin, X. Xiao, S. Jia, W. Gao, H. Zhang, D. Gu,
S. Ma, Z. Qian, and J. Li. Annotating, Tracking, and
Protecting Cryptographic Secrets with CryptoMPK. In
2022 IEEE Symposium on Security and Privacy (S&P),
pages 473–488, Los Alamitos, CA, USA, May 2022.
IEEE Computer Society. doi: 10.1109/SP46214.2022.
00028. URL https://doi.ieeecomputersociety.
org/10.1109/SP46214.2022.00028.

[51] Richard WM Jones and Paul HJ Kelly. Backwards-
compatible bounds checking for arrays and pointers in
c programs. In AADEBUG, volume 97, pages 13–26,
1997.

[52] Tina Jung, Fabian Ritter, and Sebastian Hack. Pico: A
presburger in-bounds check optimization for compiler-
based memory safety instrumentations. ACM Transac-
tions on Architecture and Code Optimization (TACO),
18(4):1–27, 2021.

[53] Vineet Kahlon. Bootstrapping: A technique for scal-
able flow and context-sensitive pointer alias analysis.
SIGPLAN Not., 43(6):249–259, June 2008. ISSN
0362-1340. doi: 10.1145/1379022.1375613.

[54] Piyus Kedia, Rahul Purandare, Udit Agarwal, and
Rishabh. Cguard: Scalable and precise object bounds
protection for c. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, pages 1307–1318, 2023.

[55] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No need to hide:
Protecting safe regions on commodity hardware. In
European Conference on Computer Systems (EuroSys),
2017.

[56] Michael Kounavis, Sergej Deutsch, Santosh Ghosh,
and David Durham. K-cipher: A low latency, bit length
parameterizable cipher. In 2020 IEEE Symposium on
Computers and Communications (ISCC), pages 1–7,
2020. doi: 10.1109/ISCC50000.2020.9219582.

[57] Taddeus Kroes, Koen Koning, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. Fast and
generic metadata management with mid-fat point-
ers. In Proceedings of the 10th European Work-
shop on Systems Security, EuroSec’17, New York,
NY, USA, 2017. Association for Computing Ma-
chinery. ISBN 9781450349352. doi: 10.1145/
3065913.3065920. URL https://doi.org/10.
1145/3065913.3065920.

[58] Taddeus Kroes, Koen Koning, Erik van der Kouwe,
Herbert Bos, and Cristiano Giuffrida. Delta point-
ers: Buffer overflow checks without the checks. In

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    183

https://doi.org/10.1145/3555776.3577635
https://doi.org/10.1145/3555776.3577635
https://www.usenix.org/conference/atc20/presentation/jeon
https://www.usenix.org/conference/atc20/presentation/jeon
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00028
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00028
https://doi.org/10.1145/3065913.3065920
https://doi.org/10.1145/3065913.3065920


Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys ’18, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355841. doi:
10.1145/3190508.3190553.

[59] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov,
Bohdan Trach, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. SGXBOUNDS: Memory safety for
shielded execution. In Proceedings of the Twelfth
European Conference on Computer Systems, pages
205–221, 2017.

[60] Volodymyr Kuznetsov, László Szekeres, Mathias
Payer, George Candea, R. Sekar, and Dawn Song.
Code-pointer integrity. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 147–163, USA,
2014. USENIX Association. ISBN 9781931971164.

[61] Michael Larabel. The first rust-written net-
work phy driver set to land in linux 6.8, 12 2023.
URL https://www.phoronix.com/news/Linux-6.
8-Rust-PHY-Driver.

[62] Michael LeMay, Joydeep Rakshit, Sergej Deutsch,
David M. Durham, Santosh Ghosh, Anant Nori,
Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karan-
vir Grewal, and Sreenivas Subramoney. Crypto-
graphic capability computing. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’21, pages 253–267, New
York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450385572. doi:
10.1145/3466752.3480076. URL https://doi.org/
10.1145/3466752.3480076.

[63] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang,
Mathias Payer, Ying Liu, and Chao Zhang. PACMem:
Enforcing spatial and temporal memory safety via arm
pointer authentication. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’22, pages 1901–1915,
New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450394505. doi:
10.1145/3548606.3560598. URL https://doi.org/
10.1145/3548606.3560598.

[64] Hans Liljestrand, Carlos Chinea, Rémi Denis-
Courmont, Jan-Erik Ekberg, and N. Asokan. Color my
world: Deterministic tagging for memory safety, 2022.
URL https://arxiv.org/abs/2204.03781.

[65] Ankur Limaye and Tosiron Adegbija. A workload char-
acterization of the spec cpu2017 benchmark suite. In
2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 149–
158, 2018. doi: 10.1109/ISPASS.2018.00028.

[66] Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Cam-
panoni, Peter Dinda, and Xinyu Xing. Camp: Com-
piler and allocator-based heap memory protection. In
USENIX Security Symposium, 2024. URL https://
zplin.me/papers/CAMP.pdf. To appear in USENIX
Security 2024.

[67] Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao
Cai, and Charles Zhang. Giantsan: Efficient memory
sanitization with segment folding. In 29th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS 2024), 2024.

[68] Zhengyang Liu and John Criswell. Flexible and ef-
ficient memory object metadata. In Proceedings of
the 2017 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2017, pages 36–46,
New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450350440. doi:
10.1145/3092255.3092268. URL https://doi.org/
10.1145/3092255.3092268.

[69] Benjamin Livshits, Manu Sridharan, Yannis
Smaragdakis, Ondrej Lhotak, J. Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P.
Khedker, Anders Møller, and Dimitrios Vardoulakis.
In defense of soundiness: A manifesto. Com-
munications of the ACM, 58:44–46, 2015. URL
http://cacm.acm.org/magazines/2015/2/
182650-in-defense-of-soundiness/abstract.

[70] The MITRE Corporation (MITRE). CWE-125: Out-
of-bounds read. https://cwe.mitre.org/data/
definitions/125.html, 2024.

[71] The MITRE Corporation (MITRE). CWE-416:
Use after free. https://cwe.mitre.org/data/
definitions/416.html, 2024.

[72] The MITRE Corporation (MITRE). CWE-787: Out-
of-bounds write. https://cwe.mitre.org/data/
definitions/787.html, 2024.

[73] Micah Morton, Jan Werner, Panagiotis Kintis, Kevin
Snow, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. Security risks in asynchronous
web servers: When performance optimizations amplify
the impact of data-oriented attacks. In 2018 IEEE
European Symposium on Security and Privacy (Eu-
roS&P), pages 167–182, 2018. doi: 10.1109/EuroSP.
2018.00020.

[74] Yeoul Na. -fbounds-safety. enforcing bounds safety for
production c code. EuroLLVM Developers’ Meeting,
May 2023. URL https://llvm.org/devmtg/
2023-05/slides/TechnicalTalks-May11/
01-Na-fbounds-safety.pdf.

184    18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.phoronix.com/news/Linux-6.8-Rust-PHY-Driver
https://www.phoronix.com/news/Linux-6.8-Rust-PHY-Driver
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3548606.3560598
https://arxiv.org/abs/2204.03781
https://zplin.me/papers/CAMP.pdf
https://zplin.me/papers/CAMP.pdf
https://doi.org/10.1145/3092255.3092268
https://doi.org/10.1145/3092255.3092268
http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/abstract
http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/abstract
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May11/01-Na-fbounds-safety.pdf
https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May11/01-Na-fbounds-safety.pdf
https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May11/01-Na-fbounds-safety.pdf


[75] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Mar-
tin, and Steve Zdancewic. Softbound: Highly com-
patible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’09, pages 245–258, New York, NY, USA,
2009. Association for Computing Machinery. ISBN
9781605583921. doi: 10.1145/1542476.1542504.

[76] Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Watchdog: Hardware for safe and secure
manual memory management and full memory safety.
In Proceedings of the 39th Annual International Sym-
posium on Computer Architecture, ISCA ’12, pages
189–200, USA, 2012. IEEE Computer Society. ISBN
9781450316422.

[77] Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Everything You Want to Know About
Pointer-Based Checking. In Thomas Ball, Rastislav
Bodik, Shriram Krishnamurthi, Benjamin S. Lerner,
and Greg Morrisett, editors, 1st Summit on Advances
in Programming Languages (SNAPL 2015), volume 32
of Leibniz International Proceedings in Informatics
(LIPIcs), pages 190–208, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-939897-80-4. doi: 10.4230/LIPIcs.
SNAPL.2015.190. URL http://drops.dagstuhl.
de/opus/volltexte/2015/5026.

[78] Myoung Jin Nam, Periklis Akritidis, and David J
Greaves. Framer: A tagged-pointer capability sys-
tem with memory safety applications. In Proceed-
ings of the 35th Annual Computer Security Appli-
cations Conference, ACSAC ’19, pages 612–626,
New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450376280. doi:
10.1145/3359789.3359799.

[79] George C. Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. Ccured: Type-
safe retrofitting of legacy software. ACM Trans. Pro-
gram. Lang. Syst., 27(3):477–526, may 2005. ISSN
0164-0925. doi: 10.1145/1065887.1065892. URL
https://doi.org/10.1145/1065887.1065892.

[80] White House Office of the National Cyber Direc-
tor (ONCD). Back to the building blocks: A path
toward secure and measurable software. Technical
report, ONCD, February 2024. URL https:
//www.whitehouse.gov/wp-content/uploads/
2024/02/Final-ONCD-Technical-Report.pdf.

[81] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bha-
totia, Pascal Felber, and Christof Fetzer. Intel MPX
Explained: A Cross-layer Analysis of the Intel MPX

System Stack. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 2018.

[82] Aleph One. Smashing the stack for fun and
profit. Phrack Magazine, 7(49), November
1996. URL http://www.phrack.com/issues.
html?issue=49&id=14.

[83] PaX Team. Address space layout randomization
(aslr). https://pax.grsecurity.net/docs/aslr.
txt, 2001.

[84] Tribuvan Kumar Prakash and Lu Peng. Performance
characterization of spec cpu2006 benchmarks on intel
core 2 duo processor. ISAST Trans. Comput. Softw.
Eng, 2(1):36–41, 2008.

[85] Marco Prandini and Marco Ramilli. Return-oriented
programming. IEEE Security and Privacy, 10(6):84–
87, November 2012. ISSN 1540-7993. doi: 10.1109/
MSP.2012.152.

[86] Alex Rebert and Christoph Kern. Secure by design:
Google’s perspective on memory safety. Technical
report, Google Security Engineering, 2024.

[87] Inc. Red Hat. CVE-2014-0160. Available
from MITRE, CVE-ID CVE-2014-0160., December 3
2014. URL http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160.

[88] Robert Rudd, Richard Skowyra, David Bigelow, Veer
Dedhia, Thomas Hobson, Stephen Crane, Christopher
Liebchen, Per Larsen, Lucas Davi, Michael Franz, et al.
Address oblivious code reuse: On the effectiveness of
leakage resilient diversity. In NDSS, 2017.

[89] Mark Russinovich, September 2022. URL
https://twitter.com/markrussinovich/
status/1571995117233504257.

[90] Olatunji Ruwase and Monica S Lam. A practical
dynamic buffer overflow detector. In NDSS, volume
2004, pages 159–169, 2004.

[91] Gururaj Saileshwar, Rick Boivie, Tong Chen, Ben-
jamin Segal, and Alper Buyuktosunoglu. Heapcheck:
Low-cost hardware support for memory safety. ACM
Trans. Archit. Code Optim., 19(1), January 2022.
ISSN 1544-3566. doi: 10.1145/3495152. URL
https://doi.org/10.1145/3495152.

[92] Felix Schuster, Thomas Tendyck, Christopher
Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and
Thorsten Holz. Counterfeit object-oriented program-
ming: On the difficulty of preventing code reuse at-
tacks in c++ applications. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, S&P ’15,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    185

http://drops.dagstuhl.de/opus/volltexte/2015/5026
http://drops.dagstuhl.de/opus/volltexte/2015/5026
https://doi.org/10.1145/1065887.1065892
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://twitter.com/markrussinovich/status/1571995117233504257
https://twitter.com/markrussinovich/status/1571995117233504257
https://doi.org/10.1145/3495152


pages 745–762, USA, 2015. IEEE Computer Society.
ISBN 9781467369497. doi: 10.1109/SP.2015.51.

[93] Jiwon Seo, Junseung You, Donghyun Kwon, Yeongpil
Cho, and Yunheung Paek. ZOMETAG: Zone-based
Memory Tagging for Fast, Deterministic Detection of
Spatial Memory Violations on ARM. IEEE Transac-
tions on Information Forensics and Security, 2023.

[94] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
USENIX ATC’12, page 28, USA, 2012. USENIX
Association.

[95] Fermin J Serna. The info leak era on software exploita-
tion. Black Hat USA, 7, 2012.

[96] Chengyu Song, Byoungyoung Lee, Kangjie Lu,
William R. Harris, Taesoo Kim, and Wenke Lee. En-
forcing kernel security invariants with data flow in-
tegrity. In NDSS 2016, 2016.

[97] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. Sok: Sanitizing for security. In 2019 IEEE Sym-
posium on Security and Privacy (S&P), pages 1275–
1295, 2019. doi: 10.1109/SP.2019.00010.

[98] Alexander Sotirov and Mark Dowd. Bypassing
browser memory protections. Black Hat USA, 2008.

[99] Jeffrey Vander Stoep. Memory safe lan-
guages in android 13, 12 2022. URL
https://security.googleblog.com/2022/12/
memory-safe-languages-in-android-13.html.

[100] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Elim-
inating redundant bounds checks in dynamic buffer
overflow detection using weakest preconditions. IEEE
Transactions on Reliability, 65(4):1682–1699, 2016.
doi: 10.1109/TR.2016.2570538.

[101] Zhichuang Sun, Bo Feng, Long Lu, and Somesh
Jha. Oat: Attesting operation integrity of embed-
ded devices. In 2020 IEEE Symposium on Security
and Privacy (S&P), pages 1433–1449, 2020. doi:
10.1109/SP40000.2020.00042.

[102] László Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE Sym-
posium on Security and Privacy, pages 48–62, 2013.
doi: 10.1109/SP.2013.13.

[103] Mohamed Tarek Ibn Ziad, Sana Damani, Aamer Jaleel,
Stephen W Keckler, and Mark Stephenson. cucatch: A
debugging tool for efficiently catching memory safety

violations in cuda applications. Proceedings of the
ACM on Programming Languages, 7(PLDI):124–147,
2023.

[104] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian
Jiang, Vincent Freeh, and Peng Ning. On the expres-
siveness of return-into-libc attacks. In Robin Som-
mer, Davide Balzarotti, and Gregor Maier, editors, Re-
cent Advances in Intrusion Detection, pages 121–141,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-23644-0.

[105] Martin Unterguggenberger, David Schrammel, Lukas
Lamster, Pascal Nasahl, and Stefan Mangard. Cryp-
tographically enforced memory safety. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’23, pages
889–903, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400700507. doi:
10.1145/3576915.3623138. URL https://doi.org/
10.1145/3576915.3623138.

[106] Erik van der Kouwe, Taddeus Kroes, Chris Ouwe-
hand, Herbert Bos, and Cristiano Giuffrida. Type-
after-type: Practical and complete type-safe memory
reuse. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC ’18, pages
17–27, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450365697. doi:
10.1145/3274694.3274705.

[107] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security
and Privacy, pages 866–879. IEEE, 2015.

[108] Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen
Yu, Xiaosong Ma, and Wenguang Chen. Spindle:
Informed memory access monitoring. In Proceed-
ings of the 2018 USENIX Conference on Usenix An-
nual Technical Conference, USENIX ATC ’18, pages
561–573, USA, 2018. USENIX Association. ISBN
9781931971447.

[109] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revis-
iting risc in an age of risk. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture
(ISCA), pages 457–468, 2014. doi: 10.1109/ISCA.
2014.6853201.

[110] Shengjie Xu, Wei Huang, and David Lie. In-
fat pointer: Hardware-assisted tagged-pointer spatial
memory safety defense with subobject granularity pro-
tection. In Proceedings of the 26th ACM International

186    18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://doi.org/10.1145/3576915.3623138
https://doi.org/10.1145/3576915.3623138


Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’21,
pages 224–240, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383172.
doi: 10.1145/3445814.3446761. URL https://doi.
org/10.1145/3445814.3446761.

[111] Shengjie Xu, Eric Liu, Wei Huang, and David Lie.
Mifp: Selective fat-pointer bounds compression for
accurate bounds checking. In Proceedings of the 26th
International Symposium on Research in Attacks, In-
trusions and Defenses, pages 609–622, 2023.

[112] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian
Lan, and Guru Venkataramani. SIMBER: Eliminating
redundant memory bound checks via statistical infer-
ence. In ICT Systems Security and Privacy Protection:
32nd IFIP TC 11 International Conference, SEC 2017,
Rome, Italy, May 29-31, 2017, Proceedings 32, pages
413–426. Springer, 2017.

[113] Hengkai Ye, Song Liu, Zhechang Zhang, and
Hong Hu. VIPER: Spotting Syscall-Guard
variables for Data-Only attacks. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 1397–1414, Anaheim, CA, August 2023.
USENIX Association. ISBN 978-1-939133-37-
3. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/ye.

[114] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
2009 30th IEEE Symposium on Security and Privacy,
pages 79–93, 2009. doi: 10.1109/SP.2009.25.

[115] Suan Hsi Yong and Susan Horwitz. Protecting c pro-
grams from attacks via invalid pointer dereferences. In
Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT In-
ternational Symposium on Foundations of Software En-
gineering, ESEC/FSE-11, pages 307–316, New York,
NY, USA, 2003. Association for Computing Machin-
ery. ISBN 1581137435. doi: 10.1145/940071.940113.

[116] Yves Younan, Pieter Philippaerts, Lorenzo Caval-
laro, R. Sekar, Frank Piessens, and Wouter Joosen.
Paricheck: an efficient pointer arithmetic checker
for c programs. In Proceedings of the 5th ACM
Symposium on Information, Computer and Commu-
nications Security, ASIACCS ’10, pages 145–156,

New York, NY, USA, 2010. Association for Com-
puting Machinery. ISBN 9781605589367. doi:
10.1145/1755688.1755707. URL https://doi.org/
10.1145/1755688.1755707.

[117] Yizhuo Zhai, Zhiyun Qian, Chengyu Song, Manu Srid-
haran, Trent Jaeger, Paul Yu, and Srikanth V Krishna-
murthy. Don’t waste my efforts: Pruning redundant
sanitizer checks of developer-implemented type checks.
2024. To appear in USENIX Security 2024.

[118] Chao Zhang, Lei Duan, Tao Wei, and Wei Zou.
Secgot: Secure global offset tables in elf executa-
bles. In Proceedings of the 2nd International Con-
ference on Computer Science and Electronics Engi-
neering (ICCSEE 2013), pages 995–998. Atlantis
Press, 2013/03. ISBN 978-90-78677-61-1. doi:
10.2991/iccsee.2013.250. URL https://doi.org/
10.2991/iccsee.2013.250.

[119] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He,
and Zhendong Su. SANRAZOR: Reducing redundant
sanitizer checks in c/c++ programs. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pages 479–494, 2021.

[120] Tong Zhang, Dongyoon Lee, and Changhee Jung.
Bogo: Buy spatial memory safety, get temporal mem-
ory safety (almost) free. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS ’19, pages 631–644, New
York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362405. doi: 10.1145/
3297858.3304017.

[121] Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuan-
dong Li, and Zhiqiang Zuo. Catamaran: Low-overhead
memory safety enforcement via parallel acceleration.
In Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
pages 816–828, 2023.

[122] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu. Debloating
address sanitizer. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, August
2022. USENIX Association. URL https://www.
usenix.org/conference/usenixsecurity22/
presentation/zhang-yuchen.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies    187

https://doi.org/10.1145/3445814.3446761
https://doi.org/10.1145/3445814.3446761
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.2991/iccsee.2013.250
https://doi.org/10.2991/iccsee.2013.250
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen

	Introduction
	Background
	Risks of Store-Only Bounds Checking
	Threat Model and Assumptions
	Invalid Pointer Loads
	Arbitrary Code Execution Without Memory Corruption
	Invalidly Loading Non-Pointer Data
	Breaching Pointer Confidentiality

	Ubiquity in Real-World Code
	Assurances of Store-Only Bounds Checking
	Analysis of Existing Store-Only Bounds Checkers
	Discussion & Related Work
	Conclusion

