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Abstract

Secure boot forms the backbone of trusted computing
by ensuring that only authenticated software is executed
on the designated platform. However, implementation of
secure boot can have flaws leading to critical exploits. In
this paper, we highlight a critical vulnerability in open
source First Stage Boot Loader (FSBL) of AMD-Xilinx’s
flagship Zyng-7000 System on Chip (SoC) solution for
embedded devices. The discovered vulnerability acts as
a ‘single point of failure’ allowing complete bypass of
the underlying bypass RSA authentication during secure
boot. As a result, a malicious actor can take complete
control of the device and run unauthenticated /malicious
applications. We demonstrate an exploit using the dis-
covered vulnerability in form of first practical ‘Starbleed’
attacks on Zyng-7000 devices to recover the decrypted
bitstream from an encrypted (using AES-256) boot im-
age. The identified flaw has existed in the secure-boot
software for more than 10 years. The vulnerability was re-
sponsibly disclosed to the vendor under CVE 2022/23822.
The vendor thereafter patched the FSBL software and
issued a design advisory. Our work therefore motivates
the need towards rigorous security evaluation tools to
test for such trivial security vulnerabilities in software.

1 Introduction

Due to the demand of System on Chips in sensitive ap-
plications, they support various security features such
as secure boot, device authentication, bitstream encryp-
tion, readback protection, etc. However, the robustness
of these security features remains unclear due to a
lack of proper documentation and third-party evalu-
ation/scrutiny. In this work, we perform an in-depth
analysis of the RSA authentication feature of the Zynq-
7000 SoC from AMD-Xilinx. AMD-Xilinx Zyng-7000
SoCs have been a market leader in the integrated FPGA
and processor market, with wide adoption across sev-
eral industries such as automotive, aerospace, industrial,

and healthcare sectors. We identified a critical double
fetch security flaw in the RSA authentication feature
within the First Stage Boot Loader (FSBL) provided by
Xilinx. Its exploitation makes it possible to execute an
unauthenticated software application on the Zyng-7000
SoC. The identified flaw is only present in the FSBL soft-
ware and thus can be easily fixed through appropriate
modification of the FSBL software.

Thus, the first contribution of our work is the identifi-
cation of a critical security flaw in the FSBL software
to bypass RSA authentication.

Upon bypassing RSA authentication, we utilize the
unauthenticated software application to demonstrate a
novel attack to recover the encrypted bitstream in the
boot image, thereby subverting the bitstream encryp-
tion feature. To the best of our knowledge, there does
not exist any prior work that has reported a bitstream
recovery attack on the Zyng-7000 SoC. In this context,
Ender et al. [3] in 2020 proposed the Starbleed attack,
capable of breaking bitstream decryption on standalone
Virtex-6 and 7-series Xilinx FPGAs. The design advisory
from Xilinx as a response to the Starbleed attack claims
that the Zyng-7000 SoC is resistant “due to the use
of asymmetric and/or symmetric authentication in the
boot/configuration process" [4]. Due to the security flaw
found in the FSBL, we managed to identify a novel ap-
proach to mount the Starbleed attack on the Zyng-7000
device for full bitstream recovery.

Thus, as a second contribution of our work, we present
the first practical demonstration of the Starbleed attack
on the Zyng-7000 SoC' with practical validation on
PYNQ-Z1 platform

We have thus performed an end-to-end recovery of the
bitstream exploiting the RSA bypass vulnerability and
the Starbleed attack. We communicated our findings to
Xilinx in a vulnerability disclosure on March 8, 2022.
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Xilinx quickly confirmed the vulnerability on March 24,
2022, and also published a patch for the FSBL software on
March 25, 2022 [6]. Information about the vulnerability
was also published as a design advisory by Xilinx on
April 28, 2022 [5]. Furthermore, we also investigated if
the flaw in the FSBL software is also present in the
BootROM code of the Zyng-7000 SoC. Analyzing the
BootROM behavior presents significant challenges, since
the BootROM code is unavailable or cannot be modified,
as it is hard-coded within the SoC.

Thus, as a third contribution of our work, we present
a novel black-box analysis of the communication inter-
face between the Zyng-7000 SoC and the NVM during
BootROM execution.

However, our analysis was able to positively confirm
that the BootROM software does not suffer from the
RSA vulnerability present in the FSBL.

Availability of Software

All the software wused for this work is avail-
able in the public domain at the following link:
https://github.com/PRASANNA-RAVI/RSA_Bypass_
Vulnerability_Zynqg_7000_SoC.

1.1 Threat Model

The boot image of the victim Zyng-7000 SoC device
boots from a boot image stored in a Non-Volatile Mem-
ory (NVM) accessible to an attacker. The SoC typically
consists of two components: (1) Programmable System
(PS) which refers to the dual-core ARM Cortex-A9 pro-
cessor and (2) Programmable Logic (PL) which refers
to the FPGA fabric. The victim boot image has three
partitions - FBSL, PL partition (bitstream to execute
on the FPGA), and PS partition (software application
to execute on the processor). The target device man-
dates RSA authentication of the boot image (i.e.) the
RSA eFUSE is enabled, and all partitions in the vic-
tim boot image are encrypted as well as authenticated.
This means that every partition has its corresponding
RSA signature stored along with it, and is referred to
as the Authentication Certificate (AC). Refer to Figure
1 for the structure of the victim boot image we con-
sider for our attack. The attacker’s goal is to execute an
unauthenticated application on the Zyng-7000 SoC.

2 Background

We now provide a brief background on the secure boot
feature of the Zyng-7000 SoC, to facilitate the under-
standing of our attack, described later in Sections 3-6.

Boot Image Header

Partition Header Table

PHT Authenticate
Certificate

First Stage Boot Loader
(FSBL)

FSBL Authenticate
Certificate

Target Bitstream

Bitstream Authenticate
Certificate

SW Application

[ - unencryptea
0 - enervea

SW Application
Authenticate Certificate

Figure 1: Authenticated victim boot image
2.1 Secure Boot of Zyng-7000 device

The central component of secure boot is the secure boot
image which consists of various partitions that will be
sequentially loaded securely into the appropriate loca-
tions within the Zyng-7000 SoC (either DDR, On-Chip
Memory (OCM) or FPGA). The important components
of a boot image are as follows:

¢ Boot Image Header (BIH) and BootROM
code: The BootROM code is the first piece of soft-
ware executed upon resetting the Zyng-7000 SoC. It
is hard-coded onto the BootROM of the chip (and
not part of the boot image), and cannot be modified.
It initializes the device based on information in the
BIH. Its main function is to retrieve the FSBL from
the NVM, after which it authenticates the FSBL us-
ing its Authentication Certificate (AC that contains
its RSA signature), and further decrypts the FSBL,
before securely passing control to it.

e Partition Header Table (PHT): The PHT is a
critical component of the boot image, which con-
tains metadata information about each PL and PS
partition in the boot image. Each partition has an
associated entry of 64 bytes in the PHT and con-
tains information such as encrypted partition size,
decrypted partition size, total partition size includ-
ing its AC, destination address in the device, loca-
tion within the boot image, authentication status,
etc. The PHT is used by the FSBL to get informa-
tion about each partition in the boot image. We
remark that the PHT is present unencrypted within
the boot image allowing an attacker to gain infor-
mation about the metadata of each partition in the
secure boot image.

e First Stage Boot Loader (FSBL): The FSBL
is responsible for loading each of the PS and PL
partitions in the boot image into the appropriate

2 18th USENIX WOOT Conference on Offensive Technologies
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locations within the device (i.e.) PL partition is
loaded into the FPGA, and PS partition is loaded
into the DDR memory. The FSBL first retrieves
the PHT from the NVM and authenticates it using
its AC. Upon successful authentication, then FSBL
securely loads the PL and PS partitions individually
in the same manner, from the boot image, based on
information in the PHT. However, if PHT authenti-
cation fails, then the FSBL simply aborts the secure
boot procedure. After loading all the PS and PL
partitions, the FSBL transfers control to the last
software application that was loaded from the boot
image. In this work, we use the official FSBL code
for the Zyng-7000 SoC provided by Xilinx (FSBL
version 2018.1).

e Programmable Logic (PL) or Programmable
System (PS) Partition: After the FSBL, the re-
maining portion of the boot image is occupied ei-
ther by a PL partition or a PS partition. For an
authenticated partition, there is an Authentication
Certificate (AC), that contains its RSA signature,
which is appended to it in the boot image.

2.2 RSA Authentication in Zynqg-7000
SoC

The Zyng-7000 SoC uses the well-known RSA-2048-based
signature scheme for authentication. It is done with two
keys: the Primary Key and the Secondary Key. While
the primary key is stored in the eFuse of the device (fixed
for a given device), the secondary key is associated with
each partition. The primary key is used to authenticate
the secondary key of a partition, and the secondary key
is used to authenticate the partition data itself, thereby
forming an authentication chain. The authentication
operation (i.e.) signature verification is carried out by a
cryptographic software library, part of the BootROM and
FSBL of the Zynqg-7000 SoC. Since an understanding
of the intricate details of RSA authentication is not
required for our attack, we refer the reader to [10] for
more details.

RSA authentication is an integral component of the
FSBL. FSBL is an open-source and modifiable piece of
software. We analyze the FSBL source code to under-
stand how it authenticates various components of the
boot image.

3 Analyzing the RSA Authentication
Procedure within FSBL

We noticed that the PHT authentication serves as a sin-
gle point of failure in the secure boot procedure. If an at-
tacker can bypass PHT authentication, he/she can mount

a tampered PHT that can be used to execute an unau-
thenticated application. We analyzed the PHT authen-
tication procedure by FSBL (implemented within the
image_mover.c source file in the embeddedsw project [9]).
Refer to Figure 2 for a pictorial illustration of the au-
thentication procedure of the PHT by the FSBL.

1. The FSBL first retrieves the PHT data from the
NVM and stores it into a global variable denoted
as GVAR. We denote the fetched PHT data from
NVM as PHTL.

2. The FSBL then checks the status of the RSA eFUSE.
If enabled, the FSBL again retrieves the PHT along
with its AC. We denote the fetched PHT data as
PHT2 since it is retrieved at a different time than
PHT1.

3. If verification of AC of PHT2 is successful, then the
FSBL uses the data in GVAR (PHT1) as the PHT
to load the PS and PL partitions in the boot image.

In other words, the FSBL authenticates PHT2 but
uses the unauthenticated PHT1 for secure boot. This is
mainly because of the double fetch of the PHT data from
the NVM which is external to the security boundary
of the device. This is the critical vulnerability that we
have identified that could be exploited to bypass PHT
authentication.

We remark that our experiments were done on FSBL
version 2018.1, they also applied to the latest FSBL ver-
sion dated 23 Apr 2020', during the time of our research.

3.1 Related Works

Double fetch is a term referring to a bug that occurs
when a process reads and uses the same value twice,
expecting it to be identical while it is possible for an
attacker to modify it between the two reads. This term
was first coined by Serna [7], and there have been several
works that have exploited double-fetch bugs in what
is commonly referred to as Time-of-Check to Time-of-
Use (TOCTTOU) attacks [1]. Well-known instances of
such attacks include attacks on the Linux kernel [8],
applications such as Firefox [11] and Intel BootGuard [2].

3.2 Exploiting the RSA Security Flaw in
FSBL

We formulate an attack methodology to exploit the dou-
ble fetch PHT, using an NVM emulator, which is con-
figured to behave in the following manner during PHT
authentication.

Thttps://github.com/Xilinx/embeddedsw/blob/master/lib/
sw_apps/zynq_fsbl/src/image_mover.c
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1. When the FSBL fetches the PHT for the first time
(PHT1), the NVM emulator provides a tampered
PHT, configured according to the attacker’s require-
ments. Thus, the tampered PHT is stored in GVAR
variable, within the DDR.

2. The FSBL then checks the status of RSA eFUSE
and if enabled, again fetches the PHT (PHT2) along
with its AC. This time, the NVM emulator provides
the valid PHT along with its AC.

3. The FSBL successfully authenticates PHT2, but now
uses the tampered PHT1 for secure boot present in
GVAR. Based on the tampered PHT1, the FSBL
loads an unauthenticated application on the target
device, thereby bypassing RSA authentication.

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Save PHT1 in GVAR
Checks if RSA is Enabled,
If Yes,

Validate AC and PHT2
If Success, Use PHT1 in
GVAR for SecureBoot

Queries for PHT with AC from NVM NVM
(SD Card)

Receive PHT2 and AC from NVM

Figure 2: Authentication of the PHT by the FSBL

3.3 Proof of Concept (PoC) Attack Im-
plementation

We started with a Proof of Concept (PoC) attack to
demonstrate the presence of the double fetch vulnerabil-
ity during PHT authentication. This was done not with
an NVM emulator, but by performing manual modifica-
tions to the FSBL, to replicate the behavior of the emu-
lator. We manually modified the PHT data in the GVAR
variable after fetching PHT1, and the data is tampered
with to load an unauthenticated PS partition (software
application) from the boot image. This is the only modi-
fication done in the FSBL and does not aid the attack
in any other manner. Within the boot image, the au-
thenticated application is replaced with a malicious and
unauthenticated application in the boot image. We ran
repeated experiments using the tampered FSBL as well
as the tampered boot image, and we were able to suc-
cessfully load and execute the unauthenticated software
application on the target device, which demonstrates the
presence of the RSA bypass vulnerability.

However, this does not qualify as a real attack, since
we made manual modifications to the FSBL that is en-
crypted within the boot image. Since the attacker does

not know the encryption key, it is not possible in a
real-attack scenario. In the following, we thus attempt
to perform a practical real-world attack by building a
low-cost NVM emulator, that does not require making
modifications to the FSBL in the boot image.

4 Practical Attack using SD Card
Switcher Board

One approach to carry out a practical attack would be
to implement the NVM emulator on an FPGA/ASIC.
However, designing the it requires significant engineer-
ing effort, and hence adopted a simpler approach. The
basic requirement for our NVM emulator is to present a
tampered PHT during the first fetch, and a valid PHT
during the second fetch. To achieve this, we built an SD
card switcher that can switch between two SD cards (SD
Card 1 and SD Card 2) during the secure boot procedure.

The SD card switcher has two SD card slots, and we
can choose the SD card to connect to the target, based on
the logic level of a GPIO pin. The board also facilitates
keeping the SD cards powered on from an external power
source. This ensures that the SD card once initialized by
the target device is powered on, even if the target device
is powered off. In the following, we explain the proposed
attack methodology using our SD card switcher board.

4.1 Attack Methodology

The two SD cards (SD cards 1, and 2) are loaded with
two different attack boot images derived from the victim
boot images. SD card 1 contains a boot image with the
tampered PHT (i.e.) PHT1 (mapping to an unauthen-
ticated attack application), while all the other contents
match that of the victim SD card. SD card 2 contains
a boot image with a valid PHT (PHT2) but with the
authenticated software application replaced with the
unauthenticated attack application. Refer to Figure 3
for a pictorial illustration of the boot images on both
SD cards. We load both the SD cards onto the SD card
switcher board and connect the SD card switcher to the
Zyng-7000 SoC. The attack is carried out in the following
manner:

1. The Zyng-7000 SoC first boots with SD card 2
mounted on the SD card switcher board. This is
done to initialize SD card 2.

2. We now power off the Zyng-7000 SoC and switch
to SD card 1. This is done while maintaining the
power of both SD cards.

3. We now boot the Zyng-7000 SoC with SD card
1, which ensures that the tampered PHT (PHT1)
during the first PHT fetch. After the first PHT fetch,
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Boot Image Header
Tampered PHT
(Corresponding to Attack
Application)

PHT Authenticate
Certificate

First Stage Boot Loader
(FsBL)

FSBL Authenticate
Certificate

Target Bitstream

Bitstream Authenticate
Certificate

Attack Application

SD Card 1

Boot Image Header

Partition Header Table

e ]» Original PHT

PHT Authenticate
Certificate

First Stage Boot Loader
(FSBL)

FSBL Authenticate
Certificate

Target Bitstream

- Unencrypted
Bitstream Authenticate |:|
Certificate |:| ~Encrypted

- - Tampered PHT

|:| - Minor Modified FSBL (valid)

Attack Application

SD Card 2

Figure 3: Boot Images of SD card 1 and SD card 2 within the SD switcher board

FSBL SD Card
(Zyna) Switcher

Initialize SD Card Queries for the PHT from SD1

|

SD Card 1
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Figure 4: Improved Attack on the Zyng-7000 SoC using
SD card switcher, with the modification done to the
FSBL denoted in red.

we switch from SD card 1 to SD card 2. For our
experiments, we added a manual delay between the
first and second PHT fetches. However, this can be
automated as the timing of the switch is constant
for the Zynq device upon power up.

4. After the switch, we expect that the Zyng-7000 SoC
will retrieve the valid PHT from SD card 2 (which
was already initialized), which should be authenti-
cated successfully by the FSBL. This should also
ensure that PHT1 is used for secure boot, and will
therefore execute the unauthenticated on the Zyng-
7000 SoC.

4.1.1 Experimental Observations of Attack us-
ing SD Card Switcher Board

Our experiments reveal that the Zyng-7000 SoC halts
operation after switching from SD card 1 to SD card
2, after the first PHT fetch. The FSBL is unable to
connect to SD card 2, even though it is initialized. We
hypothesize that the SD card peripheral on the target

device, which is oblivious to the switch tries to commu-
nicate with commands for SD card 1, while the switcher
connects the device to SD card 2. To overcome this, we
perform a minor modification to the FSBL, by adding
to the InitSD function, to initialize SD card 2 after the
switch. After this modification, we can successfully per-
form a bypass of the PHT authentication and load the
unauthenticated application, demonstrating a successful
RSA bypass. Refer to Figure 4 for a pictorial illustration
of our improved attack using the SD card switcher.

Since our current setup still requires a modification to
the FSBL, it does not qualify as a practical attack. We
believe this limitation can be overcome using specialized
hardware (FPGA/ASIC) to tamper the SD card inter-
face at precise time instances. Nevertheless, our attack
concretely exposes the flaw in the FSBL software to
bypass RSA authentication.

4.2 Fixing the Flaw in PHT Authentica-
tion within FSBL

The vulnerability mainly arises from the retrieval of the
same PHT data twice from the NVM and only using the
data from the first fetch. This flaw can be patched by
ensuring that PHT is only retrieved once from the NVM
and authenticated immediately. This fix is implemented
as part of the patched FSBL (dated March 25th, 2022) [6],
and our manual analysis of the patched FSBL source code
confirmed the removal of the double fetch vulnerability.
AMD-Xilinx referred to our attack as a physical attack [6]
and that the device "was not designed to be resistant to
physical attacks". However, the identified vulnerability
still exposes a critical flaw in the RSA authentication
process, which enables a practical attack that enables it
to completely bypass it. While we verified the BootROM
of Zyng-7000 SoC for the same vulnerability, we have
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not analysed other devices from AMD-Xilinx, and we 3. We then issue read command to successfully read
leave this analysis for future work. This is not the first the WBSTAR register containing the decrypted bit-
time that such double fetches have been detected in stream word.

secure software [1]. In the following section, we show
that an attacker can use the unauthenticated application
to perform a novel bitstream recovery attack.

This technique of programming bitstreams without ini-
tializing is not recommended practice. We typically expect
that PL is not configured properly without initialization.
. We observe that the tampered bitstreams were able to
5 Starbleed for Bitstream Recovery write the decrypted bitstream word to the WBSTAR
register while ensuring that readback is also possible.
However, after readback, the PCAP interface becomes
unresponsive, and only a Power-on Reset (PoR) of the
device could bring it back to normal working condition.
Thus, we can only recover one bitstream word per secure
boot, and the attacker needs to power cycle the device
to recover every bitstream word. We can recover the bit-
stream at a speed of 32 bits per second, and an estimated
recovery time of 46 days for our experimental bitstream
of size 3.85 MB. We observe that the secure boot time af-
5.1 Attack Methodology ter every POR reset serves as a bottleneck for our attack.
While reducing the attack time is possible, we consider
performance acceleration out of the scope of our work.
This attack would not be possible without bypassing
RSA authentication, and thus using the patched version
of the FSBL (dated March 25, 2022) [6] can serve as a
strong mitigation against the bitstream recovery attack.

Ender et al. [3] in 2020 exposed a critical security flaw in
the bitstream decryption protocol of standalone Virtex-6
and 7-series Xilinx FPGAs, which enables recovery of
bitstream data, now well-known as the Starbleed attack.
The only requirement is that the attacker requires access
to the configuration interface of the FPGA (PL). In this
work, we adapt the Starbleed attack to the Zyng-7000
device for bitstream recovery.

The attacker makes malicious changes to the encrypted
bitstream, such that upon decryption, a targeted de-
crypted bitstream word is written into the Warm Boot
Status Address (WBSTAR) register of the configura-
tion interface. The WBSTAR register retains its value
even upon FPGA reset and thus an adversary can ac-
cess the decrypted word from the WBSTAR register.
Similarly, full bitstream recovery can be performed one 6 Conclusion

word at a time. Since the attacker now has control of

the PS (through the attack application), we designed an In this work, we have identified a critical double fetch
attack application to carry out the attack by accessing security flaw in the FSBL software of AMD-Xilinx’s
the PL through the PCAP (Processor Configuration Ac- Zyng-7000 SoC, which enables bypassing the RSA au-

cess Port) interface. The application programs the PL thentication procedure, to execute an unauthenticated
with the tampered bitstream, but it results in failure of application on the target device. We experimentally val-
HMAC integrity check, triggering a HMAC error. The idated a potential exploit using a custom-built SD card
reference manual claims that readback of any register switcher board. We also analyzed the BootROM code for

(including WBSTAR) is not possible unless the PL is a similar vulnerability, and confirm that the same bug is
configured with a valid bitstream. Thus, it was evident not present (Refer to Appendix A). We then proceeded

that the Starbleed attack could not be performed as on to demonstrate the first successful bitstream recovery
the Zyng-7000 SoC. attack on the Zyng-7000 SoC using the Starbleed at-

tack technique. In essence, our work uncovers a simple
double fetch vulnerability in the secure boot software

5.1.1 Attack Execution using Workaround .
of Zyng-7000 SoC, but such vulnerabilities are not new.

We identified a workaround to ensure that register read- Our work demonstrates a serious need for automated
back is possible, even after programming the PL with a tools for identifying such trivial bugs. While there have
tampered bitstream. been proposals for such techniques [8], the applicability

of these tools to embedded devices is to be studied and

1. Program PL with a valid encrypted bitstream. forms an interesting direction for future research.

2. Without initializing the PL again, we push the tam-
pered attack bitstream through the PCAP interface. Acknowledgement
We observe that FPGA stays programmed (DONE
signal is high) even though the tampered bitstream This work was supported in part by the “National Inte-
trigger an HMAC error. grated Centre of Evaluation” (NICE), and in part by a
facility of the Cyber Security Agency (CSA), Singapore
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Figure 6: Experimental Setup: Logic Analyzer probing
the SD Card interface to the Zyng-7000 device

A Assessing the RSA Authentication
Procedure in BootROM

While we identified a flaw in the RSA authentication
procedure in FSBL, we asked ourselves whether the same
flaw is also present in other operations during the se-
cure boot. We thus conducted a security analysis of the
BootROM software, which also performs authentication
of the FSBL itself, before FSBL starts execution. But,
analysing the BootROM software is particularly challeng-
ing compared to the FSBL, since neither the BootROM
source-code nor the binary is available. It is also hard-
coded within the on-chip memory of the Zynq device, and
hence cannot be modified. Thus, a code-analysis similar
to that of FSBL is not possible. However, we observe
that the BootROM loads data from the Non-Volatile
Memory (NVM) (i.e.) SD card and thus monitoring the
SD card interface during BootROM execution could pro-
vide critical information about its operation. In this
respect, we utilize a logic analyzer to monitor the SD
card communication during BootROM execution.

A.1 BootROM Analysis using SD Card
Communication

In order to understand the data transfer between the SD
Card (NVM) and the Zyng-7000 SoC during BootROM
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Figure 8: Visualization of packets transferred over the CMD line of the SD card interface

execution, we utilized a logic analyzer to analyze the
communication between the SD card and the Zynq de-
vice, during FSBL execution. The reading/writing of
data from/to the SD card occurs in blocks of 512 bytes,
in a serial fashion, and in particular we monitored the
commands CMD17 and CMD18, which can be used to
read a single block and multiple blocks respectively.

We utilized the DSLogic Plus logic analyzer from
DreamSourceLab to probe the SD card communication
interface. Refer to Fig.6 for the picture of our experi-
mental setup. We used to logic analyzer to probe the
CMD, CLK and DATS3 lines (as a representative data
line among DATO0-DAT3), and the captured signals can
be viewed on the DSView software IDE. Please refer to
Fig.7 for the data transfer over the SD interface during
the entire boot-up phase of an authenticated and en-
crypted boot image. This captures the entire execution
time of BootROM and FSBL. Channel 0 corresponds
the CMD line, channel 1 corresponds to the CLK line
and channel 3 corresponds to the DAT3 line. We only
chose DAT3 as a reference for a data line, but any of the
other data lines among DAT0-DAT?2 can also be probed.
Moroever, zooming into the data transfer allows us to vi-
sualize the packets within the DSView IDE, and refer to
Fig.8 for the visualization of a command to read multiple
blocks from the host (i.e.) CMD18 and the subsequent
acknowledgement from the SD card.

A.2 Experimental Observations of
BootROM Execution

We recall that the buggy software implementation of
FSBL performs two PHT transfers (PHT1 and PHT2),
when RSA authentication is enabled. While PHT1 only
corresponds to retrieval of the PHT table, transfer of
PHT2 corresponds to retrieval of the PHT along with
the AC. If we identify such a redundant PHT transfer
during BootROM execution, we can confirm that the
vulnerability in the FSBL also exists in the BootROM.
For our analysis, we considered three different types of
boot images: (1) Non-secure (NSec), (2) Secure with
only encryption (Sec_Encrypt) and (3) Secure with both
encryption and authentication (Sec_Auth_Encrypt).

1. Non-secure Image (NSec): In this case, the
BootROM is expected to only fetch the unencrypted
FSBL. The size of the unencrypted FSBL in our
boot image is ~ 114.5 KB, which is equivalent to
225 blocks. Refer to Fig.9 for the data transfer corre-
sponding to the retrieval of FSBL by the BootROM.
We observe a total of 225 blocks being read from
the SD card, using single block read commands
(CMD17).

2. Secure with only encryption (Sec_Encrypt):
When only encryption is enabled, the BootROM
is expected to fetch the encrypted FSBL, whose
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Figure 11: Retrieval of FSBL by BootROM in Sec_Auth_Encrypt image

size is roughly 115.5K B which is equivalent to 227
blocks. Refer to Fig.10 for the data transfer corre-
sponding to the retrieval of the encrypted FSBL
by the BootROM. We observe a total of 227 blocks
being read from the SD card, using single block read
commands (CMD17).

. Secure with both encryption and authentica-
tion (Sec_Auth_Encrypt): When both authenti-
cation and encryption are enabled, the BootROM
is expected to fetch the encrypted FSBL along with
its Authentication Certificate (AC), whose size is
roughly 116.8 KB which is equivalent to 230 blocks.

Refer to Fig.11 for the data transfer corresponding
to the retrieval of the encrypted FSBL along with
its AC by the BootROM. We observe a total of 230
blocks being read from the SD card, using single
block read commands (CMD17).

If there were a duplicate transfer of the FSBL, simi-
lar to that of the PHT, then we should have observed
roughly 455 blocks being transferred. However, the num-
ber of blocks transferred from the SD card tallies with the
expected number of blocks to be read. From this obser-
vation, we can positively confirm that the flaw identified
in the FSBL is not present in the BootROM software.
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However, this does not rule out the possibility of other
vulnerabilities within the BootROM, that could be ex-
ploited for RSA authentication bypass.
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WhatsApp with privacy? Privacy issues with IM E2EE in the Multi-device setting

Tal A. Be’ery, Zengo

Abstract

We recently discovered a privacy issue with Meta’s
WhatsApp, the world’s most popular Instant Messaging
(IM) application. Meta’s WhatsApp suffers from a privacy
issue that leaks the victims’ device setup information
(mobile device + up to 4 linked devices) to any user, even if
blocked and not in contacts. Monitoring this information
over time allows potential attackers to gather actionable
intelligence about victims and their device changes (device
replaced/ added /removed). Additionally, message recipients
can associate the message with the specific sender device
that sent it. The root cause for these issues stems from
Signal’s multi device protocol architecture, the Sesame
protocol, and as a result these issues are not limited to Meta’s
WhatsApp only but probably relevant to most IM solutions,
including the privacy-oriented Signal Messenger.

1. Introduction

End-to-End Encryption (E2EE) is a type of messaging that
keeps messages private from everyone, including the
messaging service. When E2EE is used, a message only
appears in decrypted form for the person sending the
message and the person receiving the message. The sender
is one "end" of the conversation, and the recipient is the other
"end"; hence the name "end-to-end.".

Originally, most Instant Messaging (IM) apps did not
support E2EE. However, as the importance and criticality of
IM security had raised, E2EE became the security standard
for modern communication and supported by modern IM

apps.

Another aspect of IM communications that evolved over
time is its multi-device support. Traditionally, Instant
Messaging (IM) apps were bounded to a single device.
However, as IM have gained popularity and became an
important and even critical medium for communications,
users wanted to have access to their IM conversations from
every computing device they own. As a result, modern IM
providers support the multi-device setting.

While each of these individual features (E2EE and multi-
device) is critical for modern IM apps, supporting both
simultaneously can lead to some security and privacy
tradeoffs, as current E2EE solution expose some public
cryptographic information about each of the devices, by thus
compromising their users’ privacy.

Contributions: Our main contributions are the following:
e We show the privacy and integrity implications of
current popular multi-device solutions in IM apps.

e We demonstrate how attackers can easily subvert the
WhatsApp client to obtain the victims’ multi-device
setup information.

e We suggest some practical measures to limit the
exposure of such privacy leaks.

Overview: This paper is organized as follows: Section 2
provides a brick-and-mortar analogy to IM E2EE, Section 3
presents the Signal protocol and highlights the privacy issues
in the multi-device setting, Section 4 shows how such
privacy leaking attacks can be easily mounted by attackers
against WhatsApp currently the world’s most popular IM
service, section 5 considers possible solutions. We conclude
in Section 6.

2. Background

To better understand E2EE and its threat model we can use
the postal service analogy:

Prior to E2EE, senders sent their letter in an envelope, but
the envelope was not sealed. As part of its service, the post
office opens the envelope and then puts it in another
envelope and delivers it to the intended recipient.

This scheme has many advantages:

. Thanks to envelopes, eavesdroppers cannot see the
contents of the letters.
. Thanks to the post office buffering, users do not

need to meet to converse, but rather do so indirectly. This
not only allows asynchronous conversations but also can
protect user anonymity. Receivers can disclose only their
nicknames to senders, and have the post service resolve from
nicknames to true names and addresses. In fact, there is a
privacy tradeoff between service and the conversation
counterparty: If the conversing parties are directly
connected, then the service is not exposed to the contents of
the conversation, however the parties may uncover more
metadata about each other and be able to break the “rules”
of the protocol as the service is not there to enforce them.
Generally speaking, it makes sense to assume that the service
provider is more trustworthy than some counterparties that
might be malicious.

. The post office can scan the contents of envelopes
to make sure they do not contain bad content: Bombs, terror
group messaging or pedophile photos.

. If letters are intended for multiple addresses
(groups or a user with multiple houses) the post office can
simply copy the message and send it to all addresses.
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However, this scheme has a major drawback: Postal service
employees are exposed to the contents of the letters and can
leak them. The practical reasons for such leakage can vary:
The service may act in negligence and mishandle user data,
sell the data to advertisers for financial gain, be hacked by
attackers, fail to restrict rogue employee access to private
customer data, or even be served with a subpoena by the
government.

To address this issue, E2EE was introduced. With E2EE,
users send their message in locked boxes within the
envelopes. Users provide their locks to the service when they
join, but keep the keys themselves. When senders want to
send a letter to a recipient they get the relevant padlock from
the service and send their letter in a locked box within the
envelope. As before, the post office opens the envelope and
then puts it in another envelope and delivers it to the intended
recipient. However, due to the locked box, the postal service
personnel can no longer see the contents of the letter.

While E2EE indeed protects message content from the
prying eyes of the service operator, it should be noted that:

. Even with E2EE, users must place some trust in the
service provider, as the storing and forwarding messages,
even encrypted, exposes metadata. Whether it’s
conversation related (counterparties, number of messages,
length of messages, timing) or operational (online status,
devices used, IP addresses which may have geo-location
information).

. The newly added E2EE lock creates a new
identifier for the user. When users lose their key, they must
issue a new lock for the service. Aware attackers might
leverage this information to deduce something changed on
the user side.

. To make sure the E2EE lock is indeed of the
intended user and not maliciously replaced by the service or
a “Monster-in-the-Middle” (MITM) attacker, the sender
must verify the lock’s genuinity with the receiver using
another independent channel. This requirement not only
hinders the user experience but also jeopardizes the privacy
of the users as they need to connect via additional service
with additional identifiers.

But even with E2EE, users were still concerned: What
happens if attackers break into their homes? Surely the
system cannot prevent attackers from unlocking boxes and
reading letters while they are still there and can use the keys,
but we want to make sure that this privacy breach is limited
to the exact period of the breach. Namely:

. Perfect Forward Secrecy (PFS): Attackers cannot
open locked boxes that were locked before they broke into
their victims’ homes.

. Post Compromise Security (PCS): Attackers cannot
open locked boxes that were locked after they left their
victims’ homes.

To achieve these properties, keys must be updated for every
message, such that in case of compromise, the compromised
keys are only useful for that message only. To do so, the two
parties within the conversation are sending information to
update the next locks and keys within their conversation.

It should be noted that while the first scenario of the pre-
E2EE postal service privacy leak might be relevant at a large
scale, for example to read the conversation of many users for
serving ads or for mass surveillance, the case of post E2EE
breaking into victims’ homes does not scale well and mostly
relevant to a small portion of the population consisting of
highly targeted individuals. Since the contents of the
messages themselves cannot be protected during the time of
the attackers breaking in, the scenario for which PCS and
PFS are relevant is only when attackers break into the
victims’ homes along with compromise of the service to get
some of the victims’ locked message boxes. Having such
two successful independent attacks is a much less likely
scenario than each of these attacks on their own.

3. The Signal protocol: From postal service
analogy to real world crypto

3.1. The basic Signal protocol

WhatsApp is using the Signal protocol to implement E2EE’s
“postal service locked boxes” with public key cryptography.
Users create their private and public key pair on their device
when they join the IM service, and provide their public keys
(possibly along with additional auxiliary data) to the IM
service, which maintains the directory of the user’s public
keys. When parties wish to converse, the IM server provides
them with their counterparty’s public keys. It should be
noted, as discussed above, that the newly added E2EE public
key creates a new identifier for the user. When users lose
their device, they must issue a new pair of keys for the
service. Aware attackers might leverage this information to
infer changes on the user side and leverage them to facilitate
attacks.

Leveraging both parties’ public keys, the parties can securely
create a shared secret using the X3DH protocol, an extended
version of the Diffie-Hellman protocol. This shared secret is
then used to derive keys to encrypt the messages between the
parties. While this in of itself might be sufficient to fulfill
E2EE’s promise, in order to fulfill the advanced properties
of E2EE, namely the aforementioned Perfect Forward
Secrecy (PFS) and Post Compromise Security (PCS), more
is needed.
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e Perfect Forward Secrecy (PFS): Attackers cannot read
messages that were encrypted before they took over the
victims’ device and app.

e Post Compromise Security (PCS): Attackers cannot
read messages that were encrypted after they were
removed from the victims’ device and app.

As discussed above, to limit breached key exposure and
achieve PCS and PFS, a new key for each message needs to
be created. To do so the Signal protocol introduced the
“Double Ratchet” algorithm. As its name suggests, the
solution consists of two “ratchets” preventing attackers
compromising a key to “move it forward” to read future
encrypted messages, or “backwards” to read past encrypted
messages:

Figure 1 The Symmetric ratchet (source: signal.org )

The Symmetric ratchet (Fig 1): Ensures PFS, as it uses a one-
way Key Derivation Function (KDF) to prevent attackers
from calculating past keys from current keys.
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Figure 2 The Asymmetric ratchet (source: signal.org)

The Asymmetric ratchet (fig 2): This ratchet (sometimes
called the “Diffie-Hellman/DH ratchet”) ensures PCS as it
utilizes the entropy coming from the uncompromised other
party to generate new keys.

Combining the symmetric and asymmetric ratchets together
gives the Double Ratchet: When a message is sent or
received, a symmetric-key ratchet step is applied to the
sending or receiving chain to derive the message key.

When a new ratchet public key is updated via a received
message, a DH ratchet step is performed prior to the
symmetric-key ratchet to replace the chain keys.

3.2. Extending E2EE to the Multi Device setting: Existing
solutions

As discussed above, in the pre E2EE era, the multi-device
support requirements were trivial to solve. Since the IM
server had access to the contents of the message, senders
could just send their message once to the server, totally
unaware of the receiver's device setup and the IM server
would handle its distribution to all of the receiver’s devices
and sender’s other devices (so that their history would be up
to date). However once E2EE is applied, the IM server
cannot read the contents of the message and thus can no
longer distribute them to all of the devices.

IM providers needed to address E2EE in the multi-device
setting while still maintaining PCS and PFS requirements.
Extending PFS and PCS definitions for the multi-device
setting is quite natural:

e Perfect Forward Secrecy (PFS): Attackers cannot read
messages that were encrypted before they took over the
victim’s app on one device.

e Post Compromise Security (PCS): Attackers cannot
read messages that were encrypted after they took over
the victim’s app on one device and were removed from
it.

There are two simple solutions to do so:

The “Leader” based solution: One of the user’s devices
serves as the leader and the E2EE conversation happens
between the parties leaders, in the same manner as if both
users had a single device. The leaders then distribute the
messages to their other devices, using E2EE between Leader
and Devices. In the WhatsApp mobile based IM case, it
would be natural to appoint the mobile device which was
associated with the phone number that created the account
as “leader” ( or “primary device” in WhatsApp lingo).

This solution was applied by WhatsApp until mid-2021.
However, the solution suffers from an obvious centralization
drawback: When the leader device is offline, none of the
other devices can communicate.
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The Multiplication solution: In this solution, all user device
public keys become public, compared to a single public key
per user in the single device setting. The sender’s sending
device creates an E2EE channel with each of the receiver
devices, as if they were different users and uses these
channels to send E2EE messages in the same manner of the
single device setting. The sender device also creates such
channels with all other sender’s devices and uses them to
securely E2EE update other senders devices with the sent
messages.

This Multiplication solution was selected by Signal’s
Sesame protocol to support the multi-device setting, and
later adopted by WhatsApp, where it serves as its current
solution for the multi-device setting.

WhatsApp’s white-paper states: “In order for WhatsApp
users to communicate with each other securely and privately,
the sender client establishes a pairwise encrypted session
with each of the recipient’s devices. Additionally, the sender
client establishes a pairwise encrypted session with all other
devices associated with the sender account. Once these
pairwise encrypted sessions have been established, clients do
not need to rebuild new sessions with these devices unless
the session state is lost, which can be caused by an event such
as an app reinstall or device change. WhatsApp uses this
“client-fanout” approach for transmitting messages to
multiple devices, where the WhatsApp client transmits a
single message N number of times to N number of different
devices. Each message is individually encrypted using the
established pairwise encryption session with each device.”

It should be noted that WhatsApp still uses the leader
concept for managing the life cycle of additional devices (or
“companion device” in WhatsApp lingo). i.e. adding and
removing other devices is done via the “leader” device.

While this Multiplication solution solves its predecessor’s
centralization problem, it also multiplies the E2EE privacy
issue. The multiplication solution exposes all of the user’s
device setups and allows aware attackers to leverage this
information to infer changes in the user’s devices and use it
to facilitate their attacks. For example, attackers can learn
without interacting with their targets, that they added a
device to their setup and thus represent an opportunity to
attack it. Additionally, the receiver knows which of the
sender devices’ sent to it and can infer on the sender’s real-
world information, such as the physical location of the user
(e.g. “my spouse is near their desktop right now”).

Besides device information leakage issues, the
Multiplication solution potentially allows attackers to
pinpoint their attack to a specific device. Since the sender
creates independent channels with the receiver devices, it
can send a malicious message to a single receiver’s device
to exploit a vulnerability specific to it, e.g. mobile vs.
desktop exploit, with no impact and thus detection
opportunities for defenders on other devices.

Additionally, a rogue sender can create an incoherent world
view between the victim’s different devices, by sending a
different message to each of them. This incoherent world
view can give way to all kinds of social engineering attacks
and generally undermine the credibility of the IM app
messages history as a source of truth.

The threat of device hostile takeover is very much within the
IM’s E2EE threat model, as shown by the existence of the
PFS and PCS requirements. Since device takeover is within
the threat model, the privacy of users’ devices exposed by
the Multiplication solution which allows attackers to gather
information for such takeover should be addressed too.

4. Attacking WhatsApp E2EE Solution

Meta’s WhatsApp is the most popular messaging app in the
world, with over five billion downloads and 2.4 billion
active users.

One way for attackers to obtain WhatsApp users’ device
information is by leveraging WhatsApp web client. (It
should be noted that this issue is not specific to the web
version and is relevant for all WhatsApp client’s platforms.
However, the Web environment is the easiest way to
demonstrate this issue as it does not require jail breaking or
other additional hacking method to access the app’s internal
databases.) This client is using the browser’s local storage to
store the devices’ identity key.

The browser’s developer tools provide an easy way to view
the contents of this table (“Signal-storage.identity-store”) as
depicted in Figure 3.

Key ey path tier) [
| .ym I ‘ I

Figure 3 The identity store table: contacts’ devices and Keys.

This table is storing all of the user’s contacts and their
corresponding identity keys. Primary devices are identified
by the phone number and the ‘.0’ suffix, while companion
devices have a “:<n>.0" suffix (e.g. “:16.0™).

By sampling a few instances, we had verified that this table’s
data indeed corresponds to the actual user devices.

For example, user X (in figure 4) has 1 primary device and
3 companion devices:
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Figure 4 WhatsApp'’s linked devices screen of user X

User X’s corresponding entries in the table matched this
information as shown in Figure 5.

4.0" »{
4:25.0" »{
4:26.0" »{

@ N = o

4:29.0" »{
Figure 5 User X's corresponding entries in the identity store table

We had verified that such information is present even when
the sender is not part of the receiver contact list and without
actually sending messages to the receiver. Blocking the
sender on the receiver side does not prevent it from getting
device identity information.

We had responsibly disclosed our findings to Meta’s bug-bounty
program on January 9th 2024 but got politely rejected two days
later, mainly because this is not an implementation bug but the way
the protocol works by design.

Summing up, in order to obtain its victims’ WhatsApp
devices information, attackers need to:

Know their victims’ phone number.
Add victims as contacts, no need to actually send a
message to them.

e Use whatsApp web client and monitor the identity-store
table for information and changes.

5. Possible solutions
5.1. “Lockdown mode” to limit non-contacts access

This optional Lockdown mode will enable users to limit
messages’ reception to ones sent by their contacts only.
Consequently, only the users’ contacts will need and be able
to view their device information.

While it does not fully prevent the privacy issue it presents a
dramatic improvement compared to the current situation in
which any user, including blocked users, can view that
information.

il ATRT T 12:13 PM ¢ @50% %)

Privacy

Last Seen Everyone

Profile Photo Everyone

About Everyone

Groups Everyone

Status My Contacts

Live Location

List of chats re you are sha

Blocked 1 contact

CArann | Anl,

Figure 6 WhatsApp'’s privacy settings

This Lockdown mode can be beneficial to security and
privacy aware users across the board and not just for this
multi-device privacy issue, as it would protect them from
receiving all kinds of malicious messages from non-contacts,
which may include 0-days exploits, social engineering and
phishing or even just spammy messages. The notion of
limiting certain types of information to contacts only is
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already present in WhatsApp as shown in Figure 6 and
therefore already understood by its users.

5.2. Cryptographic solutions

To completely solve this issue a design change must be done,
and the burden of distributing the messages needs to be
removed from senders and placed on the receivers’ instead.

As a result, the senders are only aware of a single recipient
key, regardless of the number of the recipient’s devices and
are not aware of all recipients’ devices and keys and cannot
monitor changes to this setup.

A few researchers tried to suggest such solutions in the past,
including a 2019 paper named “Multi-Device for Signal”
that considers the multi-device scenario for the Signal
protocol, which is used by WhatsApp (and others) and
explicitly addresses and solves its privacy issues. It will be
worthy to try and actually implement it or similar solution in
popular IM E2EE solutions.

6. Conclusions

In this paper, we present the security and privacy tradeoffs
of IM apps supporting both E2EE and multi-device. We
demonstrate how attackers can easily subvert the WhatsApp
client to obtain the victims’ multi-device setup information
and suggest some practical measures to limit the exposure of
such privacy leaks.
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Introduction to Procedural Debugging through Binary Libification
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Abstract

Assessing the existence, exact impact and exploitability of
a known (or theoretical) memory corruption vulnerability
in an arbitrary piece of compiled software has arguably not
become simpler. The current methodology essentially boils
down to writing an exploit - or at least a trigger - for each
potential vulnerability. Writing an exploit for a weird machine
involves several undecidable steps, starting with overcoming
the reachability problem. In this article, we introduce the no-
tions of “libification” and “procedural debugging” to facilitate
partial debugging of binaries at the procedural level. These
techniques allow the transformation of arbitrary dynamically
linked ELF binaries into shared libraries, and the study of
memory corruption bugs by directly calling the vulnerable
functions, hence separating the memory corruption intrapro-
cedural analysis from the reachability problem. Finally, we
publish a framework [3] to implement such a libification un-
der a permissive open-source license to facilitate its adoption
within the security community.

1 Introduction

Triaging bugs has become an essential part of security. The
Product Security function as a whole is becoming ever
more critical for software manufacturers as legal frameworks
around the globe mandate more clarity, speed, and trans-
parency in dealing with existing and new vulnerabilities. The
Cyber Resilience Act being implemented in Europe and the
Executive Order on Improving the Nation’s Cybersecurity
published in the US, for instance, both mandate the use of
Software Bill of Materials (SBOMs) and their communication
to clients and third parties, effectively rendering the super-
ficial - software version based - vulnerability assessment of
potential new CVEs affecting their software, seemingly more
apparent.

However, assessing the actual existence, exact impact, and
exploitability of a given memory corruption bug, as required
by the above laws, has not become significantly more man-
ageable over time. The current methodology to assess the

presence and impact of a given CVE in a piece of software es-
sentially requires writing an exploit for each potential vulnera-
bility. As such, this situation creates a seemingly unreasonable
burden on Product Security teams, where triaging bugs re-
quires performing operations like overcoming the reachability
problem multiple times.

Writing exploits for a weird machine involves three steps:
reaching, triggering, and exploiting. Much work has been
done in automating the first step. Arguably, all of the fuzzing
and dynamic testing performed hitherto follows this top-
bottom approach, where execution starts from an application’s
entry point, toward the leaves of the application, across the
application’s call graph.

In this article, we aim to focus on the second step alone -
without requiring solving the first one, which is undecidable
in general.

Our methodology starts with modifying the ELF headers
and dynamic section of an arbitrary dynamically linked ELF
executable to turn it into a more workable shared library. The
benefit of this technique is that any public function within the
binary becomes callable without crafting an input to reach
the attractive, potentially vulnerable function. Subsequently,
we can render an arbitrary function within an ELF callable,
even turn the entire ELF application into a callable API, and
finally manually produce more limited, partial vulnerability
triggers under the form of simple text files.

In the rest of this article, we will focus on memory corrup-
tion vulnerabilities unless stated otherwise and limit ourselves
to C/C++ applications compiled as ELF binaries, as used un-
der GNU/Linux and Unix-like operating systems, when imple-
menting our framework. We will assume that the application’s
source code is unavailable to the auditor.
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Our first contribution is a methodology to transform an arbi-
trary ET_EXEC or ET_DYN dynamically linked ELF binary
into a shared library. We provide a tool named the Witchcraft
Linker to perform this operation on ELF32 and ELF64 exe-
cutables alike, regardless of their architectures. Our second
contribution is a methodology to invoke arbitrary C or C++
functions within ELF shared libraries without prior knowl-
edge of their exact prototypes. We implement an original type
of debugger, procedural-based, allowing the invocation of ar-
bitrary C/C++ functions. This debugger, the Witchcraft Shell,
noticeably does not use ptrace(), breakpoints, or single step-
ping. We name this new form of debugging procedural since
analysis is performed at the granularity of function calls.

2 Previous Work

2.1 Exploitability of a Vulnerability

As noted by Wang et al. [49], in general, the only definitive
way to prove the exploitability of a vulnerability is to write
an exploit for that vulnerability. This constitutes proof by
construction since the expert exhibits an exploit that demon-
strates the exploitability of the vulnerability. On the other
hand, proving that a vulnerability is not exploitable is a diffi-
cult problem, according to Suciu et al. [44]. Demonstrating the
non-exploitability of a vulnerability via formal proof based on
a crash analysis is sometimes possible despite the explosive
nature of proofs based on symbolic execution [9] [49].

Green et al. [24] consider that when it comes to vulner-
abilities such as memory corruptions, the fact that attacker
controls the next instruction to be executed (the “Program
Counter”) is a strong indicator of a function’s exploitability.
However, the presence of countermeasures may not make this
condition entirely sufficient [20].

2.2 Automatic Exploitation of Vulnerabilities
Detected via Static Analysis

Several research projects focus on exploiting (or at least trig-
gering) vulnerabilities detected using a preliminary static anal-
ysis to demonstrate that they are true positives. ExpRace [31],
for example, focuses on a single class of vulnerabilities: race
conditions in the Linux kernel. After having distinguished
race conditions involving several variables (qualified as diffi-
cult) and race conditions involving a single variable in the ker-
nel (qualified as easy), the authors propose a generic method-
ology for exploiting reusable single-variable race conditions
on several cores, running under Intel processors, making it
possible to trigger the previously identified vulnerability, tak-
ing advantage of the fact that an unprivileged process (or
secondary thread) in user mode can significantly increase
the race window using common system calls (mmap() and
mprotect()) to trigger the synchronization of memory tables
(“Lookaside Buffers translation”) between the cores of the

same Intel microprocessor. The tool is very specialized since
it only addresses the problem of mono-variable race condi-
tions in kernel mode under Linux.

The FUZE tool [51] aims at dynamically triggering, to
prove their existence, “Use After Free” vulnerabilities in ker-
nel mode under Linux. By combining open-source frame-
works such as syzcaller (fuzzer), angr [46] (for binary analysis,
function call graph generation, decompilation, and symbolic
execution), and kernel mode debugging techniques (parsing
the list of kernel modules, “LKM linked list”), it dramati-
cally reduces the complexity of UAF vulnerability analysis
by determining the few paths and system calls that can poten-
tially modify a variable in kernel mode, then using combined
fuzzing and symbolic execution techniques to generate user
inputs capable of automatically triggering the vulnerability,
and thus proving its existence.

The article “A Hybrid Interface Recovery Method for An-
droid Kernel Fuzzing” [32] is also specialized. The problem
raised by the authors is the addition of undocumented inter-
faces (system calls or ioctls) between user and kernel modes
by mobile phone equipment manufacturers. These new inter-
faces are typically additions via proprietary kernel modules
(the source code of which is unavailable, implying an analysis
partially to be made in black box mode) to the Android ker-
nel (which is based on Linux and is, therefore, open-source,
auditable in white box mode). However, these interfaces are
prime targets for privilege escalation attacks, where a program
in unprivileged user mode will purposely call these extra in-
terfaces to the privileged mode of the kernel to trigger vulner-
abilities. Therefore, the analysis is gray, combining a white
box analysis of the open-source Android part of the kernel
and a black box analysis of the non-open-source, proprietary
part added by the equipment manufacturer. The methodology
followed is a taint analysis of proprietary modules, includ-
ing type propagation, to find the prototypes of the interfaces
introduced (whether they are new system calls in their own
right or, more commonly, new valid ioctl calls on arbitrary
device drivers). Once the prototypes of these interfaces have
been determined, it becomes possible to use classic whitebox
fuzzing tools, such as Syzcaller, by measuring the impact of
calling these new system calls dynamically on the rest of the
kernel (id est: by instrumenting only the open-source part of
the kernel).

The PhD thesis “Finding race conditions in kernels: from
fuzzing to symbolic execution” [52] proposes an original ap-
proach to the detection and exploitation of “time of check,
time of use” (or TOCTOU) vulnerabilities, which are a sub-
class of race conditions, where a kernel resource is validated
at time t, then read back and used at time t+1. The underlying
fundamental issue is that this resource may have changed
in the meantime, the Linux kernel being multi-tasking and
concurrent, leading to false assumptions on the said resource
core properties. It should be noted that several vulnerabili-
ties of this type have been discovered on the Linux kernel
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in recent years, hence the renewed interest in an automatic
approach to the discovery and practical validation of this pe-
culiar vulnerability subclass. The methodology followed is to
modify the Linux kernel (using source patches) to instrument
regions likely to contain TOCTOU vulnerabilities, selected
by a preliminary static analysis, then use a fuzzer guided by
symbolic execution toward these regions to be more purpose-
fully scrutinized. This methodology is limited to TOCTOU
vulnerabilities and does not apply to kernels whose code is
unavailable.

Furthermore, the article ‘“From source code to crash test
cases through software testing automation” [16] offers a
methodology for creating proof of exploits (id est: the au-
tomatic generation of user input triggering a vulnerability,
previously identified in source code), by combining a pre-
liminary static analysis (generation of the call graph of the
application) of the application, a fuzzing engine to traverse
this graph, and the use of a symbolic execution engine (named
Triton) to guide the fuzzer toward the vulnerable function. Al-
though the source code is essential to this methodology, it
applies to several classes of vulnerabilities, giving it notable
genericity.

2.3 Defense in Depth: Hardened Compilation
Techniques

Countermeasures have been developed to prevent or limit the
exploitability of vulnerabilities in compiled applications, par-
ticularly those developed in C or C++. Detecting and taking
into account, where applicable, the presence of these counter-
measures is critical when writing an exploit taking advantage
of memory corruption.

Khalsan et al. [28] identify in particular the DEP (“Data Ex-
ecution Prevention”) technique introduced in Microsoft Win-
dows XP SP2, which makes the stack, dynamic memory, and
variables in the data sections of an application non-executable.
According to the authors, the non-execution of the stack is
made possible thanks to hardware extensions (“NX” bit on
AMD processors or “XD” equivalent on Intel processors).
These countermeasures primarily aim to prevent the introduc-
tion and execution of shellcode [13] in all writable sections
of the application. We also find the term WX to name the
segregation of variables (writable, non-executable) and code
(executable, non-writable) in the literature [34] [10].

Khalsan et al. also describe the use of ASCII armoring,
which ensures that all virtual addresses used by an applica-
tion contain at least one 0x00 ASCII byte (in hexadecimal
code). Given that the functions manipulating character strings
end with a 0x00 (named ASCIIZ format), exploitating a stack
buffer overflow vulnerability via the functions from libc mak-
ing a copy of strings of characters is made impossible. Intro-
ducing ASCII armoring requires modifying the kernel and
dynamic linker to provide armoring on the main binary and
all its dynamic libraries.

Khasan et al. detail the use of Address Space Layout Ran-
domization (ASLR) [43], which consists of making the base
address of a binary and each dynamic library in memory
non-predictable. An attacker can no longer hardcode return
addresses when writing an exploit. The introduction of ASLR
typically requires modifying the kernel and the file format
of executables to allow arbitrary relocation of protected bina-
ries [34].

Khasan et al. also describe binary protection techniques
using canaries. These techniques have known several names,
such as Propolice [21], StackGuard [15], and Stack Smashing
Protection (SSP) [39]. This involves modifying the compiler
in such a way as to introduce a canary (or “stack cookie’)
before the return address in the stack, the integrity of which
will be checked in the prologue of each instrumented function.
If the canary has been modified, the stack is corrupted, and
the program will be immediately terminated rather than risk
arbitrary code execution by an attacker. These techniques
have undergone several successive improvements until they
no longer have any significant cost during the execution of
the protected application [53].

Khasan et al. finally detail FORTIFY (standardized in the
ISO/IEC TR 247315 standard). This compilation option au-
tomatically replaces specific C library functions vulnerable
to buffer overflows with functions including an additional
argument, the maximum size of the destination buffer (which
can often be inferred by the compiler). In the event of a stack
buffer overflow during the program execution, the applica-
tion is terminated rather than allowing the attacker to execute
arbitrary code [30] [23].

These techniques have been extended to other architectures
and operating systems, such as Linux [39], Android [33],
OSX [39] or iOS [28].

Finally, there are protections against memory corruption
at the hardware level of specific microprocessors, such as In-
tel Control Flow Integrity (CFI) [7] [29], which allows, by
instrumenting the start of each block of code (an endbr64
instruction is added at compile time under Intel x86-64) [29]
to ensure that the control flow of the application has not been
altered via memory corruption exploitation techniques such
as ret2libc [10] or Return Oriented Programming (ROP) [40]
[34] [1] [12] at any point in time. During a transfer of execu-
tion via branching or when returning to a calling function, the
microprocessor can ensure whether the destination address is
an endbr64 instruction under x86-64 (respectively endbr32
under x86) and terminate the application if this is not the case.

These countermeasures to exploiting memory corruption
vulnerabilities are effective against their respective vulnera-
bility subclasses but require activation (often at compile time)
to operate correctly [50].
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2.4 Binary Loaders and Binary Post-
Compilation Instrumentation

The idea of statically or dynamically loading and instrument-
ing binaries is fundamental in analyzing compiled applica-
tions.

The most basic form of dynamic instrumentation is simply
using the trap instructions to force an application to divert its
execution flow, as seen in DTrace [14].

A more complex tool like Valgrind and its popular mem-
check [42] memory sanitizer can perform a Just in Time (JIT)
dynamic recompilation of executables. It is a complex frame-
work that starts by transforming the original basic blocks of
the application into an intermediate representation, then ap-
plies instrumentation and code optimization before translating
the intermediate representation back to machine code [36].
Such an instrumentation is heavy and incurs an execution
penalty of 10x or higher.

Some of the techniques available include dynamically
rewriting a single basic block of code at a time, while the appli-
cation is running, using a shadow memory mechanism. This is
the foundation of tools like DynamoRIO [4] [6] [5], a frame-
work reused in popular security tools such as WinAFL [55].

Dinesh et al., on the other hand, opt for a pure static rewrit-
ing of binaries to retrofit into binaries instrumentation that is
usually introduced at compile time, such as AFL [54] and Ad-
dress Sanitizer [41]. Their framework, named RETROWRITE
[17], works by diverting the flow of execution through the in-
sertion of trampolines. A preliminary static analysis involves
building the control flow graph, which is a difficult problem
in general [35] and undecidable [22].

This mechanism, where a preliminary disassembly and
control flow recovery precedes a static rewriting of portions
of the binary to introduce instrumentation code, is a popu-
lar design [2] [48] [37] [47], subject essentially to the same
limitations: recovery of the control flow is undecidable in
general [22].

To avoid this pitfall, Duck et al. [19] developed a suite of
binary rewriting techniques, implemented under the E9Patch
framework, that can insert jump trampolines without requir-
ing an understanding of the binary’s control flow. As such,
their instrumentation is more robust and scales to large appli-
cations such as web browsers. They leverage techniques such
as instruction punning [11], which may safely replace branch-
ing conditions and introduce trampoline code by overwriting
exactly one assembly instruction.

Furthermore, it is worth mentioning the idea of recovering
individual object files from a compiled binary [8] thanks
to a control flow and data flow analysis. When individual
compilation units can be unlinked, they may be subsequently
relinked and instrumented.

Finally, custom loaders may allow the loading of Windows
dynamic libraries under Linux [38] or rewriting Windows
Executables so they may be loaded as DLLs [18].

In light of this state of the art, it seems relevant to intro-
duce a more lightweight form of binary rewriting focused
solely on modifying an application’s metadata. As such, it
shall not suffer from the limitations of the techniques based
on control flow recovery or the runtime penalty of dynamic
instrumentation.

3 Overview of the Libification Process

3.1 Libification: Methodology

In this section, we describe the production of a libifier, that
is to say, a tool able to reliably and automatically transform
an arbitrary ELF binary into a shared library. We detail this
methodology, so it may be extended in the future, if necessary,
to compensate for breaking changes in the GNU dynamic
linker, or adapted to other toolchains.

The POSIX 2001 standard specifies the API of the dynamic
linker, and in particular the dlopen() function, which allows
loading an arbitrary shared library in memory:

#include <dlfcn.h>

void =xdlopen(const char =filename, int fl

The filename parameter must point to the path to the library
to be loaded on the file system.

The flags parameter controls the locality (local or global) of
the symbols loaded in the address space, as well as the behav-
ior of the dynamic linker. In particular, if the RTLD_LAZY
bit is set, the dynamic linker performs lazy binding of symbols
when necessary, as opposed to an immediate binding at load
time if the RTLD_NOW bit is set, in which case the Global
Offset Table may be safely remapped read-only.

In the remainder of this chapter, we will define a shared
library as an ELF file that can be loaded in memory via
dlopen().

A minimal oracle to determine whether the dynamic linker
can load an ELF file can be summarized with the following
code:

int main (void) {
void xhandle = 0;
handle = dlopen ("./test.so", RTLD_NOW);
if (handle <= 0) {
printf (" !! ERROR: %s\n",
exit (EXIT_FAILURE);
!

printf ("Loading successful\n");

return 0;
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If successful, the return code from this oracle will be 0. It
will be non-zero otherwise, and an error message stemming
from the dynamic linker will indicate the cause of the memory
loading error. Empirically, the work of the libifier will, there-
fore, be to modify the binary in a way that prevents the error
returned by dlerror() from occurring. The developer of the
libifier will then read the code of the dynamic linker, identify
the cause of the error, and modify the libifier to patch the
input binary to prevent this last error from occurring.

The goal - and hope - of the developer of the libifier is that
through this iterative and empirical process, the shared library
produced by the libifier will be able to pass all of the dlopen()
parsing checks, and eventually be loaded in memory. There is
no guarantee that such a libification will be or remain possible
in the future or across an arbitrary corpus of executables since
this libification is a reverse engineering technique and not a
standardized feature of a dynamic linker guaranteed in any
form or fashion.

3.2 Practical Libification

The operations performed by the Witchcraft Linker to libify
an arbitrary ELF binary modify the ELF header, the dynamic
section, and the GNU-specific symbols versioning section of
an input executable.

First, within the ELF header, the libifier must ensure that
the e_type field is set to ET_DYN since all shared libraries
are of type ET_DYN.

Then, the dynamic section of the ELF must be parsed and
possibly modified:

The DT_BIND_NOW shall be changed to DT_NULL if
present in the .dynamic section.

The DT_FLAGS_1 flags present in the .dynamic section
may need to be modified: the DF_1_PIE and DF_1_NOOPEN
bits must be removed if set. This last flag prevents an object
from being loaded via dlopen().

If the binary features constructors or destructors, those
may not expect to be called from dlopen(). The Witchcraft
Linker, therefore, features an optional command line argu-
ment to prevent constructors and destructors from being
called. Within the .dynamic section, setting the values of
DT _INIT_ARRAYSZ and DT_INIT_ARRAY to zero inhibits
the instantiation of constructors, and setting the values of
DT_FINI_ARRAYSZ and DT_FINI_ARRAY to zero inhibits
the calls to destructors.

Finally, because the dynamic linker may refuse to load
multiple versions of symbols if symbols versioning is in use
within the libified binary, the Witchcraft Linker will simply
zero out the entire section of type SHT_GNU_versym.

Currently, the Witchcraft Linker (wld) version v0.0.6 can
libify all of the binaries of a standard GNU/Linux distribution
such as Ubuntu 22.04 LTS, so that they may be loaded via the
dlopen() function of the GNU dynamic linker version 2.35.

3.3 Toward Procedural Debugging

Once the principle of libifying an ELF has been acquired,
writing a debugger capable of loading a libified executable
in its own address space is straightforward: simply load the
libified binary via the dlopen() function of the dynamic linker.
It appears appealing to integrate an interpreter into our de-
bugger to allow a developer to interact with the functions
exposed by the libified binary. Due to its tiny size, the choice
of interpreter fell on the Lua language [25] since a Lua inter-
preter, including all its dependencies, occupies less than 500
kilobytes of memory footprint.

We wish to make the entire API available in the address
space available to the Lua interpreter once the libified binary
is loaded in memory. This API is made up, on the one hand,
of the functions exported directly by the libified binary but
also of the APIs exported by all the dynamic libraries loaded
in memory by the dynamic linker when loading the libified
binary in memory via dlopen(). The case of functions declared
static and hence not exported at compile time is left aside for
now'. Obtaining these APIs can be done via the use of the
dlinfo() function of the dynamic linker [27] [45].

By making the entire API available in memory exposed to
the Lua interpreter, we simply make these APIs available to
the developer. One of the advantages of this methodology is
that a developer or security analyst may invoke any function
loaded in the address space without worrying too much about
the actual calling conventions or prototypes (number and type
of arguments) of these functions. Additionally, they may do so
without compilation from a Lua interpreter, which facilitates
manual exploration of said APIs.

We name this technique, which allows invoking a single
function at a time, “procedural debugging”.

3.4 An Empirical Assessment of the Side Ef-
fects of Libification

In this section, we address the question of the side effects
introduced by the libification of a binary over its main security
hardening properties.

We successively consider the following properties: the base
address of the executable mapping (ASLR), the presence of
stack cookies aimed at preventing buffer overflows, the stack’s
executability, the presence of static relocations (RELRO), and
the presence of Control Flow Integrity type protections (Intel
FCF).

Libification of an ET_DYN binary does not modify its
ASLR properties: the binary being initially mappable to an
arbitrary address remains so. In the case of the libification of
an ET_EXEC binary, which was initially only mappable to
a fixed address, the ASLR is not modified either: the library

I'Static functions whose addresses relative to the base address of libraries
or executables are known thanks to a preliminary control flow analysis may
be named and called within the debugger.
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thus generated is only mappable at the same address. Loading
happens as if the binary had been transformed into a library
by prelinking to the same base address [26].

The stack executability of a library loaded via dlopen() is
determined by the stack executability of our debugger since
the latter loads the library in its own address space. This de-
bugger property can be arbitrarily changed via the execstack”
application.

Libification does not modify the presence of static reloca-
tions (binary or library with the BIND_NOW flag in their
dynamic sections).

The presence of stack cookies protecting the stack is intrin-
sic to each function since it is implemented by instrumenting
the prologue and epilogue of each function. Libification, there-
fore, does not modify this property of the functions present in
the libified binary.

The presence of Intel Integrity Protection (Intel FCF) type
protections is characterized by the presence of endbr64 in-
structions at the start of each basic block in each protected
function. Libification does not modify this intrinsic property
either.

Finally, this empirical study overall suggests that libify-
ing an ELF binary into a shared library does not modify its
fundamental security properties, particularly the countermea-
sures possibly introduced into the binary at compile time. In a
nutshell, libification does not introduce notable security side
effects from an exploitability standpoint.

3.5 Limits to Binary Libification

Libifying an ET_EXEC binary as a shared library generates a
somewhat special shared library since it cannot be remapped
to an arbitrary address. This induces a limit to our libifier. On
the one hand, a libified library can generate a collision with
the address space of a program trying to load it, as noted by
beta testers . On the other hand, it is not possible to load two
libified ET_EXEC binaries initially provided with the same
base address in our debugger.

3.6 Validation

The libification process and the WSH debugger were validated
under GNU/Linux Ubuntu 22.04 equipped with an Intel 64-bit
processor using the following binaries:

Software Version Status  Time

Google Chrome  114.0.5735.198 OK <0.01s
OpenSSH Server 8.9pl OK <0.01s
Apache2 2.4.52 OK <0.01s
Nginx 1.18.0 OK <0.01s
GCC 11.4.0 OK <0.01s

Zhttps://linux.die.net/man/8/execstack
3Thanks to Dan Kaminsky https:/github.com/endrazine/wcc/issues/26

Furthermore, copying, libifing, and loading via dlopen()
the 435 binaries in the default path of a default Ubuntu 22.04
AMD64 install took less than 3 seconds (in total) on a laptop
featuring a core i-7 11850H CPU and 32Gb of RAM.

4 Conclusion and Future Work

In this article, we presented a methodology to transform a dy-
namically linked ELF binary into a shared library. We called
this methodology “libification”.

We then introduced a very simple debugger able to load
such a libified executable within its own address space, hence
rendering nonstatic functions within the binary callable. We
named this technique facilitating the invocation of arbitrary
functions in isolation and out of context “procedural debug-
ging”.

Thus, a security analyst seeking to experiment with a pos-
sible vulnerability within an executable manually may now
directly invoke the function featuring the vulnerability via
procedural debugging without needing to produce user in-
puts traversing the application’s call graph before reaching
the vulnerable function. This is notable since the reachability
problem is undecidable in general.

We verified the reproducibility of the libification process on
some of the most complex user-mode binaries available under
GNU/Linux, as well as across an entire widespread Linux
distribution, which validates the generality of the approach.

In the future, we hope to be able to automatically generate
scripts to trigger a vulnerability within a compiled binary,
which would save significant time for Product Security teams.

Availability

The Witchcraft Compiler Collection [3], including the
Witchcraft Linker described in this article, is published under
a permissive dual MIT/BSD open-source license. The frame-
work is available from https://github.com/endrazine/wcc and
via the package managers of several GNU/Linux distributions,
including at least Debian, Ubuntu, and Arch Linux.
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Abstract

As the Windows OS stands out as one of the most targeted
systems, the PowerShell language has become a key tool for
malicious actors and cybersecurity professionals (e.g., for
penetration testing). This work explores an uncharted domain
in Al code generation by automatically generating offensive
PowerShell code from natural language descriptions using
Neural Machine Translation (NMT). For training and evalua-
tion purposes, we propose two novel datasets with PowerShell
code samples, one with manually curated descriptions in nat-
ural language and another code-only dataset for reinforcing
the training. We present an extensive evaluation of state-of-
the-art NMT models and analyze the generated code both
statically and dynamically. Results indicate that tuning NMT
using our dataset is effective at generating offensive Power-
Shell code. Comparative analysis against the most widely
used LLM service ChatGPT reveals the specialized strengths
of our fine-tuned models.

1 Introduction

Offensive security practices, such as red teaming and adver-
sary emulation, play a crucial role by helping us to understand
how attackers take advantage of vulnerabilities and how to
mitigate attacks [1, 2]. In these attacks, cybersecurity pro-
fessionals emulate malicious post-exploitation actions, such
as credential stealing, lateral movement across accounts and
machines, data obfuscation and exfiltration, and more [3].
As Windows stands out as one of the most targeted OS [4],
the PowerShell language has become a key tool for both mali-
cious actors and cybersecurity professionals. This language is
widely used to perform attacks since it can perform complex
actions, such as establishing connections and accessing OS
services and APIs without the need to deliver a malicious
binary executable or payload on the target machine (e.g., “file-
less” malware), making them harder to detect [5-8].
Unfortunately, writing offensive code demands a high de-
gree of expertise and effort, restricting the adoption of offen-
sive security practices. Therefore, the rise of automatic Al

code generators represents an appealing solution to unlock
these practices to a broader spectrum of users [9].

Al code generators leverage ML models for Neural Ma-
chine Translation (NMT) to produce (offensive) code starting
from inputs in Natural Language (NL), e.g., in the English
language. The usage of NMT models is widespread across
diverse software engineering tasks [10], yet their application
in security-related scenarios is infrequent and not widely ex-
plored. This gap stems primarily from the lack of suitable
corpora for training and evaluating code generators. The short-
age of corpora for offensive code generation is an evident
limitation: existing benchmarks [11-13] are derived from
programming competitions and software interview questions
(e.g., about algorithms and mathematics), or they focus on pro-
grams and languages that are not related to security (e.g., web
applications in Python). Only a few security-oriented datasets
are publicly available, targeting shellcodes in low-level pro-
gramming languages [14]. As a result, there is a significant
gap in the literature on offensive PowerShell code generation.

This work presents an assessment of Al code generators
for PowerShell offensive code, a novel application of NMT.
Given that generative models are predominantly trained on
mainstream programming languages like Python and Java,
we investigate strategies to repurpose these models for the
PowerShell domain. To this aim, we adopt a combination of
unlabeled and labeled datasets to train and evaluate models.
Specifically, we first use a large collection of unlabeled (i.e.,
code only) samples of general-purpose PowerShell from var-
ious online repositories to pre-train ML models and refine
their capabilities to comprehend and generate PowerShell
code. Then, we build from scratch a manually annotated la-
beled dataset consisting of PowerShell code samples specif-
ically crafted for security applications, which we pair with
curated NL descriptions in English. We use this dataset to
fine-tune three state-of-the-art NMT models (CodeT5+ [15],
CodeGPT [16], and CodeGen [17]) to generate offensive Pow-
erShell code. The dataset also serves as a ground truth for
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the evaluation. We publicly share code, models ' and datasets
as open data’ to encourage further experimentation on this
topic.

To perform our experiments, we formulate four key re-
search questions (RQs) aimed at evaluating the models’ capa-
bilities and the impact of the training strategies, performing
static and execution analysis to assess the generated code, and
comparing privately fine-tuned models with ChatGPT, the
most widely used LLM service from OpenAl [18]. Table |
summarizes the key findings of our analysis. To the best of our
knowledge, this is the first work on the automatic generation
of offensive PowerShell code from NL descriptions.

In the following, Section 2 discusses related work; Sec-
tion 3 describes the research study; Section 4 shows the ex-
perimental results; Section 5 discusses the threats to validity;
Section 6 discusses the ethical considerations; Section 7 con-
cludes the paper.

2 Related Work

This work focuses on offensive code generation, involving
machine translation techniques applied to the security domain
for PowerShell code generation. Thus, we reviewed related
literature in these areas.

ML for security-related PowerShell. Li ez al. [19] designed
a subtree-based de-obfuscation method and a semantic-aware
PowerShell attack detection system. This work also demon-
strates how the presented de-obfuscation method improves the
performance of detection systems such as Windows Defender
and Virus-Total. PowerDP [20] is a solution that aims to auto-
matically identify malicious PowerShell commands through
character distribution features and obfuscation multi-label
classification also proposing a de-obfuscator method for re-
covering obfuscated commands. Even ML-based methodolo-
gies have arisen for detection purposes, as shown by Hendler
et al. [21], who proposed several ML-based detectors demon-
strating their effectiveness on malicious scripts. The authors
also devised another solution [22] to achieve the same objec-
tive by retrieving information from Microsoft’s AMSI inter-
face. Mimura and Tajiri [23] presented a lighter methodology,
restricting detection only to word embeddings. Mezawa et
al. [24] proposed an evaluation methodology for ML-based de-
tectors based on a word-level machine learning model. Given
the effectiveness of Abstract Syntax Trees (ASTs) in detect-
ing obfuscated PowerShell scripts, Rusak et al. [25] proposed
a hybrid approach that combines ASTs and deep learning to
enhance detection methods for high-level obfuscation Pow-
erShell malicious programs. We remark that research of ML
for PowerShell focuses on defensive uses (i.e., detecting and
de-obfuscating attacks), but none of these studies analyzed the
offensive uses of ML (i.e., generating attacks), which are also

"HuggingFace repo
2GitHub repo

Analysis Main Findings

* Models without fine-tuning (zero-shot learn-
ing) showed a limited ability to generate Pow-
erShell code, often defaulting to Python syntax
or incorrect PowerShell code.

* The fine-tuning phase significantly enhanced
the models’ ability to generate syntactically
correct and semantically relevant PowerShell
code. Among the models, CodeT5+ and
CodeGPT demonstrated notable improvements
in generating offensive PowerShell code.

Capability
Assessment

Pre-training on a large PowerShell corpus had
a varying impact on different models. While
pre-training generally improved CodeT5+ and
CodeGPT, especially with a limited number of
epochs for fine-tuning, CodeGen did not con-
sistently benefit from pre-training.

* All models achieved high syntax accuracy, in-
dicating their strong capability to generate syn-
tactically correct code. However, a significant
number of warnings were identified, suggesting
potential issues or suboptimal coding practices.

Static and

Execution

Analysis

* The execution analysis showed that, despite
textual differences between the ground truth
and the generated code, the models are still able
to generate offensive PowerShell code closely
aligned with the intended malicious activities,
in terms of events occurring in the system (e.g.,
on the filesystem, network, registry).

* Our fine-tuned models outperform ChatGPT
across all the metrics, showing that specializing
the models on our fine-tuning dataset provides
an advantage in the offensive PowerShell code
generation task.

Comparison
with public
Al model

Table 1: Main findings.

relevant for red teaming and adversary emulation purposes,
and which are in the scope of this paper.

Offensive Code Generation. Research on Al code genera-
tors for offensive security is still at an early stage. Gupta et
al. [26] presented an outlook of the possibilities opened by
ChatGPT for generating various types of cyber attacks, such
as social engineering, phishing attacks, and malware creation.
For each attack scenario, the paper shows qualitative examples
of prompts submitted to ChatGPT, and the attack payloads
generated as a result, including some snippets of PowerShell
code. Similarly, Charan et al. [27] presented qualitative exam-
ples with ChatGPT and Google BARD to generate malicious
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scripts (mainly in Python, Bash, and PowerShell) for the top
10 prevalent MITRE Techniques of 2022, showing the poten-
tial of these Al models for security applications. However,
none of these studies systematically analyzed Al code genera-
tors, lacking in several aspects: (i) the evaluation was limited
to a few examples, while systematic evaluation requires much
larger datasets; (ii) the study lacked a ground truth for evalu-
ating the correctness of generated code; (iii) they did not yet
explore the potential of fine-tuning ML models for security-
related code generation. The few studies in this direction
focused on generating exploits in low-level languages (e.g.,
to attack memory management vulnerabilities). However, ex-
ploitation is only a limited part of the cyber kill chain, over-
looking several more types of malicious code. Among these
studies, Liguori et al. [28] proposed a dataset and approach for
training and evaluating Al code generators for code security,
by generating shellcodes in Assembly language. EVIL [29]
automatically generates exploits for conducting code injec-
tion attacks via NMT by targeting both the generation of
shellcodes in Assembly language and related Python code
for encoding and obfuscating the shellcodes. DualSC [30]
formalizes the automatic generation and summarization of
shellcodes via a "Shallow" Transformer inspired by the T5
model and dual learning using the corpus provided by Liguori
et al. [28]. ExploitGen [31] is an approach for generating
exploit code in Python and Assembly based on the Code-
BERT model. Differently from these studies, we presented a
dedicated model for generating offensive PowerShell code,
covering the entire cyber kill chain (e.g., including credential
stealing, lateral movement, data exfiltration, and more tactics
from the MITRE ATT&CK taxonomy). Moreover, we system-
atically analyzed the quality of generated PowerShell code by
introducing a manually curated dataset to serve as a ground
truth and evaluating the code statically and dynamically.

3 Research Study

The main objective of our research study is to understand
whether NMT models can translate NL descriptions into code
that accurately replicates the complexities of cyber attacks in
PowerShell. This aspect is crucial as it explores the models’
understanding of the unique syntax and semantics of this
programming language.

Figure | provides an overview of this research study. We
analyze various deep learning strategies to accurately gener-
ate code and introduce datasets to train and evaluate them.
We study several state-of-the-art NMT models and introduce
various approaches to evaluating the generated code, includ-
ing the similarity of the generated code to ground truth and
static and dynamic analysis of the code.

To help NMT models in the novel and ambitious task of
generating PowerShell code from NL, we adopt a two-step
process consisting of pre-training and fine-tuning. The pre-
training phase aims to tailor NMT models (already pre-trained

on other programming languages) in the generation of Pow-
erShell code. Armed with the pre-trained models, we pro-
ceed to the fine-tuning phase. This iterative process refines
the models’ capabilities, enabling them to generate offensive
PowerShell code from NL descriptions.

The main problem in using NMT models is to have a suffi-
cient set of data and to use them effectively to train the models
themselves. Recognizing the lack of suitable datasets for of-
fensive PowerShell code generation, in this study, we collect a
large set of PowerShell programs used for penetration testing
and adversary emulation. In addition to the code, we create
descriptions of these programs in English to allow the model
to translate English into PowerShell code. This dataset was
created manually to verify that the programs were related to
security and to ensure that the English language descriptions
were complete and consistent with the code. The dataset is
labeled since each sample includes both the text to translate
into code and the code expected to be produced by the model
(ground truth).

The creation of labeled datasets is inevitably limited by the
availability of PowerShell security programs and the need to
manually create English language descriptions for each pro-
gram. To increase the amount of training data, in this study, we
investigate an additional strategy, fully automated, to build an
extended dataset of PowerShell programs, collecting Power-
Shell programs and the related text from the web (for example,
comments in the code or description accompanying the code).
As the collection is fully automated, this second dataset is
non-labeled. The dataset includes programs not strictly re-
lated to security but includes, in general, PowerShell code
used for various purposes. This dataset still contributes to the
ability to generate security code since it allows the model
to learn from further examples how to generate syntactically
valid PowerShell code and to correlate the PowerShell code
with the English language. We use this dataset to pre-train the
NMT models, carrying out additional unsupervised training
rounds.

Table 2 reports the statistics of both datasets, in terms of
size, unique number of tokens, and average number of tokens
for NL descriptions (only for fine-tuning data) and code.

Finally, we evaluate the models as follows:

* Capability Assessment: We compare the textual similar-
ity of the code generated by the models with a ground-
truth reference through automatic metrics. These met-
rics are an appealing solution to estimate the generated
code since they are easy to tune and time-saving, hence
overcoming the limit of human evaluation, which poses
practical challenges for large-scale assessments.

* Static analysis: We assess the generated code to ensure
that it adheres to PowerShell programming conventions
and does not contain syntax errors.

» Execution analysis: We evaluate the capability of the
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Figure 1: Overview of our research study.

generated offensive PowerShell code in executing ma-
licious actions, replicating the behavior of the ground
truth commands.

In the following of this section, we detail the pre-training
(§ 3.1) and the fine-tuning data (§ 3.2), and the code genera-
tion task (§ 3.3).

3.1 Pre-training data (unlabeled)

Pre-training involves training the model on a large corpus
of text data to learn general language representations before
fine-tuning it for specific downstream tasks [32]. In other
words, the parameters obtained from this step serve as a start-
ing point for the later supervised training. Unsupervised or
self-supervised pre-training is particularly attractive in the
NMT context since large unlabeled data is available on the In-
ternet. In this work, we leverage domain-adaptive pre-training
(DAPT) [33]: given an NMT model pre-trained on massive,
heterogeneous corpora, we perform additional rounds of unsu-
pervised training with domain-specific data. Specifically, we
leverage general-purpose PowerShell code for pre-training.
The pre-training dataset aims to provide a valuable resource
to enable the models’ understanding of general-purpose Pow-
erShell code. This dataset encompasses ~ 90k samples ex-
tracted through the GitHub API. Specifically, we queried all

the repositories containing PowerShell code from the last
decade (2013-2023) to encompass a broad spectrum of Pow-
erShell code, then parsed the extracted data to remove un-
necessary information, such as duplicates (inside the same
repository), and logging and echo commands. In addition, we
filtered out all the PowerShell commands with sizes greater
than 1024, ensuring the dataset maintains a balanced repre-
sentation of code complexities. This collection encompasses
a diverse array of PowerShell scripts, spanning various appli-
cation domains such as system administration, automation,
and network management. Including a wide range of scripts
reflects the versatility of PowerShell as a scripting language
and provides models with exposure to the diverse ways Pow-
erShell is used across different use cases.

The pre-training process depends on the model architecture.
For decoder-only models, i.e., CodeGPT and CodeGen, we
chose Causal Language Modeling (CLM), also referred to as
Language Modeling, as the pre-training objective. CLM has
been extensively used as a pre-training task for transformer-
based decoder-only models [34], such as in the GPT se-
ries [35-37]. CLM refers to language models that predict
the next token or sequence of tokens in a sentence in a causal
or autoregressive manner, where the prediction for each to-
ken depends only on the preceding tokens. By using mask-
ing, the model only attends to the left context in a unidirec-
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. Pre-training Fine-tuning

Statistic Dataset Dataset
Dataset size 89,814 1,127
Unique Intents - 1,077
Unique Commands 79,410 1,121
Unique tokens (Intents) - 2,273
Unique tokens (Commands) 85,342 17,463
Avg. tokens per Intent - 15.97
Avg. tokens per Command 12.71 15.49

Table 2: Statistics of the pre-training and fine-tuning datasets.
The pre-training dataset does not contain NL descriptions
(intents).

tional manner, ensuring that it cannot see "into the future". In
the probabilistic framework, starting from the text sequence
x = (x1,X,X3,...,x7), where x is the original sentence and
x (t=1,2,...,T) is the ¢t-th token, and T is the sequence
length, an autoregressive model factorizes the likelihood of
the input text sequence as p(x) = [T, p(x, | x=/), where p is
the likelihood of the input text sequence [38]. Finally, mod-
els are evaluated by token-level accuracy. For CodeT5+, the
pre-training objective is Masked Language Modeling (MLM),
as recent works show its effectiveness in code understanding
tasks [39]. MLM refers to the prediction of missing tokens in
a sentence based on the context provided by the surrounding
tokens. Unlike the left-to-right language model pre-training,
MLM considers both the left and right context. The approach
is inspired by BERT [40], where 15% of the tokens in the
encoder inputs are randomly replaced with sentinel token
[MASK], and the decoder is tasked with recovering these
tokens to reconstruct the complete snippet. The model is eval-
uated by token level accuracy only on the masked-out tokens.

3.2 Fine-tuning data (labeled)

The overarching purpose of this dataset is to serve as a com-
prehensive resource for training models in the translation
of NL intents, i.e., descriptions of code snippets, into exe-
cutable security-oriented PowerShell commands. Specifically,
we focus on offensive PowerShell code, a key resource for cy-
bersecurity exercises since Microsoft Windows represents the
most targeted OS. By encompassing a wide array of sources,
the dataset aims to expose models to the intricacies of real-
world cybersecurity scenarios, enabling them to understand
and generate PowerShell commands that align with those typ-
ical of cybersecurity operations. This holistic approach strives
to ensure that models trained on this dataset are well-equipped
to handle the complexities of real-world tasks and contribute
meaningfully to offensive code generation, specifically Pow-
erShell commands.

The dataset, consisting of 1,127 samples of PowerShell
commands, is meticulously curated from the following

sources:

* Atomic Red Team [41]: renowned for its library of tests
mapped to the MITRE ATT&CK framework® [42],
serves the purpose of replicating real-world adversarial
tactics, techniques, and procedures (TTPs). This inclu-
sion provides the dataset with a foundation rooted in a
standardized and widely accepted framework, ensuring
that the PowerShell commands align with recognized
cybersecurity methodologies.

Stockpile [43]: is a plugin for the CALDERA cyberse-
curity framework [1,44] developed by MITRE and in-
troduces a layer of sophistication by incorporating struc-
tured data integral for adversary emulation. Therefore,
the dataset does not encompass raw PowerShell com-
mands only but also captures the contextual information
and relationships between commands within the broader
context of adversarial scenarios.

Empire [45]: a post-exploitation and adversary emula-
tion framework integrated with MITRE ATT&CK, pro-
vides PowerShell commands representative of advanced
malicious techniques, further enriching the dataset with
nuanced and intricate scenarios.

* Online sources: we manually verified and selected ad-
ditional offensive samples from several security-related
online sources. We gathered samples from HackTricks
[46], Red Team Recipe [47], and Infosec Matter [48],
community-driven cybersecurity wikis about ethical
hacking, penetration testing, and information security.
By including diverse examples specific to the offen-
sive PowerShell dataset, the model acquires a more pro-
found understanding of the conventions and best prac-
tices unique to PowerShell security commands.

We manually curated the dataset to cover the highest num-
ber of tactics in the MITRE ATT&CK framework. In particu-
lar, the dataset covers 12 out of 14 tactics from the MITRE
ATT&CK framework, the de facto standard for adversar-
ial techniques representation, with varying numbers of tech-
niques and sub-techniques per tactic. Figure 2 illustrates the
number of entries for each ATT&CK tactic. Each entry in the
dataset is annotated with an NL description extracted from
the respective source. We manually annotated every sample
that did not come with a predefined description. Moreover,
we enriched all those descriptions that did not provide enough
information about the specific PowerShell command. For
instance, in the case of Atomic Red Team, the PowerShell
commands represent implementations of the techniques in
the ATT&CK framework. Consequently, these commands are

3The ATT&CK framework is a comprehensive knowledge base of the
tactics, techniques, and procedures (TTPs) that adversaries leverage during
cyberattacks, developed by MITRE.
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Figure 2: Mapping of fine-tuning dataset samples on the
MITRE ATT&CK tactics.

often labeled with the technique name, which provides infor-
mative content about the technique itself rather than what the
command does. To better understand how programmers and
security experts describe PowerShell scripts and how to deal
with ambiguities in natural language, we referred to popular
books and manuals [49-51].

Finally, we notice that the size of our dataset is in line with
other state-of-the-art corpora used to fine-tune ML models.
In fact, in state-of-the-art code generation, the datasets for
fine-tuning are relatively limited, in the order of one thousand
samples [52].

3.3 Code Generation Task

To ensure the robustness of our study, we adopt the following
state-of-the-art NMT models:

e CodeT5+ [15] is a new family of Transformer models
pre-trained with a diverse set of pretraining tasks to learn
rich representations from both unimodal code data and
bimodal code-text data. We utilize the variant with model
size 220M, trained from scratch following T5’s architec-
ture [53]. It has an encoder-decoder architecture with 12
decoder layers, each with 12 attention heads and hidden
layer dimension of 768, and 512 for the size of position
embeddings. We set the learning rate o = 0.00005, batch
size = 16, and beam size = 10.

* CodeGPT [16], a Transformer-based language model
pre-trained on millions of Python functions and Java
methods. The model architecture consists of 12 layers of
Transformer decoders. We followed previous work for
the implementation [54].

CodeGen [17], an autoregressive language model for
program synthesis with an architecture that follows a
standard transformer decoder with left-to-right causal
masking. The family of CodeGen models is trained in
various sizes, including 350M, 2.7B, 6.1B, and 16.1B,
and utilizes various datasets. Specifically, we leverage

CodeGen-Multi, initialized from CodeGen-NL and fur-
ther pre-trained on BigQuery [17], a large-scale dataset
of multiple programming languages from GitHub repos-
itories, which consists of 119.2B tokens and includes C,
C++, Go, Java, JavaScript, and Python.

In our experiments, we randomly split the fine-tuning
dataset into training (the set of examples used to fit the param-
eters), validation (the set used to tune the hyperparameters of
the models), and test (the set used for the evaluation of the
models) sets using a typical 80%/10%/10% ratio.

To assess the performance of the models in generating
offensive PowerShell code from NL descriptions, we used
output similarity metrics, which compare the generated code
with the code from the ground truth. This type of metrics is
widely used to assess the performance of Al generators in
many code generation tasks [55], including the generation of
code for security contexts [28-31, 56]. The metrics are:

* Bilingual Evaluation Understudy (BLEU) score [57].
It measures the degree of n-gram overlapping between
the string of each code snippet produced by the model
and the reference, for values of n usually ranging be-
tween 1 and 4 [58, 59]. We implemented BLEU-4
score (i.e., with n = 4) computation employing the
bleu_score module contained in the open-source Natu-
ral Language Toolkit (NLTK) Python suite [60].

Edit Distance (ED). It measures the edit distance be-
tween two strings, i.e., the minimum number of opera-
tions on single characters required to make each code
snippet produced by the model equal to the reference.
For the edit distance, we adopted the Python library
pylcs [61].

METEOR [62]. It measures the alignment between each
code snippet produced by the model and the reference.
The alignment is defined as a mapping between unigrams
(i.e., 1-gram), such that every unigram in each string
maps to zero or one unigram in the other string and no
unigrams in the same string. To calculate the METEOR
metric, we relied on the Python library evaluate by
HuggingFace [63].

* ROUGE-L. It is a metric based on the longest common
subsequence (LCS) between the model output and the
reference, i.e., the longest sequence of words (not neces-
sarily consecutive, but still in order) shared between both.
We computed the ROUGE-L metric using the Python
package rouge [64].

All metrics range between 0 and 1, with higher scores corre-
sponding to a better quality of the generated code. To evaluate
the generated PowerShell code, we also introduce additional
evaluation metrics based on static and dynamic analysis that
are specific to our context. These metrics will be introduced
in the following sections.
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3.4 Research Questions

We designed this research study to answer the following re-
search questions (RQs):

> RQ1: To what extent can NMT models effectively generate
offensive PowerShell code for security applications from NL
descriptions?

RQ1 aims to establish a preliminary assessment of NMT
models in generating PowerShell code for offensive security
applications. This investigation seeks to shed light on the
models’ efficacy in translating NL descriptions into offensive
code.

> RQ2: What is the influence of the training strategies on
NMT models’ performance in offensive PowerShell code gen-
eration?

RQ?2 focuses on the impact of pre-training and fine-tuning
on the quality of generated code. We analyze the influence
of these training strategies by considering different configu-
rations of the NMT models and their impact on their perfor-
mance.

> RQ3: How good is the generated code in terms of code
quality and dynamic behavior?

RQ3 aims to evaluate the generated PowerShell code in a
deeper way than output similarity metrics, in terms of syntac-
tic correctness and capability of executing malicious actions
realistically, through behavioral comparison with the ground
truth.

> RQ4: How do fine-tuned NMT models, leveraging security-
oriented training data, compared to a publicly available,
closed-source model?

RQ4 introduces a comparative analysis, evaluating the perfor-
mance of the fine-tuned models against a publicly available
general-purpose language model, specifically ChatGPT 3.5.
This investigation strives to evaluate whether specialization on
security-focused data provides an advantage in the offensive
PowerShell code generation domain.

4 Experimental Results

This section presents an extensive evaluation of NMT models
(CodeT5+, CodeGPT, and CodeGen) on the generation of
offensive PowerShell code. First, we assess the models’ capa-
bility of generating PowerShell code in their original configu-
ration (§ 4.1) without further training. Then, we evaluate the
impact of different training strategies, i.e., domain-adaptive
pre-training and fine-tuning, on the performance of such mod-
els (§ 4.2). To provide further insight into the PowerShell
code generation, we analyze the quality of the generated code
in terms of syntactic correctness (§ 4.3) and dynamic behavior
(§ 4.4), i.e., its ability to replicate the behavior of the ground
truth code. Finally, we compare the fine-tuned models with
a public AI model (ChatGPT) for all the previous analyses
(§ 4.5) to benchmark their performance against a publicly
available, closed-source model.

Pre- BLEU-4 METEOR ROUGE-

Model | ining| (%) ED (%) (%) L (%)
X 004mE 887IE 460N 108 EE
CodeTS+ 00/ Mm 696mm  1.86EE  2.68 MM
X 023EE 12311 403EE 1.19mE
CodeGPT | 028mm  15671WE 255mm 341 mm
CodeGen X 006mE 758mE 283 EE (2] mEm
v 000mm 043mE  0.09WE (.00

Table 3: Performance of models with and without pre-training
on zero-shot.

4.1 Zero-shot Learning

To establish a baseline for the evaluation, we initially used
the NMT models in their original configuration, asking them
to generate PowerShell code. This is a zero-shot learning
task, where an NMT model is applied for a different sce-
nario than the one for which it was trained. In this way, we
evaluate the current gap of existing models in generating Pow-
erShell code. Table 3 shows the results of this analysis. In
this task, the models are tested without any gradient updates,
relying only on the intent provided by the test set for infer-
ence [36,37]. The non-pre-trained versions of the models tend
to generate Python code, but their performance is generally
low for the downstream task of generating offensive Pow-
erShell code. Pre-training the models with general-purpose
PowerShell code slightly improves the accuracy but is still not
high. Among the pre-trained versions, CodeGPT is the only
one that provides output close to valid PowerShell code, al-
though it does not align well with the expected code indicated
by the intent in natural language. In summary, regardless of
pre-training, all models demonstrate the need for fine-tuning
on a tailored dataset for optimal performance in generating
offensive PowerShell code.

4.2 Impact of Training Strategies

The evaluation of CodeT5+, CodeGPT, and CodeGen in-
volved a meticulously designed test plan. More precisely,
the models underwent three distinct fine-tuning scenarios: 3
Epochs, 10 Epochs, and 30 Epochs. This deliberate choice
allowed us to assess the impact of prolonged fine-tuning on
the models’ ability to generate PowerShell code for offensive
security tasks. In each scenario, we considered two training
configurations: one with pre-training and the other without.
This test plan allowed us to systematically explore the models’
capabilities under varying conditions, providing a comprehen-
sive understanding of their strengths and limitations. Table 4
shows the results.

In the 3 epochs setting, CodeT5+ exhibits low perfor-
mance, regardless of pre-training, with a BLEU-4 score lower
than 10%. In contrast, CodeGPT and CodeGen demonstrate
notable performance even after a short fine-tuning period,
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N BLEU-4 METEOR ROUGE-
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Table 4: Performance of models with and without pre-training
and different number of epochs. Best results for each metric
are blue/bold.

achieving a BLEU-4 score higher than 10% and an ED over
40%. Notably, after 3 epochs, CodeGen demonstrates supe-
rior performance compared to the other two models. In the 10
epochs experiment, CodeT5+ shows significant improvement,
with BLEU-4 tripling to 12%. Moreover, ED, METEOR,
and ROUGE-L experience a rise of 12-16%. CodeGPT also
enhances its performance, surpassing CodeT5+ in terms of
BLEU-4 score, although it faces challenges in achieving the
same level of overall improvement. CodeGen remains ahead
of the other models, even reaching an ED over 50%. For a
more in-depth assessment of the models’ adaptability, the
training duration is extended to 30 epochs. CodeT5+ demon-
strates superior performance over CodeGPT in ED, METEOR,
and ROUGE-L metrics, while CodeGPT exhibits a higher
BLEU-4 score surpassing 20%. Notably, both models achieve
a high ED value of around 50%. CodeGen establishes its per-
formance without further improvement compared to the 10
epochs versions.

To provide an estimate of the goodness of the results, we
compared the results of the models with the performance of
the state-of-the-art (SOTA). Since the task of generating Pow-
erShell using NMT models is a task never addressed before,
we compared the results with recent work investigating the
effectiveness of existing models in the generation of differ-
ent languages from NL, specifically, Python code [65] and in
shell language [66]. We found that the best performance is
21% for BLEU-4 and 38% for METEOR in the case of the

Python language, and 25% for BLEU-4 and 44% for ED in
the case of shell language. We notice that our results are in
line with the ones of the SOTA. Even better, our best perfor-
mance, represented by CodeT5+ without pre-training and 30
fine-tuning epochs, overcomes the SOTA over all the metrics.

We also assessed the impact of varying the number of
epochs on fine-tuning time, with distinct differences observed
between 3, 10, and 30 epochs for each model. For both
CodeT5+ and CodeGPT, fine-tuning over 3 epochs takes ap-
proximately 20 minutes, whereas CodeGen requires double
that time (40 minutes). Extending to 10 epochs, CodeT5+ and
CodeGPT need around 35 and 39 minutes, respectively, while
CodeGen’s training time increases to 90 minutes. For the 30-
epoch extension, CodeT5+ takes about 80 minutes, CodeGPT
requires 110 minutes, and CodeGen extends its training time
to 270 minutes. Finally, the comparison between the fine-
tuning times of pre-trained and non-pre-trained models did
not reveal evident differences, suggesting that the pre-training
process does not introduce a significant computational over-
head during the subsequent fine-tuning phase.

RQ1: To what extent can state-of-the-art NMT models
effectively generate offensive PowerShell code for security

applications from NL descriptions?

The evaluation of CodeT5+, CodeGPT, and CodeGen
underscores their remarkable effectiveness in generat-
ing offensive PowerShell code for security applications
from NL descriptions. CodeGen surpasses the other
models in the 3 and 10 epochs settings according to all
metrics. CodeT5+, designed with a specialized architec-
ture for code generation tasks, consistently outperforms
CodeGPT and CodeGen across various metrics in the 30
epochs setting. Particularly noteworthy is the compar-
ison with SOTA performance in code generation tasks
for different languages, such as Python and shell lan-
guages. Our best-performing model, CodeT5+ without
pre-training and 30 fine-tuning epochs, surpasses the
SOTA results, exhibiting superior performance across
all metrics.

Considering the impact of pre-training further enriched
our evaluation. Focusing on the 3-epoch experiments,
CodeT5+ exhibits a slight improvement across all metrics, and
CodeGPT extends the improvement to 2%-4% across all met-
rics. Conversely, CodeGen appears to have better performance
without pre-training. Training the models for 10 epochs re-
veals a more pronounced distinction between the two versions.
CodeT5+ pre-training results in a 2% increase in both Edit
Distance (ED) and METEOR metrics. CodeGPT, on the other
hand, shows a substantial displacement of 1.7%, 3.5%, 4.6%,
and 3.6% for BLEU-4, ED, METEOR, and ROUGE-L, respec-
tively. CodeGen maintains a negative displacement between
the versions even with the extended training duration. When
extending the fine-tuning duration to 30 epochs, pre-training
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Natural Language Intent Ground Truth

‘ Model Output

Start a process with DirLister,
wait for 4 seconds, and stop the | ; Start-Sleep -Second 4 ;
DirLister process.

Start-Process ${WebBrowserPassViewPath}
Stop-Process ; Start-Sleep -Second 4 ; Stop-Process
-Name "WebBrowserPassView"

Start-Process ${WebBrowserPassViewPath}

-Name "WebBrowserPassView"

Invoke-Mimikatz cmdlet with
bypassed execution policy.

powershell.exe -exec bypass -c
Invoke-Mimikatz

w

powershell.exe -ExecutionPolicy Bypass
-Command “ Invoke-Mimikatz ”

Invoke compiled HTML Help
(CHM) file with specific storage
handler, HH file path, and CHM

file path.

Invoke-ATHCompiledHelp
-InfoTechStorageHandler $ {
infotech_storage_handler } -HHFilePath
$ { hh_file_path } -CHMFilePath $ {
chm_file_path }

Invoke-ATHCompiledHTMLHelp
—InfoTech eHandler

$ { infotech_ age_handler }
ilePath $ { hh_file_path }

-CHMFilePath $ { chm_file_path }

Get the wininit process and
perform token manipulation to
create a new process for
‘cmd.exe’.

Get-Process wininit
Invoke-TokenManipulation
-CreateProcess ’cmd.exe’

| Swininit = Get-Process wininit
Invoke-TokenManipulation
-CreateProcess ’'cmd.exe’

Table 5: Illustrative examples of model output. The prediction errors are red/bold. Slashed text refers to omitted predictions.

did not consistently yield superior results. In this case, the
performance of pre-trained models is comparable to non-pre-
trained counterparts.

RQ2: What is the influence of the training strategies on
NMT models’ performance in offensive PowerShell code

generation?

As the fine-tuning period extends, such as with 10 and 30
epochs, the benefits of pre-training diminish or even be-
come counterproductive. In these cases, the performance
of pre-trained models consistently falls below that of
their non-pre-trained counterparts. This highlights the
variable effectiveness of pre-training, dependent on the
duration of fine-tuning. These findings underscore the
interplay between the duration of training epochs and
the usage of pre-training, emphasizing the importance
of carefully considering these factors in model develop-
ment.

Table 5 illustrates four cases of model predictions. They
are examples from our test sets to highlight both success-
ful and failed prediction cases. Row # 1 demonstrates the
models’ ability to generate a PowerShell snippet composed
of multiple commands (separated by semicolons) without
errors. The model correctly predicts the correct variables,
e.g., WebBrowserPassViewPath, and command names, such
as Start-Process, Start-Sleep. Row # 2 is indicative
of the concept of implicit model knowledge. Indeed, the
model can generate a correct command by leveraging al-
ternative equivalent versions of PowerShell’s option flags
(e.g., ~ExecutionPolicy instead of -exec). Row # 3 shows
a relevant example of a failure case. It is possible to no-
tice how the model correctly predicts the variable names
and values except for one not referenced in the intent

(-InfoTechStorageHandler). In addition, the model fails
to predict the correct command name, generating an addi-
tional word (HTML) based on the NL description. Finally, row
# 4 illustrates another incorrect example in which the model
is capable of generating the ground truth code, except for
introducing an additional variable to save the output of the
command ($wininit =).

Overall, we can conclude that these examples indicate the
model’s ability to generate complex PowerShell snippets, even
though there is still some error margin, specifically related to
omissions (e.g., variable names).

4.3 Static Analysis

We evaluated the generated code through static analysis to
ensure that the code adheres to PowerShell conventions and
does not contain syntax errors. The analysis was conducted
on the top-performing models identified in the previous eval-
uation, namely the 30-epoch versions of CodeT5+ with pre-
training, CodeGPT without pre-training, and CodeGen with
pre-training. The static analysis leverages PSScriptAnalyzer
[67], a static code checker for PowerShell modules and scripts.
The primary purpose of PSScriptAnalyzer is to assess the qual-
ity of PowerShell code by analyzing its syntax, structure, and
adherence to best practices. The rules are based on Power-
Shell best practices identified by the PowerShell Team and the
community, organized into categories such as Cmdlet Design,
Script Functions, Error Handling, Scripting Style, and Script
Security. The severity levels (ParseError, Error, Warning, In-
formation) associated with each rule indicate the importance
and impact of adhering to the specific guideline. In this work,
we focused on parse errors, which occur during the parsing
phase of a program’s execution, errors, occurring when code
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E;). m a Static Analysis Test Set ParseError (%) Error (%) Warning (%)
NL Intents Pre-trained Generated CodeT5+ 8.85 W 1.94 35.92 @
models commands -
() CodeGPT 1.77 mm 2.70 29.73 W
5] ~ | e
Tooset PSScript Syntactic CodeGen 1.77 1.80 31.53 1.
est Set Analyzer E i
l Ground Truth 2.65 0.00 = 39.09
Doference Table 7: Summary of ParseError, Error, and Warning percent-
ages for models and ground truth on the test set.
Figure 3: Static analysis workflow.
[ 6
. - UseDeclaredVarsMoreThanAssignments l[:%] 4
Model Single Accuracy Comparative —
(%) Accuracy (%) s
CodeT5+ 91.15 W 92.04 W ) AvoidUsingWhICmdiet 2
CodeGPT 98.23 98.23 1 § 3
CodeGen 98.23 1 98.23 1l [m—) 10

Table 6: Syntactic evaluation for the best models.

does not meet specific high-severity rules (e.g., hardcoding
computer names, using plain text passwords), and warnings,
which typically highlight potential issues or coding practices
that might lead to errors or security concerns.

We developed a syntactic analysis tool to streamline the
process of detecting parse errors, errors, and warnings in
PowerShell scripts. This tool automatically feeds PSScriptAn-
alyzer with PowerShell commands generated by the models
during the testing phase. By doing so, our tool identifies er-
rors and warnings in the generated code, assessing the overall
syntactic quality of the models.

The syntactic analysis process begins with our test set,
which consists of NL intents paired with reference PowerShell
commands. These NL intents are fed into fine-tuned models to
produce the PowerShell code. Both the generated commands
and their corresponding references are then subjected to the
syntax analyzer.

To assess the syntactic quality of the generated commands,
we introduce two distinct metrics: Single Syntax Accuracy
and Comparative Syntax Accuracy. The metrics are defined
as follows:

« Single Syntax Accuracy: evaluates the percentage of
commands without parse errors. This evaluation is in-
dependent of the reference commands from the ground
truth.

¢ Comparative Syntax Accuracy: assesses the syntactic
correctness of the generated commands by considering
the results alongside the reference commands. When
both commands present common parse errors, these are
excluded from the counting process. Given that some ref-
erence commands include stub templates such as <code>

AvoidUsingCmdletAliases

e — o— o ]

117
e Al |- e 14
S 14

0 5 10 15 20 25
Number of Warnings

oCodeT5+ o©CodeGPT w©CodeGen oGround Truth

AvoidUsinginvokeExpression

Figure 4: Counts for different warning types in each test set.

or <command>, the analysis filters out parse errors asso-
ciated with these templates, specifically the Redirection-
NotSupported and MissingFileSpecification errors.

The workflow for the syntactic analysis is depicted in Fig-
ure 3. Looking at the results in Table 6, it is possible to notice
that all the models achieved a score greater than 90%, assess-
ing their strong capability to generate syntactically correct
code. CodeGPT and CodeGen, in general, demonstrate high
performance across both syntax metrics. Table 7 summarizes
the percentages for various severity types in the test set. Given
that warning frequencies are consistently above 30% for all
models, including the ground truth, Figure 4 enumerates the
various warning types within each set.

4.4 Execution Analysis

The execution analysis aims to evaluate the generated offen-
sive PowerShell code when running in an actual system. This
involves assessing the ability of the code to behave as intended
in terms of effects caused on the system. Therefore, we run
both code from the ground truth and generated code, monitor
their behavior at runtime, and compare the behavioral events
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Figure 5: Execution analysis workflow.

powershell.exe -ExecutionPolicy Bypass -NoLogo -NonlInteractive -NoProfile -WindowStyle

Hidden -Command "IEX (Invok Request —Uri
Scripts-for-Hack d: i ipts/all_in_one_enum.ps1').Content"Whitecat18 B
powershell.exe -NoP -Nonl -W Hidden -Exec Bypass -Command "Invoke-WebRequest

i Whit ipts-for-Hack d in/
scripts/all_in_one_enum.ps1 -OutFile hello.ps1; .\hello.ps1" g—|

1 I
Ground truth 188 145 151 Generated code
events events

pwsh.exe>C:\Windows\System32\ntdll.dll

pwsh.exe>C:\Windows\System32\ntdll.dll

pwsh.exe>C:\Windows\System32\gdi32full.dll

pwsh.exe>C:\Windows\System32\gdi32full.dll

exe>C:\Windo .dil pwsh.exe>C:\Program

System. R { dll

P exe>C:\Windo dil

pwsh.exe>C:\Program
Files\F ystem.C ions.Immutable.dll

Figure 6: Comparison between events.

that occurred during their execution. The entire workflow for
the execution analysis is shown in Figure 5.

We performed the experiments in a controlled and dedi-
cated testing environment. The controlled environment con-
sists of a virtualized Windows 10 system running in Virtual-
Box 7. The system is equipped with a set of security-related
tools, such as PowerSploit [68] and Mimikatz [69], that are
invoked by many samples of offensive code in our dataset.
We assume that these tools have been previously infiltrated
by the attacker in a previous stage, as typical of advanced
malicious campaigns. To monitor the execution of Power-
shell code, we integrated Sysmon [70], a popular Windows
service for gathering system events, including the filesystem,
the network, and the Windows Registry. To be able to run
the generated code on the system, we assume the scenario
in which an attacker already bypassed part of the security
mechanisms by deactivating the Microsoft Defender Firewall,
Windows Defender, and Microsoft Defender SmartScreen.

The evaluation involved executing each command from
both the generated ones and those from ground truth
multiple times as a single-line PowerShell script. This
generates a process through the standard Windows Sys-
tem.Diagnostics.Process. We filter the events recorded by
Sysmon by filtering out records related to previous irrelevant

Table 8: Execution analysis results.

events and selecting records based on the Process ID (PID),
focusing on both the parent process responsible for executing
the PowerShell command and its child processes. The com-
parison has been performed comparing the events triggered
by the generated command (called retrieved records) to those
from the execution profile of the ground truth (called rele-
vant records). The events that appear both when executing
the generated code and the ground truth are relevant records
retrieved. From these sets of events, we evaluate the precision,
recall and F1-score of the generated code, defined as follows:

1 i #(relevant records retrieved);

recision = — .
P N & #(retrieved records);

1 & #(rel t ds retrieved):
recall = — ) (relevant records retrieved);

N #(relevant records);

i
precision x recall

F1-Score =2 —————
precision + recall

Figure 6 illustrates an example of event analysis: given
the ground truth and the generated PowerShell command,
we execute them and compare the set of events triggered by
each command to measure their overlap. To avoid noise in
the analysis due to events that only occur sporadically (e.g.,
because of non-determinism sources in the system), we iden-
tify such events by performing multiple repeated runs of the
code and discard non-reproducible events from the analysis.
After every command execution, the Windows environment
is restored to a clean state, by reloading the virtual machine
from a snapshot, to avoid interferences caused by the effect
of previous commands.

The results shown in Table & outline how all models share
an overall precision higher than 90% and an overall recall
higher than 80%, likewise, the Execution F1-Score is very
similar between the different models and higher than 88%.
Thus, although there were differences found in the textual
similarity analysis, the generated code closely matches the
ground truth in terms of dynamic events.

RQ3: How good is the generated code in terms of code
quality and dynamic behavior?

The syntactic analysis of the generated code showed that
the models are indeed capable of generating high-quality
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Figure 7: Comparison with ChatGPT on output similarity
metrics.

PowerShell code. CodeGPT and CodeGen achieve the
best results in terms of Single and Comparative Accu-
racy, along with an amount of Warnings and ParseErrors
comparable to the ground truth. The execution analy-
sis revealed that the generated PowerShell code closely
replicates the behavior of the ground truth code, generat-
ing the same events in the target system. This is indica-
tive of the generated code’s capability of performing the
malicious actions described in the NL intents.

4.5 Comparison with Public AT Model

In this study, we conducted a comprehensive evaluation
by comparing the performance of our fine-tuned models,
CodeT5+, CodeGPT, and CodeGen, with ChatGPT, the Ope-
nAI LLM service widely used for a variety of tasks, including
code generation [71]. The purpose was to assess the special-
ized capabilities of our models in generating PowerShell code
for offensive security tasks and to benchmark their perfor-
mance against a publicly available, closed-source model. We
leveraged ChatGPT 3.5, which represents the most recent free
version at the time of this work.

To assess the capabilities of the OpenAl model, we first
provided a detailed description of the required task, i.e.,
the generation of PowerShell commands starting from NL
descriptions, including an example of input and the desired
output. Then, we provided a list of natural language code
descriptions and asked ChatGPT to automatically generate
the corresponding PowerShell code. Specifically, following
works and guidelines on prompt engineering [71, 72], we
leveraged the following prompt: I want you to act
as a code generator. Given a natural language
description of a PowerShell command, generate
the corresponding PowerShell code.

Figure 7 shows the results of this analysis. The figure shows
that our fine-tuned models consistently outperform ChatGPT

0.8
0.7
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0.5
0.4
0.3
0.2
0.1

O L 11 | Sy L 11 | i |

SYNTAX ACC. EXEC-F1
O0CodeT5+ 0 CodeGPT D CodeGen O ChatGPT 3.5

Figure 8: Comparison with ChatGPT on static and execution
analysis evaluation metrics.

across multiple evaluation metrics. Specifically, ChatGPT
exhibits a BLEU-4 score of 7.45%, an ED of 33.84%, a ME-
TEOR of 22.14%, and a ROUGE-L of 20.61%. In contrast,
our fine-tuned models showcase superior overall performance
across all output similarity metrics. The tailored training on
the specialized fine-tuning dataset, designed specifically for
offensive security code generation, results in more accurate
code generation, enabling our models to surpass the capabil-
ities of ChatGPT in this particular task. We also analyzed
the syntactical quality of the PowerShell code generated by
ChatGPT, obtaining a Syntax Single Accuracy of 95.58% and
a Syntax Comparative Accuracy of 96.46%. These results
underscore the commendable ability of ChatGPT to generate
accurate and syntactically correct PowerShell code.

Finally, we extended the execution analysis to ChatGPT,
following the same strategies described in Section 4.4, ob-
taining an overall Execution F1-Score of 82.92%. Despite
the strong syntactic performance, ChatGPT remains one step
below the fine-tuned models in the qualitative analysis of the
generated PowerShell code. The results of this analysis are
shown in Figure 8.

RQ4: How do fine-tuned NMT models, leveraging

security-oriented training data, compare to a publicly avail-
able, closed-source model?

The comparative analysis with ChatGPT, a publicly
available general-purpose language model, highlights
the specialized strengths of privately fine-tuned models,
CodeT5+, CodeGPT, and CodeGen, in offensive Pow-
erShell code generation. The fine-tuned models consis-
tently outperform ChatGPT across BLEU-4, Edit Dis-
tance, and METEOR scores. While showing notable
performance on syntactic accuracy, ChatGPT achieves
poorer results than the fine-tuned models for the exe-
cution analysis. This underscores the significance of

38 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association



domain-specific fine-tuning and the benefits of training
on security-oriented datasets, providing an advantage
in generating offensive PowerShell code compared to
a general-purpose language model. The results affirm
the effectiveness of tailored training data for achieving
superior performance in domain-specific tasks.

S Threats To Validity

Model selection. The external validity of the study might be
impacted by the choice of NMT models (CodeT5+, CodeGPT,
CodeGen). To mitigate this, we carefully selected models with
distinct architectures and capabilities, ensuring a representa-
tion of current advancements in the field [16,73,74]. This care-
ful selection aims to ensure that our findings reflect broader
trends in NMT model performance for code generation tasks.

Evaluation metrics. The reliance on output similarity met-
rics, although representing the most common solution in the
field, poses a potential threat to construct validity, as these
metrics may not fully encapsulate the correctness and func-
tional adequacy of the generated PowerShell commands. To
address this issue, our evaluation strategy encompasses a com-
prehensive suite of metrics, including similarity, syntactic, and
execution metrics, each offering unique insights into the mod-
els’ performance. By considering multiple variants of these
metrics and aligning with common practices in code genera-
tion evaluation, we aim to provide a well-rounded assessment.
No single metric is perfect, but analyzing them collectively
allows for a more comprehensive evaluation of the code.

Fine-tuning data. The construction of our dataset, meticu-
lously curated from several sources such as online repositories,
Atomic Red Team, Stockpile, and Empire, introduces poten-
tial limitations regarding the generalizability of our models’
performance across different offensive security contexts. To
minimize the impact of these limitations, we sourced data
from diverse origins and conducted manual verification of
each sample in the labeled dataset, ensuring the completeness
and coherence of descriptions with the intended programs.
The diversity in data sources and the thorough verification
process aim to diminish the influence of any singular source’s
peculiarities and errors in programs or descriptions, thereby
enhancing the dataset’s applicability and reliability for train-
ing and evaluating Al models in generating offensive Pow-
erShell code. Furthermore, our approach to crafting NL de-
scriptions, inspired by established styles found in PowerShell
literature, mirrors real-world scenarios where such descrip-
tions play a critical role in describing PowerShell commands.
Finally, regarding the size of our dataset, we notice that it is
in line with other state-of-the-art corpora used to fine-tune
models, which are in the order of one thousand samples [52].

6 Ethical Considerations

Recognizing that attackers use attacks as a weapon, it is im-
portant to specify that the goal of the proof-of-concept (POC)
is not to cause harm but to surface security weaknesses within
the software. Identifying security issues allows companies to
patch vulnerabilities and protect themselves against attacks.

Offensive security is a sub-field of security research that
tests security measures from an adversary or competitor’s
perspective, employing ethical hackers to probe a system for
vulnerabilities [75, 76]. Our work aims to automate attack
generation to explore critical vulnerabilities before they are
exploited by attackers [77]. Indeed, our work simplifies the
process of coding the attacks to surface security weaknesses
within the software and can provide valuable information
about the technical skills, degree of experience, and intent of
the attackers. With this information, it is possible to imple-
ment measures to detect and prevent attacks [78].

7 Conclusion

In this paper, we assessed the feasibility of using NMT models
to generate PowerShell code for security contexts. We aimed
to demonstrate that Al-based code generators are indeed fit to
generate PowerShell code, specifically, offensive PowerShell,
which spans several applications in the cybersecurity domain.
The evaluation of CodeT5+, CodeGPT, and CodeGen demon-
strated that these models achieve significant performance on
the code generation task, both with and without pre-training.
Moreover, the study showed that domain-specific fine-tuning
allows our models to outperform state-of-the-art privately fine-
tuned models, i.e., ChatGPT. We also introduced two novel
datasets for PowerShell code generation to use for pre-training
and fine-tuning Al-code generators.

Future work includes further analysis of the generated code,
such as sandbox execution of the offensive scripts, to under-
stand whether the code can evade detection measures, along
with more NMT models spanning several architectures and
capabilities.
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Abstract

NSEC3 is a proof of non-existence in DNSSEC, which pro-
vides an authenticated assertion that a queried resource does
not exist in the target domain. NSEC3 consists of alphabeti-
cally sorted hashed names before and after the queried host-
name. To make dictionary attacks harder, the hash function
can be applied in multiple iterations, which however also
increases the load on the DNS resolver during the computa-
tion of the SHA-1 hashes in NSEC3 records. Concerns about
the load created by the computation of NSEC3 records on
the DNS resolvers were already considered in the NSEC3
specifications RFC5155 and RFC9276. In February 2024, the
potential of NSEC3 to exhaust DNS resolvers’ resources was
assigned a CVE-2023-50868, confirming that extra iterations
of NSEC3 created substantial load. However, there is no pub-
lished evaluation of the attack and the impact of the attack on
the resolvers was not clarified.

In this work we perform the first evaluation of the NSEC3-
encloser attack against DNS resolver implementations and
find that the NSEC3-encloser attack can still create a 72x
increase in CPU instruction count, despite the victim resolver
following RFC5155 recommendations in limiting hash itera-
tion counts. The impact of the attack varies across the different
DNS resolvers, but we show that with a sufficient volume of
DNS packets the attack can increase CPU load and cause
packet loss. We find that at a rate of 150 malicious NSEC3
records per second, depending on the DNS implementation,
the loss rate of benign DNS requests varies between 2.7% and
30%. We provide a detailed description and implementation
of the NSEC3-encloser attack. We also develop the first anal-
ysis how each NSEC3 parameter impacts the load inflicted on
the victim resolver during NSEC3-encloser attack.

We make the code of our NSEC3-encloser at-
tack implementation along with the zonefile and
the evaluation data available for public use: https:
//github.com/Goethe-Universitat-Cybersecurity/
NSEC3-Encloser-Attack.

1 Introduction

On 13 February 2024 a vulnerability,' termed Preparing an
NSECS3 closest encloser proof can exhaust CPU resources,
was registered as CVE-2023-50868 (short for Common Vul-
nerabilities and Exposures) in a list of publicly disclosed
information security flaws. The description of the CVE
says that the processing of responses sent by nameservers
authoritative for DNSSEC signed zones can exploit mali-
ciously crafted NSEC3 records to cause CPU exhaustion on a
DNSSEC-validating resolver. By flooding the target resolver
with queries, an adversary can trigger responses to the target
resolver with specially crafted NSEC3 records exploiting this
flaw. Computation of those NSEC3 records can significantly
impair the resolvers’ performance. In this work, we provide
the first analysis of the vulnerability and an evaluation of the
attack against popular DNS resolvers. We explain the impact
on the resolvers’ implementations using code analysis as well
as monitoring of the CPU instruction count and measurements
of the latency incurred on requests from benign clients.
Vulnerabilities in proof of non-existence. Domain Name
System Security (DNSSEC) RFC4033 — RFC4035 was de-
signed to protect the Domain Name System (DNS) against
manipulation attacks by attaching digital signatures to DNS
records. The DNS resolvers can use the public keys of the cor-
responding domains to authenticate the DNS records that they
receive in responses. To provide an authenticated proof for
resources that do not exist, RFC3845 defined NSEC records,
which list the hostname before and the hostname after the re-
quested hostname. The listing of hostnames in NSEC records
exposed the domains to zone enumeration attacks, discussed
in RFC4470. To mitigate zone enumeration attacks, the IETF
standardized NSEC version 3 (NSEC3) in RFC5155. NSEC3
computes hashes over the hostnames and the resulting NSEC3
record lists the hashed names instead of plaintext names. Nev-
ertheless, NSEC3 too was found vulnerable to zone enumera-
tion attacks [3,5, 10]. Although the privacy aspects of NSEC3
records were substantially explored, there was no evaluation

"https://kb.isc.org/docs/cve-2023-50868
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of the performance impact of NSEC3 records on DNS re-
solvers. In this work, we provide the first evaluation of the
performance load induced on the resolvers by attacks with
specially crafted NSEC3 records, which we dub the NSEC3-
encloser attack. Although the potential degradation of perfor-
mance by NSEC3 records was considered in RFC5155#§8.3,
there was no evaluation of the impact on performance by
attackers and the role of the NSEC3 parameters on the effec-
tiveness of the attack. A recently registered CVE-2023-50868
does not explain the impact of the attack on the resolvers nor
provides the evaluation of the attack.

NSEC3-encloser can exhaust CPU and lead to loss. We
implement and evaluate an NSEC3-encloser attack that leads
to increased CPU instruction counts on the affected resolvers,
and also to loss of packets from legitimate clients. In our
implementation of the attack, the NSEC3 records use the
maximum number of iterations supported by the DNS
resolver implementations, which follow the recommendation
counts listed in RFC5155. We experimentally observe that
using salt in the calculation of hashes in NSEC3 results in a
more effective attack than attacks without the salt. The reason
is that the salt value creates an additional input block which
leads to an increased calculation time since the blocks are
processed sequentially. At the same time, the salt value does
not substantially increase the resilience to zone enumeration
attacks since, in contrast to the traditional uses of the salt
in hash computations like for passwords, the hashes are im-
plicitly salted per zone by including the domain name in the
computation process. This is also stated in RFC9276, and
limits the benefit of using a salt in the first place.

Our contributions can be summarized as follows:

e We develop a tool for automated evaluation of the CVE-
2023-50868 attack, expanding on the proof-of-concept in the
CVE, and providing an automated setup to generate zones
and queries. Our implementation creates multiple NSEC3
configurations setting different values for NSEC3 parame-
ters, including a novel method for maximizing the number of
NSEC3 records in DNS responses and varying salt length, all
of which allow for testing different aspects of the resolvers’
behavior. We make our tool open-source to facilitate repro-
duction of our work [6].

e We provide the first evaluation of an attack that exploits
NSEC3 records for creating a load on DNS resolvers. In our
evaluation, we also analyze the resolvers’ behavior and limits
introduced in RFC5155 and explain how the resolvers react to
different values of NSEC3 parameters. We find that the salt in-
creases the load on the resolvers by 30%, an aspect which was
previously overlooked and not included in either CVE-2023-
50868 or the PoC that the CVE made public. Our full fledged
and automated attack evaluation allowed to identify the role of
salt in increasing the CPU instruction counts on the resolvers.
We also explore the limitations of the NSEC3-encloser attack,
i.e., the high query rate required to load resolvers and the
relatively low impact on traffic loss.

o We perform the first comparison of the NSEC3-encloser
attack to other attacks on DNS, and explain the differences
in performance and load, as well as in the vulnerabilities in
resolvers’ behavior that are exploited.

o We perform measurements of NSEC and NSEC3 configu-
rations on DNSSEC-signed domains and find that 56% of the
domains use NSEC which is vulnerable to zone enumeration,
while 41% use NSEC3. 77% of those NSEC3 domains use a
high number of hash iterations which exposes those domains
for abuse to create load on victim resolvers.

Organization. This paper is organized as follows. In Sec-
tion 2, we provide an overview of DNSSEC and the proof of
non-existence with NSEC and NSEC3. We provide the details
of the NSEC3 attack in Section 3. We evaluate the NSEC3
attack in Section 4, demonstrating the role of the parameters
in the NSEC3 record on the impact of the attack. We measure
real-world DNSSEC and NSEC/3 in Section 5. Finally, we
review Related Work in Section 6 and conclude in Section 7.

2 Overview of DNSSEC and NSEC3

The IETF standardized DNSSEC RFC4033 — RFC4035 to
enable DNS resolvers to detect if DNS records in responses
are manipulated. The DNSSEC specification requires that
the records in a zonefile are digitally signed. The zonefile
contains DNS records as well as DNSSEC material, most
notably DNSKEY, RRSIG, and DS records.

DNSSEC signatures are stored in RRSIG-type DNS
records. The public keys used to validate the signatures are
sent in DNSKEY-type records. DS records from a parent
zone are used to authenticate individual Key Signing Key
(KSK) type DNSKEY records in a child zone. This is done to
delegate trust from a parent zone public key to a child zone
public key. DS records use the same triple (owner name, algo-
rithm, key tag) to identify a subset of candidate DNSKEY's
as RRSIGs.

In additional to cryptographically attesting the validity of
DNS records, DNSSEC also enables proofs for non-existing
records, enabling authenticated denial of existence.

For this, RFC4035 defines Next Secure (NSEC) records for
a precomputed denial of existence, that prove that a requested
hostname does not exist. Each NSEC record contains a signed
pair of consecutive hostnames, sorted canonically. Each query
for a hostname not in the zonefile is answered by the name-
server with a suitable NSEC record. For instance, a query
for a non-existing hostname b.x.org is responded with a
signed NSEC record for a pair of existing hostnames sorted
canonically before and after the queried hostname: a.x.org
and c.x.org. The resolver can then confirm the requested
hostname does not exist as the NSEC record attests no do-
main name exists between a.x.org and c.x.org, proving
non-existence of b.x.org. An example of a NSEC record is
given below.
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\\ Domain | TTL | RR type | Next hostname

X.0rg 700  NSEC a.x.org

\\ Resource record sets
NS SOA RRSIG NSEC DNSKEY

Research showed that NSEC was vulnerable to zone enu-
meration attacks [3,5, 10]. By enumerating a target zone, an
adversary learns the IP addresses of all resources in the target
zone. An enumerated list of resources can be exploited for
other attacks, such as spam. To mitigate the threat introduced
by NSEC records, RFC5155 designed NSEC3: a precomputed
denial of existence. The idea of NSEC3 is replacing clear-text
hostnames with hashes, which makes zone enumeration from
the names significantly harder. The knowledge of the hashed
hostname cannot be directly used for zone enumeration since
cryptographic hash functions do not allow for the reconstruc-
tion of the plaintext hostname through preimage resistance.
NSEC3 uses an additional record NSEC3PARAM which con-
tains parameters for the NSEC3 validation, including the hash
algorithm, the amount of iterations, and salt parameters. A
single NSEC3PARAM record dictates the parameters for the
entire set of NSEC3 records. This is needed to ensure that any
query for a non-existent hostname maps to an NSEC3 record.
The ‘salt’ contains hexadecimal digits and is appended to
the domain name to make offline dictionary attacks harder.
‘Iterations’ indicates the number of times the hash function
was computed.

The NSEC3 record contains a pair of ordered hashes. Ac-
cording to RFC51535, to create the NSEC3 records, the canon-
ical hostname is hashed once and the resulting hash is re-
hashed a number of times according to the iteration parame-
ters in the NSEC3PARAM. Upon a query for a non-existent
resource, the nameservers should return to the requesting re-
solvers a signed NSEC3 record that contains two hashes, one
before the requested hostname and one after. The resolver can
then hash the hostname to ensure the hashed hostname lies be-
tween the returned hashes, thereby proving the non-existence.
An example of an NSEC3 record is given below.

\\ Hashed domain | TTL | RR type | Algorithm
ej23jdndjnd... 700 NSEC3 1 (SHA1)

\\ Flags | Iterations | Salt
0 150 64ccab74. ..

\\ Next hostname | Resource record sets
kev723jd. .. NS SOA RRSIG NSEC DNSKEY

RFC9276 defines the best current practice for setting and
dealing with NSEC3 parameters, including considerations of
Denial of Service (DoS) by Central Processing Unit (CPU)
resource exhaustion through NSEC3 hashing. The only hash
function standardized for use in NSEC3 records is SHA-1.

’https://wuw.iana.org/assignments/
dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml

According to RFC5155#§7.2, the resolvers require a proof
of the closest encloser, which proves that a subdomain of the
requested hostname is the closest encloser of that name. The
proof consists of up to two NSEC3 records: An NSEC3 record
that matches the closest (provable) encloser and an NSEC3
record that covers the “next closer” name to the closest en-
closer. The first NSEC3 record proves that the encloser exists.
The second NSEC3 record proves that the possible closest en-
closer is the closest, and proves that the queried hostname (and
any subdomains between the queried hostname and the closest
encloser) does not exist. These NSEC3 RRs are collectively
referred to as the “closest encloser proof” RFC5155. An ex-
ample in RFC5155 describes the closest encloser proof for the
nonexistent hostname alpha.beta.gamma.example.: The
owner might prove that gamma . example. is the closest en-
closer. The response contains the NSEC3 record that matches
gamma . example., and also contains the NSEC3 record that
covers beta.gamma.example. (which is the “next closer”
name).

According to the specification in RFC5155 to prove the
nonexistence of a hostname in a query, a closest encloser
proof and an NSEC3 record covering the (nonexistent) wild-
card record at the closest encloser MUST be included in the
response. This collection of (up to) three NSEC3 records
proves both that the queried hostname does not exist and that
a wildcard that could have matched the queried hostname also
does not exist; if gamma.example. is the closest provable
encloser to the queried hostname, then an NSEC3 record cov-
ering * . gamma . example. is included in the authority section
of the response.

3 NSEC3-Encloser Attack

The NSEC3-encloser attack exploits computational complex-
ity in hash calculation for closest encloser proofs. The idea
behind the attack is to set up a malicious zonefile in a valid
DNSSEC signed domain, then to cause the victim DNS re-
solvers to issue DNS queries for a non-existent resource in
the domain of the adversary. We design our attack to be fully
RFC compliant; both the client requesting resolution from
the victim resolver as well as the nameserver containing the
malicious zonefile fully conform to all RFC requirements.
The goal is to create a zonefile that maximizes both the num-
ber of hash calculations and the computation effort per single
hash calculation. We construct an attack on NSEC3 instead of
NSEC as the former requires hash calculations for the closest
encloser proof, which significantly increases computational
load compared to NSEC. The core aspect of the NSEC3 at-
tack lies in the construction of the proof of non-existence with
NSECS3 records, which should lead to many hash calculations
in the victim resolver. The adversary requests a resource that
inflicts large complexity for the resolver to prove the closest
encloser. In the following, we illustrate the attack concept
with exemplary adversarial zonefiles.
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3.1 Zonefile Construction

In the configuration of the zone, we follow DNSSEC and
NSEC3 standard specifications. This ensures that the zonefiles
are accepted by all standard compliant resolvers.

To maximize the attack impact, the attacker needs to trig-
ger the maximum number of hash validations in a victim
resolver. Since each NSEC3 record obtained from a DNS
request results in a single hash calculation, this corresponds
to maximizing the number of NSEC3 records for a given re-
quest. Following RFC5155, this number is limited to up to
three NSEC3 records per DNS request, leading to a maxi-
mum of three hash calculations per request. Achieving this
maximum number of NSEC3 records in each resolver request
requires a specific zonefile configuration, which we illustrate
in Figure 1. For a configured zone origin, the generated zone-
file consists of the following non-NSEC3 (and non-RRSIG)
records:

> The SOA, NS and DS records of the zone, present at the
zone apex.

> Two DNSKEY records, one for the KSK and one for the
ZSK.

> One NSEC3PARAM record at the zone apex, signaling
NSEC3 usage to the authoritative nameserver.

> The A record for the nameserver domain.

The zone has two unique name entries, ATTACK.ER and
NS1.ATTACK.ER. Following specification, both of these
names require an NSEC3 record, proving the existence of
the Resource Record sets (RRsets) listed for the names. How-
ever, to achieve three NSEC3 records in the response for an
arbitrary resolver request, this is insufficient, as any domain
existence or non-existence proof would require between one
and two of these NSEC3 records. To validate an NSEC3 re-
ply, resolvers need three different values from the nameserver:
The closest encloser, proof that the “next closer” domain does
not exist, and proof that no wildcard record exists covering
the requested domain.

The closest encloser proves that a domain exists in the zone
that is the nearest ancestor of the queried name. It establishes a
context within which the non-existence of the queried domain
can be asserted. In our example, the NSEC3 record with the
hash of ATTACK.ER proves the existence of this hostname,
and all subdomains will receive this record as their closest-
encloser.

The next domain hash of an NSEC3 record provides evi-
dence of the numerically subsequent domain name hash in the
zone, confirming that no records exist between the domain
name hash of an NSEC3 record and this next domain. For ex-
ample, consider a nameserver has to proof the non-existence
of a domain with a hash of 0x123. In the zone, the next smaller
NSEC3 record has a hash of Ox111, with a next hash value of
0x222. Since the requested domain hash (0x123) is larger than
0x111 but not equal to 0x222, the requested domain provably
does not exist in the zone. The nameserver must provide the

;; ZONE ‘ATTACK.ER’
ATTACK.ER. 0 IN SOA NS1.ATTACK.ER. NS1.ATTACK.ER. 000
100
ATTACK.ER. 0 IN NS NS1.ATTACK.ER.
ATTACK.ER. 0 IN DS 35650 7 1 e8316...

ATTACK.ER. 0 IN DNSKEY 257 3 7 AWEA...
ATTACK.ER. 0 IN DNSKEY 256 3 7 AWEA...

ATTACK.ER. 0 IN NSEC3PARAM 1 0 150 -

HKHV...38AU.ATTACK.ER. 0 IN NSEC3 1 1 150 -
HKHV...38B0

HKHV...38B0.ATTACK.ER. 0 IN NSEC3 1 1 150 -
Qcac...7u4s (2)

NS1.ATTACK.ER O IN A 6.6.6.6

QCQC...7U45.ATTACK.ER. 0 IN NSEC3 1 1 150 - SN5U...89IT A
RRsIG 3)

SN5U...89IT.ATTACK.ER. 0 IN NSEC3 1 1 150 - SN5U...891U NS
SOA DS RRSIG DNSKEY NSEC3PARAM

SN5U...89IU.ATTACK.ER. 0 IN NSEC3 1 1 150 -
HKHV...38AU (5)

[...] ;; RRSIG records

Figure 1: Generated attack zonefile example.

NSEC3 record proving that the “next closer” domain (the
ancestor of the queried name just below the closest encloser)
does not exist. The resolver can confirm that this domain
name does not exist by validating that the next hash in the
returned NSEC3 record is not the hash of the “next closer”
domain. By inference, the queried name cannot exist, too,
since the zone does provably not include one of its ancestors.

Finally, the resolver needs to ensure that no wildcard record
covers the requested domain. The nameserver thus includes
the NSEC3 record next-smaller of where the hash of the wild-
card record corresponding to the level of the enclosed domain
would be. These proofs may, however, overlap. For example,
if the next domain corresponds with the NSEC3 entry for the
closest encloser, the nameserver will only send the overlap-
ping entry once, reducing the resulting computational effort
in the resolver, thereby weakening the attack.

To force the authoritative nameserver to serve exactly three
NSEC3 records to every request for a non-existing domain
name and thereby maximize the impact of the attack, we
develop a new scheme for NSEC3 records in the zone. The
required records are described in the following. Note that H
is the NSEC3 hash function used, generally SHA-1.

(1) H(ATTACK.ER).ATTACK.ER with next hash (3)

—~ o~

(2) H(NS1.ATTACK.ER).ATTACK.ER
(3) (H(ATTACK.ER)+1).ATTACK.ER
(4) (H(x.ATTACK.ER)—1).ATTACK.ER with next hash (5)

(5) (H(*.ATTACK.ER)+ 1).ATTACK.ER
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NSECS3 records (1) and (2) are mandatory records and thus
must be included in the domain. Further, in the attack setup,
the adversary will trigger resolution of a non-existent sub-
domain of the ATTACK.ER domain, resulting in (1) always
contained in the reply as it is the closest encloser to all re-
quests. Note that this closest encloser NSEC3 record also
includes a next-hash value. If the resolver requests a domain
which is, by chance, hashed to a value directly “after” the
ATTACK . ER domain hash, the authoritative server would de-
tect the overlap and only send a single NSEC3 record (1) to
cover closest encloser and the next hash. To prevent this and
force an additional NSEC3 record in the answer, we include
an additional NSEC3 record (3) which covers the hash one
larger than (1). Thus, (1) always has (3) as next hash and
therefore never covers any other non-existent domain in the
zone. It will therefore never overlap with the required “next
closer” domain record.

Similarly, the attacker needs to ensure that none of the
above mentioned records, by chance, covers the wildcard
domain name, as the resolver would then, e.g., only need to
send a single record for “next closer” and wildcard proof. To
prevent this, a new record (4) is added, with a hash value just
below the hash of the wildcard domain name, as this record
will now always be included to proof non-existence of the
wildcard domain. Conversely, this new record now also has
a next hash value, which might by chance cover the “next
closer” domain of the requested domain, again leading to
overlap. Therefore, a new record (5) is added that ensures that
the record (4) only covers two hashes. Thus, for every request
to a non-existent domain, the nameserver must include three
NSEC3 records: (1) for closest encloser, then (2), (3) or (5)
for the “next closer” proof, and finally (4) for wildcard proof.

3.2 Maximizing the Impact

Using the above described zonefile as-is only results in three
hash computations. However, the impact can be increased,
both by adapting the DNS request from client to resolver, and
by adapting the malicious zone.

3.2.1 Adapting the request

When a client requests a non-existent domain from the re-
solver, the resolver needs to conduct the above described
checks to attest non-existence of the domain, including
the check for the closest encloser. Crucially, the resolver
cannot necessarily directly infer the closest encloser from
the NSEC3 records. For instance, consider a nested sub-
domain A.B.ATTACK.ER. The resolver receives a hash for
the closest encloser, but does not directly know if the hash is
for A.B.ATTACK.ER, B.ATTACK.ER, or ATTACK.ER. Instead,
the resolver has to attempt for each candidate individually
whether any of the NSEC3 records in the response proves the
existence for the encloser. The algorithm for this is listed in

RFC5155. The resolver hashes the query name and matches
the resulting hash against each NSEC3 record. If none of the
records fit, it has to slice away the next label and try again,
repeatedly hashing and matching. Therefore, the workload of
the closest encloser proof depends on the number of labels
below the closest encloser in the query name and, to a lesser
degree, on the number of NSEC3 records in the nameserver
response. Maximizing these numbers can incur a significant
workload of calculating hashes on the resolver. Note that the
maximum number of labels in the request is limited by the
maximum request size of 255 bytes in RFC1035.

3.2.2 Adapting the zone

Using NSEC3 parameters in a malicious zonefile, the per-
hash overhead can be greatly increased. In the following, we
highlight the two NSEC3 parameters that can be manipulated
to maximize impact.

3.2.3 Hash iteration count

NSEC3 supports hash iterations to increase computational ef-
fort for brute-forcing hash values. Hash iterations require that
the hash of a domain name is re-iterated through the respective
hash function for a set number of iterations. This mechanism,
while improving security through hardening brute-force pro-
tection, can be exploited to increase computational load per
calculation on the resolver, resulting in a stark increase in the
number of hash calculations in the attack. For example, if the
resolver needs to calculate three hashes for the three NSEC3
records in the zone, choosing an iteration count of 100 will
result in a total of 300 hash calculations.

3.24 Adding a salt

Additionally to iterations, NSEC3 also supports protection
against rainbow-table attacks [9] through the addition of a salt
value to the hash. The salt is added to the plaintext domain
name before hashing, which prevents pre-calculation of tables
of potential domain names. The salt additionally increases the
computational load for hash calculations, as SHA-1 (the only
currently supported hash algorithm) exhibits an increase in
computation time over longer plaintext inputs. The increase
in computation time stems from the underlying blocks that
are used as input to the hash functions; with more blocks of
plaintext, the hash function takes linearly more time. Notably,
when using iterations, the salt is not only added to the first
iteration of the hash function but to all subsequent inputs to
the function, increasing load for each of the iterations.

Our code-review yields that all investigated resolvers sup-
port both the hash iterations and the salting, following RFC
specification. An exemplary implementation of the hash func-
tion in Unbound DNS resolver is given in code Listing 1.
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Resolver Iteration Limits
Patched version 50 150
Unbound 1.19.1 — 1.13.2
Bind9 9.18.24,9.19.19  9.18.24,9.19.19  9.17.13
9.16.48 9.16.16
PowerDNS 5.0.0 5.0.0 452
Knot Resolver 5.7.1 5.7.1 5.3.1

Table 1: The limits introduced across resolvers over time.

nsec3_calc_hash(struct regional* region,
sldns_buffer* buf, struct nsec3_cached_hash* c) {
// [...] Init buffers and do sanity checks

// Write dname and salt to buffer
sldns_buffer_write(buf, c->dname, c->dname_len);
sldns_buffer_write(buf, salt, saltlen);

// Calculate first hash from buffer content
(void)secalgo_nsec3_hash(algo,
(unsigned char*)sldns_buffer_begin(buf),
sldns_buffer_limit (buf),
(unsigned char*)c->hash);

for(i=0; i<iter; i++) { // Iterate through number
// Insert previous hash and salt into buffer
sldns_buffer_clear (buf);
sldns_buffer_write(buf, c->hash, c->hash_len);
sldns_buffer_write(buf, salt, saltlen);

// Calculate hash from buffer content
(void)secalgo_nsec3_hash(algo,
(unsigned charx)sldns_buffer_begin(buf),
sldns_buffer_limit (buf),
(unsigned char*)c->hash);
}
}

Listing 1: Source code for NSEC3 iterations in Unbound.

The code snippet shows how the NSEC3 iterations are
performed. The hash is calculated and written into the result.
Then, a for-loop is entered which continuously writes the
result of the previous hash calculation into a clear buffer,
adds the salt and calculates the hash again, as long as the
iteration count is below the limit. The code-example shows
that Unbound, like all investigated resolvers, conforms to the
specification in iterating the hash and adding the salt in each
iteration.

Practical limits to iterations. The standard provides rec-
ommendations to the number of iterations a resolver may
allow on a given NSEC3 record. We find from code review
that these values are observed only in some resolvers; a subset
of resolvers do not enforce these limits, while other resolvers
set stricter limits in their standard configuration. This is not
surprising, as RFC9276 encourages resolvers to choose their
own limits to a value they seem adequate for current deploy-
ments. A detailed overview of enforced iteration limits in
different resolver versions is presented in Table 1.

Practical limits to salt length. Generally, a longer salt
value allows for longer calculation time of a given hash. How-
ever, the maximum length of the salt is limited by the available
space of the salt field in the NSEC3PARAM record, only al-
lowing up to 255 bytes of data for the salt. We find from code
review that all resolvers allow this maximum salt length, with
no resolver enforcing stricter length limits.

Resolver Version  Iteration Limit
Bind9 9.16.1 RFC5155
Bind9 9.18.12 150

Unbound 1.17.1 150

PowerDNS 4.8.2 150
Knot 5.6.0 150

Table 2: Resolver versions and iterations limits in the test setup.

Thus the maximum attack impact can be achieved by query-
ing the resolver with a deeply nested sub-domain, configure
the nameserver to always deliver all three NSEC3 records,
and using both the maximum number of iterations allowed by
the resolver, and the longest possible salt length of 255 byte.

3.2.5 Generating the zonefile

To test different zone configurations with differing values for
the NSEC3 parameters, we develop a script that automatically
generates zonefiles from a singular JSON configuration file.
We make the script publicly available to facilitate reproduc-
tion of our work [6]. This configuration file used in the script
specifies the individual zones, the cryptographic parameters,
such as key size and NSEC3 iterations, nameservers, TTL
values, and relationship between the zones. The generation
script written in Python parses a configuration, generates the
defined records, creates all relevant DNSSEC signature and
key records, and exports each zone to a file to be hosted by a
nameserver implementation.

4 Evaluation of the Attack

To practically evaluate the impact of the attack, we deploy the
resolvers and a nameserver with the attack zones in a local
isolated setup. We send attack queries to the resolvers and
measure the impact of the attack under different scenarios.
Section 4.1 describes the test setup, Section 4.2 illustrates
the influence of different parameters on the impact of the
attack, and Section 4.3 delves into comparing the impact of the
attack between different resolvers, highlighting differences
in implementations that cause different reactions to attack
requests. Finally, in Section 4.4, we show that the attack can
sufficiently stall resolvers to cause a drop of benign client
queries.

4.1 Setup

We deploy the five resolvers in Table 2 as Docker containers
communicating via a network bridge with our nameserver for
the attack requests, and the internet for benign requests. We
additionally include the older Bind9 version 9.16.1 in our test
environment to compare the impact of the (historic) iteration
count limits defined in RFC5155 to the lower limits adopted
by the current implementations. To serve the attacker zones,
we set up an NSD 4.6.1 authoritative nameserver on our local
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network which serves the generated zonefiles. This ensures
that we accurately measure the attack impact on the resolvers,
since the per-query overhead introduced by the authoritative
nameserver is negligible. The nameserver is not reachable
from the internet.

We generate and include zonefiles for different combina-
tions of parameters in NSD for each test, each having a unique
identifier as part of the domain name. The zones are gener-
ated as child zones EXii.NSEC3.EXAMPLE. ORG to a parent
zone NSEC3.EXAMPLE. ORG, where ii is the two-digit zone
identifier. It is unrealistic that an attacker can control zones
at the domain tree root or some top-level domain, but since
the impact of the attack depends on the length of the zone
domain name, we select the reasonable-length domain name
NSEC3.EXAMPLE. ORG. The parent zone contains signed DS
records with the digest of the child zone KSK’s, i.e., the zone
has a complete and valid DNSSEC configuration and follows
RFC specification.

Since the wire-format of the child zone domain is 24 bytes
(including the root label), there remain 231 bytes for addi-
tional labels in an attacker query QNAME. We use a randomly
chosen 4-byte label as the non-existent subdomain for the at-
tack to prevent the resolver from answering queries from the
caches. This effectively leaves 226 bytes for additional la-
bels. Hence, the attack query names to the resolvers have the
following format, resulting in 115 sub-labels:

(A.)'"® . abcd.EXii.NSEC3.EXAMPLE.ORG

Each resolver is configured to query the local NSD author-
itative nameserver for any queries to NSEC3.EXAMPLE. ORG
with the zone’s keys added to the set of trusted keys of the re-
solvers. Furthermore, the resolvers have DNSSEC validation
enabled and are run single threaded.

Our test setup is running Ubuntu 22.04 with a 12th Gen
Intel® Core™ i7-1280P CPU at 4.8GHz.

4.2 Comparison of Attack Parameters

To compare the impact of the attack parameters, we exe-
cute the resolvers in a controlled environment and measure
the attacker-induced CPU load for different rates of attacker
queries per second and different parameter configurations. In
our analysis, we identify how specific values for configurable
parameters influence the CPU exhaustion impact on the re-
solvers, illustrating how to maximize attack impact as well
as giving a numerical basis to choose appropriate limits for
attack mitigations.

Our analysis includes key sizes, the number of NSEC3
iterations, and the length of the NSEC3 hash, influenced over
the salt length. Each test case includes an incremental increase
of the rate of attacker requests on the resolver to illustrate
resolver behavior both under small scale and heavy attack.

We conduct multiple tests to find the ideal rate for increas-
ing the attack rate and the maximum rate of attack in the
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(b) Bind9.16.1
Figure 2: Comparison of CPU workload for different key sizes.

experiments. We find increasing the attack rate too quickly
does not allow to distinguish the impact of a specific rate
from natural fluctuations in CPU load resulting from CPU
scheduling, while increasing it too slow wastes measurement
time. Following our evaluation, we find increasing the attack
rate every 3s as a suitable compromise. To identify a suitable
maximum attack rate for the experiment, we continuously
increase the rate of attack until we see artifacts caused from
the experiment hardware struggling to keep up with sending
enough requests to the nameserver. We find a value of 150
requests per second as a suitable maximum value were we did
not observe any kernel- or hardware-induced artifacts in our
measurement. A value of 150 requests per second is sufficient
to cause 100% CPU load in all investigated resolvers. Finally,
we choose to increase the attack rate with a delta of 10/3s to
cause a observable difference between measurement steps,
while also keeping the measurement fine-grained enough to
see detailed effects at different steps.

For Bind9.16.1, which poses no strict NSEC3 iteration limit
and therefore enables a much higher attack impact per request,
we reduce the attack rate to enable similar fine-grained in-
sights. We identify an attack rate delta of 0.5/s and an upper
bound of 7.5/s suitable for our setup.

In our experiments, we find that the impact of different
parameters is similar between the investigated resolvers. We
will thus in the following section focus on the parameter
impact on Unbound 1.17.1 and Bind9.16.1. The differences
between resolvers will be discussed in Section 4.3.
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Figure 3: CPU workload for different NSEC3 iteration counts.

4.2.1 Key Size

While no NSEC3 parameter per se, the key size influences the
maximum allowed number of NSEC3 iterations as defined in
RFC5155. We do not expect that the key size has a significant
impact on the induced CPU work load since the load stems
from the high number of hash calculations and not signature
validation. Nevertheless, we evaluate whether this assumption
holds for the tested resolvers. For this test, we fix the NSEC3
iterations at 150 and the salt length to 0 and compare the three
different supported RSA key sizes of 1024, 2048, and 4096.
The results are plotted in Figure 2. As expected, there is no
significant deviation between the three curves in CPU load.
Hence, for the subsequent tests, we use the key size 4096 as
it allows for a much larger range of NSEC3 iteration values.

4.2.2 NSEC3 Iterations

For Unbound, we evaluate different NSEC3 iteration counts
ranging between 0 and 165 in Figure 3a. We observe a clear
correlation between higher iteration counts and larger induced
workload which approaches a linear distribution as the attack
query rate increases. The exception is 165 iterations which
shows loads well below all other measurements. This is be-
cause the evaluated version of Unbound has a pre-configured
limit of 150 NSEC3 iterations and disregards the zone with a
higher iteration count as bogus without further validating the
NSEC3 records it receives from the authoritative nameserver.
Since processing the queries and validating the signatures has
some constant overhead, an iteration count of 0 incurs more
overhead than the rate 165.
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Figure 4: CPU workload for different NSEC3 salt lengths.

In the case of Bind9.16.1, no limits are enforced for the
iteration values. As evident in Figure 3b, this allows us to
query zones with iteration counts well above the 150 limit
of all other tested resolvers. More significantly, we can use
values above the 2500 iteration limit of RFC5155 which illus-
trates a significant vulnerability in this version of the resolver.
At attack rates as low as 7.5 queries per second, we are able
to max out the CPU load at 100% for this iteration limit. But,
even for the standardized 2500 iterations, there is a significant
load on the resolver, reaching up to 90% at an attack rate of
7.5/s. Thus, higher iteration counts can significantly increase
the impact of the attack on resolvers.

4.2.3 NSEC3 Salt Length

Next, we compare different salt lengths in Figure 4. In this
test, we use a key size of 4096 and set the NSECS3 iterations
to the most impactful RFC5155-conform value of 150 for
Unbound and 2500 for Bind9.16.1, respectively. For Unbound,
we measure an increase of CPU load by approximately one
third and for Bind9.16.1 by about one half when increasing
the length of the salt from 0 to 255, with the load of the
intermediate values distributed uniformly in-between. This is
to be expected from the way the NSEC3 hashes are calculated.
Since the salt is appended to the hashed domain/digest at each
iteration, the additional workload of longer inputs to the hash
function applies to every iteration of the hash function. SHA-1
is a Merkle-Damgard hash function, hence, the calculation
overhead grows roughly linearly with the number of blocks
the hash function is calculated on. With a block size of 512
bit, every 64 bytes added to the hash function input require
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Resolver Attack Rate  Total Loss Rate  Adjusted Loss Rate*
Bind9.18.12 150/s 5.10% 7.01%
Bind9.18.12 110/s 16.42% 22.99%

Unbound 150/s 24.75% 34.66%
PowerDNS 150/s 1.97% 2.76%
PowerDNS 120/s 5.62% 7.87%

Knot 150/s 12.87% 18.01%
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(b) 150 iterations, 255 byte salt
Figure 5: Comparison of CPU workload between resolvers

one more calculation of the SHA-1 hash function to compute
the digest. Thus, a longer salt multiplies the total load on
the resolver for each NSEC3 hash calculation by the number
of blocks added through the concatenation of the salt to the
digest per hash function execution. Overall, the increased load
causes the CPU load to max out at 100% for Unbound at an
attack rate of 110/s and Bind9.16.1 at 4.5/s for a salt length
of 255 bytes.

4.3 Comparison of Resolvers

In this section, we compare the CPU load of the resolvers
under the most effective parameter choices. Since the high
iteration limit in Bind9.16.1 represents a special case, we limit
the comparative analysis to the resolvers with an iteration
limit of 150: Bind9.18.12, Unbound 1.17.1, PowerDNS 4.8.2,
and Knot 5.6.0. As in the previous section, we execute an
attack with an incrementally increasing attack rate of up to
150/s and measure the induced CPU load. We fix the zone
NSEC3 iterations at 150 and repeat the test with salt lengths
0 and 255. The test results are illustrated in Figure 5.

4.3.1 Salt Length 0

Figure 5a plots the CPU rates of all resolvers with a salt length
of 0. We can observe a clear differentiation of loads between
the resolvers with only Bind9.18.12 and PowerDNS reaching
the 100% CPU limit before the attack rate is maxed out, at 110
and 150 packets per second, respectively. Furthermore, we
observe that Bind9.18.12 remains at 100% CPU activity for 2

(*Total loss rate relative to the attack duration)
Table 3: Measured client request loss rate with an attack rate of 150/s

over 40s, 150 iterations, and 255 byte salt.

more seconds after the attack has concluded, indicating that
the resolver is falling behind processing the queries in real
time. Notably, Knot is able to process the attack queries more
effectively, only reaching a workload of up to 50% during the
test.

4.3.2 Salt Length 255

For the test case with the 255 byte salt, we illustrate the mea-
sured CPU load in Figure 5b. In this scenario, all resolvers
max out at 100% CPU load before the limit of 150 attack
queries per second is reached. Bind9.18.12 reaches full load
at 80/s, PowerDNS at 110/s, Unbound at 130/s, and Knot at
140/s. This confirms that the NSEC3 salt has a significant
effect on the impact of the attack on all resolvers, roughly
increasing the load by a third and — in the case of Knot — up
to one half. Once more, we observe continuing CPU load after
the attack has concluded, this time for all resolvers. The time
of continued stalling correlates with how early in the attack
the full CPU load is reached because, once rates continue to
rise above the rate at which the CPU is at 100%, the resolver is
unable to process the queries at the same rate as there are new
incoming queries. Bind9.18.12 continues processing queries
until after the measurement has concluded.

We can thus confirm that all examined resolvers are vulner-
able to the attack. Knot generally performs best when stressed
under the resource exhaustion attack for both attack configu-
rations, while Bind9.18.12 shows the greatest vulnerability to
the attack in terms of CPU load. In general, the effectiveness
of the attack scales linearly with the attack query rate per
second.

4.4 Effect on Benign Clients

Having established that high query rates are required for
achieving high CPU load on the resolvers, the question re-
mains whether the attack can be used to sufficiently stall the
resolvers such that they fail to answer benign client queries.
We evaluate this by continuously sending client queries at
a rate of 10/s to the resolvers while simultaneously attack-
ing the resolver with the NSEC3-encloser attack. The clients
query unique uncached records from the resolvers and log
whether they receive a reply. After Ss, we consider a client
request timed out, i.e., too old to be of value to the client and
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Figure 6: Comparison benign query delays and drops with 150 iterations and 255 byte salt

therefore lost. This is in line with the timeouts used by dig’
and glibc.* Figure 6 shows the results for all tested resolvers,
Table 3 lists the measured client loss rates.

We measure the resolvers at attack rates of up to 150/s, start-
ing the attack 10s into the test and executing it for 40s. For
both Unbound (Figure 6a) and Knot (Figure 6b), we achieve
adjusted loss rates — the total loss rate during the entire test
relative to the attack time — of 34.66% and 18.01%, respec-
tively. For Bind9.18.12, 150/s is well above the attack rate at
which CPU utilization reaches 100%, hence, the high num-
ber of stalled NSEC3 validations tend rapidly exhaust kernel
and hardware resources and interfere with the measurement
results yielding an adjusted loss rate of 7.01%. Bind9.18.12
reaches a peak adjusted loss rate of 22.99% at the rate of 110/s
(Figure 6c). Similarly, PowerDNS, when attacked at 150/s,
reaches a point where there are too many stalled attacker
queries leading to lower loss rates in our setup. The evaluated
peak rate for PowerDNS is 120/s where we measure a loss of
up to 7.87% of queries at 100% CPU utilization (Figure 6d).

The results show that, even with full CPU exhaustion, the
attack achieves no full client query loss, i.e., no comprehen-
sive DoS. The key limitation of the attack is that every indi-
vidual attacker query only causes a relatively minor load on
the resolver, leaving ample opportunities to process and re-
ply to client queries in-between the attacker-induced stalling
periods.

3https://linux.die.net/man/1/dig
“https://linux.die.net/man/5/resolv.conf

We measure the number of instructions of all resolvers for
2000 queries over a span of 40s for uncached benign queries
and attack queries. In their blog post,” the developers from the
Internet Systems Consortium (ISC) mention that the discov-
ery of the NSEC3-encloser attack enables scaling the attack
to 125 times as previously thought possible. In theory, the
overhead of one attack query is made up of some constant
portion (e.g., for querying the authoritative nameserver and
verifying the signatures) and the hash calculation. The latter
is dependent on the number of iterations, multiplied by the
number of enclosed labels in the request (up to 125), roughly
multiplied again by the hash operations incurred by hashing
the digest plus salt (up to 4 additional hash blocks leading to
a factor of approximately 3-5). This leads to an increase of
instructions by a factor of up to 125 -5 = 625 compared to a
single query with a high NSEC3 iteration count and no addi-
tional labels/salt. In practice, hash operations are relatively
cheap in terms of instructions, especially compared to asym-
metric cryptography. Hence, compared to an uncached benign
query, which incurs considerable overhead through recursive
querying of nameservers, retrieving keys, and validating sig-
natures, we measure an increase of instructions by a factor of
72 for Unbound, 41 for Bind9.18.12, 33 for PowerDNS, and
13 for Knot. The high factor for Unbound is mostly due to the
low number of instructions for the benign queries, which is
on average 65% lower compared to the other resolvers.

Shttps://www.isc.org/blogs/2024-bind-security-release
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4.5 Comparison to PoC in CVE-2023-50868

Following our evaluation, we also look into CVE-2023-50868,
which made the NSEC3 vulnerability public and contains a
Proof of Concept (PoC) implementation of the attack.

To the best of our knowledge, neither the CVE-2023-50868,
nor related blog posts contain any detailed evaluations of the
impact of the attack on different resolvers. We contribute this
evaluation, showing that resolvers differ in their vulnerability
to the attack. For example, we find that Unbound is more vul-
nerable to the attack due to its internal scheduling of NSEC3
compared to e.g., PowerDNS.

We further identify the impact of different NSEC3 parame-
ters on the severity of the attack. The PoC correctly identifies
that maximizing the iteration count greatly improves impact
on resolvers, which we confirm in our evaluations. However,
the PoC lacks utilization of a salt value, which we show to
also substantially increase the attack impact. Since salts ex-
tend the length of the hash-function input, they increase the
required computation in every iteration of the hash, signifi-
cantly increasing effort for the resolver.

We experimentally demonstrate that a query rate in the
low hundreds is sufficient to exhaust a single CPU core on
unmitigated, open-source resolver implementations at vary-
ing degrees. Using the attack, we were not able to achieve
full DoS on any resolver. Our findings illustrate that the at-
tack is not as powerful in stalling resolvers as other attacks,
such as KeyTrap [7] and find that this is mainly due to the
linear scaling of the workload induced relative to the attacker
queries, compared to a quadratic increase in load for KeyTrap.
However, an attacker can still use the NSEC3 to inflict harm
on resolvers and achieve a degradation of service for benign
clients using the victim resolver.

S Measurements of Signed Domains

RFC9276 raises the best practice of omitting the use of both
hash iterations and salts. We measured how NSEC3 is used in
domains on the Internet and investigate their NSEC3 parame-
ter configurations. To shed a light on how domains conform
to RFC9276 and whether they use NSEC3 parameters which
are suitable to be exploited in an attack, we next quantify
how many domains on the Internet use NSEC3 and which
parameter configurations they employ. During the week fol-
lowing 2024-03-10, we queried the nameservers of the Tranco
Top-1M domains® for the SOA, DNSKEY as well as DS
records (located at the parent) and analyzed the DNSSEC
configurations of the domains they serve. To collect infor-
mation on the NSEC version and parameters used by the
domains, as they are presented to the resolvers, we addition-
ally issued queries for the records PTR-type RFC2317 at the
according Tranco domain names. PTR-type records are used
for reverse-mapping IP addresses to domain names and are

Shttps://tranco-1list.eu/1list/Z333G/1000000
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Figure 7: Share of zones which meet or exceed the configured Salt

Length / Iteration Count in signed DNS zones.

most commonly located below the IN-ADDR . ARPA. domain.
Therefore, we expect negative responses for these queries,
indicating that no such resource exists. Our evaluations con-
firm that this methodology yields negative responses, i.e.,
containing either first-version NSEC or NSEC3 records, for
98.15% of the signed domains. We find 66339 (6.63%) of
the Tranco Top1M domains to be signed. Out of these, 27761
(41.85%) use NSEC3 while 37354 (56.31%) use NSEC in its
first version. 21522 (77.53%) of the domains using NSEC3
send records with an iterations count field value higher than
0, with a median of 5 iterations and a maximum of 500 itera-
tions, while 21248 (76.54%) of the domains utilizing NSEC3
employ a salt. Where employed, the median salt length is 8
bytes and the maximum we find in our dataset is 64 bytes. We
show the share of zones with salt lengths and iteration counts
greater or equal to the respective value on the x-axis in Fig-
ure 7. The combination of both parameters, which imposes the
highest NSEC3 hashing burden on resolvers is 500 iterations
with a salt of 16 bytes length. According to the results of our
evaluations, these domains can impose substantial load on the
resolvers even with benign responses. Such domains could
potentially be abused by adversaries to degrade the service
of a vulnerable resolver by employing a moderate volume of
malicious queries per second.

6 Related Work

DNS has a long history of Denial of Service (DoS) attacks
which exploit different aspects of the DNS protocol to launch
attacks against the DNS servers [1, 2,4, 11]. Many of the
attacks exploit a lack of limits on the functionalities per-
formed by the DNS servers. For instance, [4] create a chain
of CNAME records and force DNS resolvers to perform deep
name resolutions, hence overloading the target victim author-
itative nameserver with requests and achieving an amplifica-
tion of 8.51. NXNSAttack [1] exploited a vulnerability that
generated a flood of queries between the recursive resolver
and the authoritative server creating a load on them both.
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Subsequently [2] showed how to exploit delegations to an
unresponsive authoritative server to cause computational load
on DNS resolvers. Their attack differs from the NSEC3 attack
in that they use plain DNS instead of DNSSEC, and create
computational load through memory lookups and IO over-
head instead of computational effort. Their attack achieves
a higher instruction count amplification of 5600x over 70x
with NSEC3. Still, the NRDelegation attack requires a high
attack traffic volume of 500 requests per second to achieve
substantial degradation of service, likely because the attack
includes many IO operations, which allow the resolver to
answer benign queries while waiting for 10 responses. This
explains why the NSEC3 attack, while resulting in a smaller
instruction count amplification, can still achieve comparable
degradation of service to NRDelegation.

The concept of complexity attacks on DNSSEC, specifi-
cally exploiting signature validations and hash computations
was first introduced by [7]. Their work showed that DNSSEC
was vulnerable to a new class of attacks that can exhaust
CPU resources and thereby achieve Denial of Service on any
DNSSEC validating resolver. Their most impactful attack,
KeyTrap, achieves a full DoS of DNS resolvers for between
2min and 16h by exploiting colliding key-tags and a large
number of signatures, leading to quadratic complexity in vali-
dating DNSSEC signatures. Further, their findings include an
attack exploiting hash computations over the DS hash that con-
nects a parent zone to a child zone. Specifically, in their attack,
they include a large amount of DS hash records in the parent
zone and point them to a single entry in the child-zone with
a specific key-tag value. Exploiting colliding key-tags, they
achieve quadratic complexity in hash computations, requiring
the resolver to try each DS record in the parent zone against
each DNSKEY in the child-zone. This computational effort
allows for a DoS of the resolver. The NSEC3-encloser attack
that we study in this work differs significantly in its single-
request impact from the attacks described in [7]. Comparing
to the KeyTrap attack, the NSEC3-encloser attack inflicts a
modest 72x increase in CPU instruction count,” while Key-
Trap increases CPU instructions by a factor of 2000000x.
Thus, with KeyTrap, a single attacker is able to DoS a re-
solver for an extended period of time, whereas with NSEC3,
a large attack traffic volume is necessary, consisting of hun-
dreds of DNS requests per second to exhaust the CPU of a
victim resolver. This is expected, as KeyTrap exploits com-
putationally heavy public key cryptography, while NSEC3
only uses hash calculations, which require less CPU resources.
However, while requiring more traffic, the NSEC3 attack can
still harm DNS resolvers, as it can create a heavy load on the
attacked resolver and therefore lead to substantial degradation
of service.

Our work is also related to downgrade attacks against
DNSSEC [8]. The DNSSEC downgrade attacks however fo-

"Measured on Unbound, average over 5 measurements

cus on disabling DNSSEC validation but do not have adverse
effects on the availability of the victim resolvers.

7 Conclusions

We perform extensive evaluations of NSEC3-encloser attack
and find that it can create a 72x increase in CPU instruction
count on victim DNS resolvers. This is much less than the
recently disclosed KeyTrap attack, which creates a factor of
2000000 increase in CPU instructions count. Our experimen-
tal evaluation shows that even the improved implementation
of the NSEC3-encloser attack that we developed creates a rel-
atively minor packet loss (between 2.7% and 30% depending
on the resolver implementation), yet requires a high traffic vol-
ume from an adversary and can be easily detected. Therefore
we do not expect to see such attacks in the wild. Nevertheless,
our study shows that NSEC3-encloser attack points to a poten-
tial problem in the resolvers, that was also raised by the NSEC
standard specification. In this work, we explore the practical
aspects of NSEC across DNS resolver implementations.

We experimentally analyze the role of the different param-
eters in NSEC3 on the load created on the resolvers and show
how to adjust the parameters to optimize the impact of the
attack. Although the increase in CPU instruction set is lower
than previous attacks on DNS, such as KeyTrap or NRDelega-
tion, using about a hundred packets per second, the adversary
can still create a sufficient load on the resolvers, eventually
leading to packet loss. The load is created by the iterative
application of the hash in NSEC3, and is further exacerbated
by the application of salt to the computation of the hash. Mul-
tiple hash iterations with salt make zone enumeration attacks
more difficult, requiring more resources from the attackers.

Such records can be exploited to exhaust resources on vic-
tim resolvers, as we experimentally demonstrate in this work.
The effect of resource exhaustion may become even more
severe with the new proposal NSEC5 which uses public key
operations [12]. Our research essentially shows that there
is a tradeoff between the privacy and the load on DNS re-
solvers, which can be exploited for attacks. This tradeoff is
also aligned with the question raised by RFC9276: do the
increased performance costs justify applying additional hash
operations.

As RFC9276 points out, most of the names published in
DNS are typically public and are rarely secret or unpredictable.
RFC9276: “They are published to be memorable, used and
consumed by humans. They are often recorded in many other
network logs such as email logs, certificate transparency logs,
web page links, intrusion-detection systems, malware scan-
ners, email archives, etc. Many times a simple dictionary
of commonly used domain names prefixes (www, mail, imap,
login, database, etc.) can be used to quickly reveal a large
number of labels within a zone.”

The fundamental question of the tradeoff between privacy
of the resources in the DNS zones vs load on the DNS re-
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solvers poses an important decision that the research and
operational community need to take.
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Abstract

SMS-timing-based location inference attacks leverage
timing side channels to ascertain a target’s location.
Prior work has primarily relied on a single-sender ap-
proach, employing only one SMS attacker from a spe-
cific location to infer the victim’s whereabouts. How-
ever, this method exhibits several drawbacks. In this re-
search, we systematically enumerate the limitations of
the single-sender approach, which prompted us to ex-
plore a multi-sender strategy. Our investigation delves
into the feasibility of an attacker employing multiple
SMS senders towards a victim to address these limi-
tations and introduces novel features to bolster predic-
tion accuracy. Through exhaustive experimentation, we
demonstrate that strategically positioned multiple SMS
senders significantly enhance the location-inference ac-
curacy, achieving a 142% improvement for four distinct
classes of potential victim locations. This work further
highlights the need to develop mitigations against SMS-
timing-based location inference attacks.

1 Introduction

SMS (Short Message Service) has emerged as a key vec-
tor in numerous cyber-attacks due to its widespread use
for purposes such as two-factor authentication [21], iden-
tity verification [24,25], and emergency alerts [24, 25].
Its prevalence, reliability, and global reach have made it
a favored medium for malicious activities. Smishing at-
tacks, for example, leverage SMS to distribute links that
direct victims to phishing sites, aiming to steal sensitive
information [14]. The Flubot virus utilized SMS links
to spread trojan apps that compromised banking creden-
tials, personal data, and disabled security features [9].
Beyond these, SMS has been exploited for spamming [8]
and to propagate malware such as Simjacker and WIBAt-
tack, which embed malicious commands within binary
SMS messages [4,28].

Most recently, a novel approach to ascertain the lo-
cation of recipients was demonstrated in [6], utilizing
the timing of silent SMS messages in conjunction with
machine-learning techniques. This strategy exploits the
delivery reports generated upon SMS reception as a tim-
ing attack vector for the sender. Rigorous experimen-
tation across various countries, telecommunications op-
erators, and a range of devices demonstrated that an at-
tacker could deduce a recipient’s location by analyzing
timing data from typical receiver locations. Although
this method introduces an innovative side channel for lo-
calizing mobile users, it encounters notable limitations.
Most importantly, there is a significant probability that
the attack originating from a single source/mobile de-
vice can be detected and potentially be blocked by the
victim’s service providers. This is more apparent when
the attack requires a substantial amount of SMS trans-
missions to collect the necessary data. Additionally, as
the number of possible victim locations increases, the
method’s accuracy in predicting locations degrades due
to the finite entropy available from single attacker-victim
channel timing reports. As a result, there are classifica-
tions in which machine learning can perform poorly.

To tackle the above-mentioned limitations associated
with single-sender-based SMS location inference at-
tacks, this paper focuses on the following key research
questions. The primary question we explore is whether
using multiple coordinated SMS senders can improve
the accuracy of localization predictions. We hypothe-
size that using senders from different locations could
create unique timing side-channels which, when com-
bined, could lead to more accurate classifications. This
multi-sender approach can improve the prediction accu-
racy, especially as the number of potential victim lo-
cations increases. Additionally, using multiple SMS
senders spread out geographically could also make the
attack more resilient against being blocked, as the vic-
tim’s service provider now has to identify and block sev-
eral senders. Optimizing the timing and pattern of SMS
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sending could further reduce the likelihood of the at-
tack being detected. Finally, we hypothesize that the at-
tacker can collect a significantly smaller amount of data
to conduct this attack efficiently, without compromising
the model’s accuracy. Consequently, the adversary can
save resources, as well as measurement collection and
training time.

Motivated by the above hypothesis, in this paper, we
make the following contributions:

e We identify limitations of single-sender SMS-
timing-based location inference attacks and con-
ceive multi(ple)-sender SMS-timing-based location
inference attack in cellular networks. To estab-
lish a baseline for comparison with our multi-
sender approach, we reproduced the single SMS
sender-based localization attack described in prior
work [6]. Interestingly, our data analysis highlights
certain limitations inherent in the single-sender ap-
proach which serve as a crucial motivation for the
development of our multi-sender approach.

Through rigorous experimentation, we demonstrate
the enhanced capability of multiple SMS senders,
strategically placed across different locations, to co-
ordinate and significantly improve the accuracy in
determining a victim’s location. Our experiments
reveal that the multi-sender MMS approach can
reach up to 142% accuracy improvement for four
classes. This further emphasizes that the effective-
ness of the multi-sender attack strategy improves
with an increasing number of potential victim lo-
cations, thereby overcoming a significant limitation
of the single-sender approach.

L]

We highlight two substantial improvements and in-
sights: (1) From the distinct timing side-channels
generated by the multi-sender setup, we identify
and introduce new features that are instrumental
in boosting the prediction accuracy: the statisti-
cal mean, median, and standard deviation of the
senders’ delivery time measurements, allowing us
to effectively fuse the timings from multiple senders
to improve the accuracy even further. (2) We in-
vestigate the required sample sizes for location in-
ference attacks and demonstrate that already a few
hundred SMS can yield strong results without the
need for thousands of collected messages.

2 Background and Motivation

In this section, we provide the technical background for
SMS delivery processes and then delve into the concept
of SMS-timing-based Location Inference Attacks. We

1. M Submissi

2. Message Delivery -

>

' > B >
4. Submission Report 3. Delivery Report
— —

Originator SMSC Recipient

Figure 1: Brief representation of the SMS process, ac-
cording to GSMA [11].

subsequently outline its limitations, which serves as the
foundation for our research presented in this paper.

2.1 Overview on SMS Process

Short Message Service (SMS) is an inherent component
of the cellular infrastructure and universally accessible
across all network generations from 2G to 5G [1-3, 11].
Figure | briefly outlines the SMS delivery process in-
volving the originator (sender), Short Message Service
Center (SMSC), and the recipient (receiver).

The process begins with the message submission (Step
1) by the originator, who composes the message and
sends it to the SMSC. Upon receiving the SMS, the
SMSC performs the necessary network and validation
checks and then forwards the SMS to the intended re-
cipient. The SMSC ensures that the message reaches the
recipient (Step 2), even if it means storing it temporarily,
in case the recipient is unavailable immediately. Addi-
tionally, the originators have been informed by now that
the submitted message was actually sent.

Next, once the recipient receives the message, the
involved device sends the delivery report back to the
SMSC. The report confirms that the message has been
successfully delivered to the recipient’s device (Step 3).
Finally, the report is sent to the originator via the SMSC,
called the submission report (Step 4). This report ulti-
mately confirms that the message was sent and delivered
to the recipient successfully.

2.2 SMS-timing-based Location Inference

In an SMS-timing-based Location Inference attack, an
attacker is interested in learning the current physical lo-
cation of a specific victim by sending them (silent) SM-
Ses. The attack builds upon the time elapsed between
sending the SMS and the SMS being delivered to the vic-
tim and is conducted in two phases.

In the first phase (fingerprint generation), the attacker
repeatedly sends SMSes to the victim while knowing
their respective locations and measures the time it takes
to deliver the SMS messages. By analyzing the result-
ing delivery timings and their distributions, the attacker
is able to determine a unique fingerprint for each of the
locations the victim has visited.
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In the second phase (location inference), the attacker
sends new SMS messages to the victim without know-
ing their current location, measures the time it takes to
deliver them, and then classifies the collected timings by
comparing them to the previously obtained fingerprints.
Thus, the attacker can determine and re-identify the vic-
tim’s location out of a set of known locations.

2.3 Limitations and Motivation

When the SMS-timing-based Location Inference Attack
is carried out from a single sender at a fixed location, it
has several drawbacks. In particular, the success and per-
formance of the attack depend heavily on the specifics of
the chosen location and its mobile network connection,
such as the distance to the base station. The quality and
reliability of the connection, along with the robustness
of the collected data, may also vary depending on cir-
cumstances specific to the location, such as fluctuating
numbers of people and concurrent mobile network con-
nections throughout the day or week.

Another drawback is that during the initial phase of
the attack (fingerprint generation), the attacker engages
in non-standard behavior as a mobile network subscriber.
Consequently, there is a risk that the adversary may be
perceived as suspicious by the network operator and po-
tentially be blocked, particularly if only a single static
location is utilized.

From an organizational perspective, the attack out-
lined in [6] encompasses analyses at various levels of
granularity, and a broad range of locations, from regional
to worldwide attacks. However, the study lacks a thor-
ough analysis of the sample size impact regarding the
classification accuracy. This limitation implies that the
attack requires additional evaluation.

Hence, we recognize the necessity for a more system-
atic evaluation of factors that could impact the SMS-
timing-based Location Inference Attack’s performance.
This entails varying the adversary’s location, system-
atically assessing the attack’s performance with differ-
ent receiving devices at the same locations, conduct-
ing repeated evaluations with varying sample sizes, and
expanding the attack to encompass attackers operating
from multiple vantage points simultaneously.

3 Multi-Sender Location Inference

3.1 Threat Model

We consider an attacker whose primary goal is to deter-
mine the presence of a victim’s mobile device within a
specific geographic area, without the intention to track
the victim’s exact movements.

The attacker is presumed to possess the victim’s mo-
bile number, enabling them to initiate various forms
of SMS communications, including personal messages,
undirected mass messages such as marketing advertise-
ments, and notably, silent SMSes which the victim’s de-
vice acknowledges without alerting the user. It is as-
sumed that the attacker has access to an arbitrary number
of smartphone devices, SIM cards, mobile numbers, and
subscription plans. Furthermore, the attacker can deploy
multiple sender devices in different geographical areas
to collect data from the victim receivers simultaneously
and combine them for location extraction. The adversary
is assumed to possess the capability to utilize network
services as a conventional user: leveraging several SIM
cards, having the ability to send messages to any sub-
scriber with a valid number, and maintaining a normal
connection for the transmission of text messages and re-
ceipt of delivery notifications.

We emphasize that the attacker does not require phys-
ical access to the victim’s mobile device, USIM cards, or
any network infrastructure, nor do they seek to obtain or
modify sensitive victim data such as cryptographic keys.

3.2 Attack Concept

The foundation of the multi-sender approach rests on the
observation that fingerprints generated from the SMS ex-
changes between a single sender (attacker) location and a
receiver can be limited in their effectiveness for accurate
location classification. This limitation becomes particu-
larly pronounced in complex environments, such as cer-
tain German locations in [6], where the variability and
granularity of the urban landscape can dilute the distinc-
tiveness of timing fingerprints.

To address these challenges, this work pioneers the in-
tegration of multiple attacker locations into the analysis
framework. By orchestrating SMS exchanges from var-
ious (unique) attacker positions to the receiver, a richer
and more nuanced dataset emerges. Each unique pairing
of attacker and receiver locations contributes a distinct
timing fingerprint to the dataset. These timing finger-
prints, when aggregated, undergo further processing to
distill additional dataset features, thereby forging more
robust and comprehensive fingerprints. This enriched
dataset plays a crucial role in enhancing the efficacy of
machine-learning models during both the training and
prediction phases.

For conducting a multi-sender location inference at-
tack, we essentially replicate the attack methodology
presented in [6] and simultaneously execute it from mul-
tiple locations. Consistent with previous work, the at-
tack comprises two phases: fingerprint generation and
location inference, but both are conducted from multi-
ple sender locations. Basically, multiple instances of the
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Figure 2: Multiple attackers in different locations estab-
lish SMS streams to send silent messages to the victim
in various locations and receive delivery reports. This is
possible even with distinct network providers.

single-sender location inference attack are executed in
parallel.

Multi-Sender Setup. To gather data from multiple van-
tage locations and eventually enhance the accuracy of
the location identification attack, the attacker deploys
the setup at various geographical locations. Intuitively,
by employing more attacking locations that are diverse,
an adversary could generate more precise receiver loca-
tion fingerprints. This distributed approach allows the
attacker to collect measurements of the victim’s location
from different "angles", increasing the robustness and re-
liability of the subsequent analysis.

Attacking Process. The attacker, situated in multiple
locations, initiates the process by sending a barrage of
silent SMS messages to the victim. The victim, unknow-
ingly participating in this scheme, moves across differ-
ent locations at different times. The silent nature of these
messages means that the receiver’s device does not notify
the victim of the incoming SMS, thus keeping the pro-
cess clandestine. Each time a message is received, the
victim’s device automatically generates and sends back
delivery reports as part of its standard operating proce-
dure. These reports, unbeknownst to the victim, reveal
valuable information for the attacker, notably the sent
and delivered times. By analyzing the time discrepancies
between when a message was sent and when the delivery
report was received, the attacker can infer certain aspects
of the victim’s location.

Since this procedure is repeated multiple times in the
multi-sender attack, it accumulates a substantial dataset
of measurements. The attacker categorizes the measure-
ments based on the victim’s known locations during the
attack, forming distinct datasets for each location. These
datasets are then aggregated and analyzed to predict the
victim’s location in the future. According to Figure 2, the
attacker creates several SMS streams, which could be es-

tablished with different operators since the attacker can
operate from different countries. The victim may also
move to different countries and sends back the delivery
reports to the corresponding SMS.

In the prediction stage, the attacker collects fresh mea-
surements from the current location of the victim in the
same fashion. These measurements serve as input for a
machine-learning model that has been trained on the pre-
viously collected data, representing potential locations of
the victim. Then, the model processes this input and out-
puts a prediction of the victim’s current location.

4 Experimental Validation

In this section, we detail our experimental validation
of the SMS-timing-based location inference attack with
multiple senders and report on our setup for data collec-
tion, processing, and evaluation.

4.1 Data Collection Setup

At the core of the attacker’s setup is the use of typical
computer devices equipped with a smartphone running
Android Debug Bridge (ADB). ADB allows for a wide
range of communication with a connected device, in this
case, to transmit silent SM'S messages and record the sent
and delivered timestamps. As in [6], the SMS transmis-
sion and recording of the timing metrics is conducted by
an Android application, which also stores results for fur-
ther processing. Controlling the application via ADB al-
lows us to automate this process since it should be re-
peated multiple times to collect a sufficient number of
timing metrics. This process also happens stealthily,
without altering the victim, since the attacker utilizes
silent SMSs which are accepted by the network opera-
tor. Moreover, the attacker’s equipment includes a SIM
card, granting access to the cellular network.

Adhering to the aforementioned attacking concepts,
over a period of 12 weeks, we repeatedly send SMS mes-
sages between smartphones in different locations in Ger-
many and the Netherlands. We do not consider locations
that are very far apart, as they are easier for an attacker
to identify [6]. We use three smartphones, each placed
in a fixed location that remains unchanged during the ex-
periments, to send messages to four phones whose po-
sitions are periodically rotated. For sending SMS mes-
sages, we use two locations in Germany and one in the
Netherlands. The receiving phones are placed in five dif-
ferent locations in Germany and three in the Netherlands
(including the locations of the sending devices). Table |
lists the devices we used for sending and receiving SMS
messages, and Table 2 provides an overview of the loca-
tions used during our measurements and the amounts of
data collected.
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Table 1: Device Specifications

ID Device Chipset OS Model Release
Sending Devices
D Samsung Galaxy A53 Samsung Exynos 1280 Android 12 SM-AS536E/DS 2022
\Y Nokia 5.3 Qualcomm Snapdragon 665 Android 11  TA-1234 2020
B Huawei P8 Lite 2017  HiSilicon Kirin 655 Android 8§  PRA-LX1 2017
Receiving Devices
px6a Google Pixel 6a Google Tensor Android 12 G1AZG 2022
a53  Samsung Galaxy A53 Samsung Exynos 1280 Android 12 SM-AS5S36E/DS 2022
op7  OnePlus 7 Pro Qualcomm Snapdragon 855 Android 11  GM1910 2019
pSl1 Huawei P8 Lite 2017  HiSilicon Kirin 655 Android 8 PRA-LX1 2017
Table 2: Data Collection Summary
Number of SMS per Receiving Device Distances [km] to Sender
px6a p8l op7 as3 Sender B Sender D Sender V
Receiver Locations in Germany
DE-1 3160 3280 420 - 11 0 140
DE-2 1540 1560 - - 2 11 130
DE-3 4960 4540 8920 6900 0 11 129
DE-4 420 460 - - 4 14 126
DE-5 1220 320 - - 5 11 140
Receiver Locations in the Netherlands
NL-1 7140 5500 0 1440 125 135 4
NL-2 5820 5280 10300 8700 129 140 0
NL-3 2020 960 1680 1120 125 136 7

Locations (Cities): DE-1,5: Dortmund, DE-2,3,4: Bochum, NL-1: Eindhoven, NL-2: Veldhoven, NL-3: Valkenswaard

Locations in the same country are chosen to be rela-
tively close to each other. The distance from a receiving
location to the closest sending device is 11km at max-
imum, which also corresponds to the distance between
the two sending devices in Germany.

4.2 Data Collection Procedure

We replicated the attack to use an Android app that sends
one silent SMS at a time to a designated target phone
number. Additionally, the app waits for the Sent and
Delivered notifications and collects and stores the times-
tamps for the SMS transmission and both notifications.
In line with previous work, we schedule 20 consecutive
SMS transmissions on an hourly basis. We automate
SMS transmissions by controlling the app remotely via
a Python script issuing ADB commands to the smart-
phone. We simultaneously send SMS messages from all
senders to the same receiver by scheduling the script to
start once per hour at the same time for a specific re-
ceiver (i.e., :00 for the first receiver, :15 for the second
receiver, ...) across all senders. While this does not

guarantee perfect sender synchronization due to poten-
tial offsets in their individual system clocks, we consider
this a best-effort approach to approximate the behavior
of an adversary simultaneously probing a specific target
from multiple locations.

Our data collection tooling builds upon the code re-
leased by Bitsikas et al. [6] available on GitHub' and is
extended to fit with the phones we use for sending mes-
sages. We also follow the guidelines provided along with
the framework to implement the missing code handling
the actual SMS transmission and timestamp collection
procedures.

4.3 Feature Set Generation & Multi-
Sender Fusion

To generate the timing features for each SMS transmis-
sion and combine the multi-sender datasets, we take the
following steps:

"https://github.com/vaggelis-sudo/SMS-Location-Ide
ntification-Attack
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Step 1: Calculating the initial metrics. Follow-
ing [6], we calculate the initial metrics for each SMS
transmission in the collected dataset: the real sent dura-
tion Tgepy, the real delivery duration Ty, the total delivery
duration 7;,,, and the delivery ratio P.

Tent = tsent — i (D

Tet = taet — tsent @)

Tior = Taet + Tsent (3

P— Tyl _ Tdel — Lsent )
Tior Tdel — ix

Then, for every two consecutive SMS transmissions
(j—1 and j), we calculate the differences in sent duration
Thasen: and delivery duration Tyg,;, respectively:

. i1 1
Thsent = (Tsjent - Ts/ent )/Tsjenl &)

Tnaer = (Tf, = Ti )/ Thy! (6)

Moving beyond [6], the fingerprint does not conclude
with this calculation, as we do not consider only one but
multiple senders.

Step 2: Combining the sender datasets. Let D; rep-
resent the dataset for sender i, where i = 1,2, ... ,m, with
n receiver locations. Additionally, let #4¢1; ,; denote the
delivery time of the j-th SMS transmission from sender
i to receiver r. Finally, let S; ,.; represent the data asso-
ciated with the j-th SMS transmission from sender i to
receiver r, including #gey; ;. Then, Deoncat is the dataset
resulting from the concatenation process, where each el-
ement is derived by matching S; . ; from all senders based
on the closest matching Zgel,; /. -

For each S; .; in D;, we seek to find Sy ,; in Dy (k #
i) such that the difference in delivery times [fgel ;. i
tdel’k7,71| is minimal or zero, indicating the closest match-
ing timestamps across different senders. This process
occurs for every receiver separately and every available
sender, until the new D qncqr dataset contains per row the
data of each sender to the same receiver, but synchro-
nized. Algorithm | shows briefly the process.

Step 3: Fusing the sender datasets statistically.
Given m senders, the number of unique combinations of
two senders is given by the binomial coefficient:

" :2,(le2), ™)
%)

For each pair of senders and for every z consecutive
SMS transmissions (in this study, z =5 ), we calcu-
late the Mean, Median, and Standard Deviation of

2We determined that the number should be less than 10 in our
dataset to accommodate small sample sizes while not covering too
many transmissions at a time. A middle value of 5 was chosen as a
result.

Algorithm 1 Match and Concatenate SMS Transmis-
sions based on Timestamps

Initialize D¢oncar = @ as empty dataset
for each receiver location r from 1 to n do
for each S; ;. ; in D; for all i do
Initialize a list L;, to hold data for concate-
nation
for each D; where k # i do
Find Skﬁr,l in D; such that ‘tdel,i,r,j —
tdel k| is minimized
Add Sk,r,l to Li,r

Rl > e

AN

end for
: NewRecord; , <— Concatenate(L; ,)
10: Deconcat < Dconcat U {NewRecord; , }
11: Clear L; ,
12: end for
13: end for

the delivery times. Let téélrl) denote the delivery time of

the i-th SMS in a sequence of z consecutive messages

from sender s to receiver r. The statistics are calculated

as follows:

(s,r) ¢ (s,r)

=~ ) Lgel i ®)
Ziz1

Median®*") = Median{t5/] 155, ... 15} (9)

s.7 1 < S,r o
o= \/z 1 ,;<’§e1,? —plen)2 (10)

Differences in these statistics for the delivery time be-
tween pairs of senders are calculated as their actual dif-
ferences. For example, for means between sender pair
(s1,7) and (s2,7):

Au(-\‘h-\'ﬂ) — u(é‘w) _ H(S27r) (an

These differences, Ap1527) AMedian®*! 527) and
Ac127) are incorporated into the dataset for each
sender pair accordingly, as additional features.

4.4 Multi-Sender Techniques

Simple Integration of Senders. In this method, the
initial features are generated based on the timing data
from individual sender-receiver pairings (Step 1). Sub-
sequently, datasets corresponding to multiple senders are
amalgamated (Step 2) without the application of sophis-
ticated statistical fusion techniques (Step 3). Thus, we
create datasets that are matched and concatenated based
on the timestamps, but without incorporating unique fea-
ture types.

Specifically, we consider double- and triple-sender
datasets as distinct (simple) approaches. For the double-
sender cases, we create the BV, VD, and BD datasets,
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while for the triple-sender cases, we create BDV, based
on Table 2. The total number of features for double-
senders is 12, and for triple-senders is 18, according to
Algorithms 1- 6 from Step 1. This exploratory step seeks
to discern whether straightforward sender concatenation
can bolster the machine-learning model’s predictive ac-
curacy compared to single senders and to statistically
combined datasets.
Statistical Fusion of Senders. Advancing beyond the
simple approach, the statistical combination of sender
datasets represents a more refined approach to dataset
enhancement. This technique encompasses a compre-
hensive process involving the generation of initial fea-
tures (Step 1), the combination of sender measurements
(Step 2) followed by the fusion of datasets from multiple
senders through the statistical metrics (Step 3). Unlike
the simple method, this approach enriches the combined
dataset with additional features derived from the statis-
tical analysis of delivery times: using the means, me-
dians, and standard deviations between the sender mea-
surements. For this approach, we use all three senders
with their maximum sample size available for each re-
ceiver location.

In this work, we explore the following two strategies:

1. Enhanced Mean Datasets. Datasets statistically
enhanced by the mean of the delivery time. A to-
tal number of 21 features is used, corresponding to
the 18 combined features for the three senders and
the 3 additional ones generated by the differences
between the sender means.

2. Enhanced MMS Datasets. Datasets statistically
enhanced by the mean, median and standard devi-
ation of the delivery time. A total number of 27
features is utilized, correlated with the 18 combined
features for the three senders and the 9 extra ones
engendered by the differences between the sender
means, medians, and standard deviations.

This dual-strategy approach aims to demonstrate the
superiority of statistically enhanced datasets over both
single-sender datasets and those trivially combined. The
hypothesis posits that the inclusion of a broader array of
statistical features not only increases the accuracy of lo-
cation predictions beyond that achievable with simpler
dataset combinations but also highlights the comparative
advantage of the "Enhanced MMS" over the "Enhanced
Mean" approach. This distinction underscores the prin-
ciple that the depth and complexity of features within the
dataset are pivotal to the refinement of model accuracy.

4.5 Attack Training & Prediction

In this study, we employ a Multilayer Perceptron (MLP)
Classifier, a type of feedforward artificial neural net-

work, as the core predictive model to analyze the rela-
tionship between the features derived from SMS trans-
mission data and the target outcomes. The MLP Clas-
sifier is instantiated with a specific configuration of hy-
perparameters to optimize its performance for the given
dataset. The architecture of the neural network is de-
fined by hidden layer sizes = (10, 40, 10), indicating a
three-layered structure where the input data is first pro-
cessed by a layer of 10 neurons, followed by a denser
layer of 40 neurons, and finally, the information is aggre-
gated through a layer of 10 neurons before reaching the
output layer. This configuration is designed to capture
the nonlinear relationships between the input features.
The model utilizes the stochastic gradient descent
(SGD) algorithm for optimizing the network’s weights.
This choice is motivated by SGD’s efficiency in handling
large datasets and its capability to escape local minima
during training. The regularization term, alpha= 0.0001,
is set to a low value to prevent overfitting while allow-
ing the model to learn complex patterns in the data. With
learning rate="constant’ and a max iteration of 5000, the
learning rate is kept fixed across all epochs of training,
and the model is allowed a substantial number of iter-
ations to converge towards an optimal set of weights.
Batch processing is employed with a size of 32 to lever-
age computational efficiency and stability in gradient de-
scent updates. Model evaluation is conducted through a
10-fold cross-validation process providing a robust esti-
mate of the model’s predictive accuracy on various ran-
dom data. Finally, the Accuracy metric is calculated to
quantify the model’s performance, offering a measure of
how often the model predictions match the true labels. In
our experimentation, we repeatedly run the model pre-
diction with increasing numbers of samples per class,
(i.e., 100, 200, 300, 500, 1000, 5000, and 10000), to
analyze differences in the classification accuracy.

5 Experimental Evaluation and Results

We next describe the exact experimental setup we used
in our experiments and then delve into our results with
the multiple-sender approaches.

5.1 Single Senders: Baseline

We ran the classifications for single senders (D, B, and
V) to establish the baseline for the subsequent improve-
ment. Figure 3 illustrates the results of all classifications
for all sample sizes. Generally, the lowest accuracy is
observed for sender D on the device p8l with 5 classes
(21%), while the highest accuracy is observed for sender
B on the device op7 with 2 classes (82%). In fact, we
make similar observations for the single sender classifi-
cations with [6], regarding the average accuracy scores
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Figure 3: Average single-sender accuracy scores across devices and classes. These scores are considered the estab-
lished baseline for which we provide improvement. The presented results take into account all possible sample sizes.

The red dashed line indicates random guessing.

and the decline across the increasing number of classes.

Specifically, for each device examined ranging from
a53 to px6a, the data showcases a nuanced relationship
between the number of classes involved in the classifica-
tion task and the single sender accuracy scores. Notably,
as the number of classes increases, a general trend of de-
creasing accuracy is observed, which is consistent across
all devices. This trend is particularly evident when com-
paring results from 2-class configurations to those with
4 or 5 classes, where the average accuracy scores tend
to diminish, highlighting the increased complexity and
challenges associated with classifying a larger number
of classes. Moreover, some devices and senders exhibit
a more graceful degradation in accuracy as more classes
are added. For example, V on px6a degrades from 66%
with 2 classes to 40% with 5 classes, a relatively mod-
est decline compared to D on p8l, which plummets from
61% with 2 classes to 21% with 5 classes.

In the comparative analysis of device performance,
the op7 and a53 models significantly outperform the p8l
and px6a devices across all metrics. In particular, the
p8l and px6a devices achieve a maximum accuracy of
69% and 66%, respectively, when tested with sender V.
Furthermore, sender V consistently surpasses senders
B and D in performance on the p8l and px6a devices,
highlighting a notable disparity in efficacy. Conversely,
when evaluating the performance on the op7 and a53 de-
vices, the results among senders B, D, and V demon-
strate a remarkable uniformity, with only minimal vari-
ations in accuracy. The most significant discrepancy
observed is a 6% difference between senders B and D
when assessed with four classes on the op7 device. This
suggests that while op7 and a53 provide more consis-
tent and higher performance across different senders, p8l
and px6a exhibit limitations, particularly in terms of ac-
curacy and sender variability. Consequently, sender V
not only shows higher accuracies across the board but

also appears to be more resistant to accuracy drops as
the number of classes increases. This suggests that V’s
data might be inherently more separable or that V em-
ploys more consistent patterns in location-related behav-
ior. Overall, the presence of differences in performance
between the senders within the same device and class
configuration underscores the variability in sender effec-
tiveness.

5.2 Multiple Senders:
tion

Simple Combina-

In this subsection, we start by comparing the double-
and triple-sender accuracy scores with the single-sender
scores. In Figure 4, we show all classification accu-
racy scores with the worst (minimum) and best (max-
imum) performances of the single- and double-sender
data, across all devices and sample sizes. The aim here is
to show the minimum and maximum improvement of the
multi-senders with simple combinations, based on this
collected dataset.

Reflecting on previous discussions, sender V consis-
tently emerges as the top performer across all metrics,
capturing both the lowest and highest scores. However,
this trend does not uniformly extend to scenarios involv-
ing double- and triple-sender configurations. Initially, all
multi-sender combinations yield superior accuracy rates
compared to individual efforts by senders B and D, un-
derscoring the premise that pooling sender data can en-
hance overall performance. Notably, in binary classifi-
cation tasks, sender V is marginally eclipsed by combi-
nations such as DV, BV, BD, and BDV, and similarly by
DV, BV, and BDV in contexts involving three and four
classes. On the contrary, the BD pairing underperforms
for three and four classes, highlighting that sender D’s
contributions do not bolster the collective accuracy to the
same extent as other senders in these specific instances.
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Figure 4: The scatter plots illustrate the accuracy points between different sender types and classes. All devices and
sample sizes are considered. The plots with the minimum accuracy scores take into account the worst performance of
the single- and double-sender data, while the maximum accuracy scores focus on the best possible (in this setup).

This phenomenon underscores a critical insight: a sender
with generally lower performance can, in certain con-
ditions, detrimentally impact the collective accuracy of
multi-sender configurations.

To illustrate the enhancements in accuracy we
achieved by integrating multi-sender data over single-
sender benchmarks, we included Figure 5. This fig-
ure highlights the maximal accuracy improvements re-
alized in our study for configurations involving two and
three senders combined. It provides a detailed exam-
ination of the specific devices engaged in our exper-
iments and quantifies the average accuracy enhance-
ment across different class numbers. For each clas-
sification category, we pinpointed the lowest accuracy
scores from single-sender scenarios and juxtaposed these
with the highest-performing scores from multi-sender
configurations across all sample sizes. This approach
was designed to showcase the performance improve-
ments achievable with multi-sender strategies within our
dataset. The underlying principle is that the attacker can
always adapt the classifications by choosing the best-
performing multi-sender combination.

The analysis reveals that for devices a53 and op7, en-
hancements from multi-sender configurations are rela-
tively modest for binary classifications. This is attributed
to the already high performance of single-sender setups
in these instances (as detailed in Figure 3). However, the
narrative shifts significantly for classifications involving
three and four classes, where we observe improvements

of approximately 20%. The scenario is even more pro-
nounced for the p8l and px6a devices, which exhibit
progressively larger gains in accuracy with an increase
in the number of classes. Notably, the peak improve-
ment recorded is an impressive 120% for the px6a device
within four-class scenarios using three senders (namely,
the BDV combination).

This data suggests a clear trend: Classifications that
initially present lower accuracy in single-sender formats
tend to benefit substantially from the incorporation of
multi-senders, particularly in multi-class classifications.

5.3 Multiple Senders: Statistical Combina-
tion

In this subsection, we delve into a comparative analy-
sis between the performance of individual senders and
the aggregated results from multiple senders, specifically
focusing on the statistically enhanced Mean and MMS
datasets. These datasets incorporate data from all three
senders at their largest sample sizes, representing the best
dataset advancements explored in this study.

By observing Figure 4 once more, it becomes appar-
ent that the Mean and MMS datasets exhibit superior
performance for binary classifications compared to other
methodologies. This is particularly noticeable in their
minimum accuracy scores, which significantly exceed
those achieved by alternative approaches. The gap be-
tween the Mean and MMS datasets is relatively narrow,
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Figure 5: Best accuracy improvement of all multi-sender techniques from the single-sender baseline (not globally
optimal), across all sample sizes. Lines in 4 and 5 classes indicate that there was only one classification, meaning one

accuracy outcome.

with the MMS dataset showing a marginal enhancement
in accuracy. However, the distinction in performance
between these advanced datasets and other techniques
becomes starkly apparent in the analyses for three and
four classes. For these more complex classifications, the
MMS dataset demonstrates a better performance than the
Mean dataset, unlike the improvement observed in bi-
nary classifications. The results indicate that the MMS is
currently the best-performing method for location iden-
tification, especially for multi-class classifications.

To further investigate the improvement of the Mean
and MMS datasets per device, we study the correspond-
ing boxplots of Figure 5 which illustrate the improve-
ment percentages for the enhanced datasets for the four
distinct devices. These plots reveal the percentage im-
provements of the advanced datasets across four distinct
devices. For devices a53 and op7, the increments be-
tween the Mean and MMS methods are relatively mod-
est. However, as we shift our focus to devices p8l and
px6a, especially with an increasing number of classes,
the distinction becomes more significant. The MMS
dataset showcases the maximum improvement, reaching
up to 142% for a four-class scenario on the px6a de-
vice. Furthermore, when juxtaposing the performance
of the Mean and MMS datasets against results from two
or three senders, the superiority of the MMS strategy
becomes more evident. Particularly, the MMS dataset

demonstrates considerable superiority over the conven-
tional multi-sender combinations, highlighting its effec-
tiveness not just in enhancing accuracy, but also in pro-
viding a more consistent and reliable performance across
varying class complexities and devices. This compara-
tive analysis not only underscores the value of the MMS
approach but also positions it as a notably advanced
methodology within the scope of our investigation, sig-
nificantly outpacing traditional techniques in terms of
performance improvement. Still, Figure 5 displays our
best improvements, but they are not considered as global
optimal, since there might be ways to enhance these tech-
niques even further. Finally, Figure 6 provides additional
information comparing the Mean and MMS results to all
single senders with all sample sizes.

5.4 Sample Size Comparisons

In machine learning, the sample size is a significant fac-
tor that influences the model’s performance. A sufficient
sample size ensures that the model can capture the di-
versity of the entire population within the data. Typi-
cally, larger sample sizes provide more data points for
the mode to learn from, which can lead to higher accu-
racy and reliability. In our work, we explore the con-
nection between the model’s performance and the sam-
ple size. Our goal is to determine whether the accuracy
increases as the sample size increases. To this end, we
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Figure 6: Accuracy boxplots between the single-senders and the enhanced multi-sender approaches for all classifica-
tions. The plots consider the worst and best performing accuracy scores for single senders. These distributions show
that MMS achieves the best improvement (not global optimal).

meticulously analyze the performance metrics of single-,
double-, and triple-sender results across a sample size
range from 100 to 1000.

For single-senders B, D, and V, Figure 7 shows the av-
erage accuracy for all number of classes in each device,
unveils a trend where accuracy generally stabilizes with
an increase in sample size across various device contexts.
For double-senders BD, DV, and BV, Figure 8 reveals a
consistent pattern of steady or small improved accuracy
with larger sample sizes, across all class numbers. This
pattern persists into Figure 8, representing triple-sender
configurations, where the trends once again affirm the
model’s steady performance with increased data volume
for each class number per device.

Regarding the classification, the trends give us the in-
sight that the model might be well-tuned to the complex-
ity of the task at hand, effectively capturing the patterns
within the available data. In addition, this means that
the key features and patterns necessary for making accu-
rate predictions are already captured within the smaller
dataset. Steadiness after a certain sample size also shows
that the model’s structure is robust enough to perform
reliably under varying dataset conditions.

Consequently, for the attacker, these are promising re-
sults as it is not necessary to collect large amounts of
data, corresponding to the SMS transmissions, in or-
der to conduct the location identification attack. This
can be beneficial in reducing the measurement collection
time, computational costs, and training time, making the
model more efficient to develop and deploy, where ac-
quiring large volumes of data is challenging or impracti-
cal. Additionally, this can also make the adversary less
susceptible to detection, since the attacker can adapt to
the least amount of SMS transmission and senders for
the desired accuracy.

6 Discussion

In this section, we discuss the distribution of the sender
locations in our study. Then, we provide our insights on
the countermeasures against multi-sender SMS location
inference attacks and explain their potential limitations.

6.1 Geographical Distribution of Senders

The strategic placement of sender locations, adhering to
the principle of distancing them by several Kilometers,
aims to capture diverse timing characteristics (e. g., via
different routing), since the networks are black-box to
the attacker based on our threat model. In our study, we
utilize the most suitable locations from our options, for
which we can collect a sufficient amount of data continu-
ously and for a long time. We confine our options to two
adjacent countries since it is more challenging to conduct
the location inference attack in lower granularity levels.
Expanding the number of senders and diversifying loca-
tions internationally as well can potentially improve the
accuracy of attack even further.

6.2 Countermeasures

Ways to mitigate this attack can span from the elimi-
nation of silent SMSes and delivery reports to the im-
plementation of more rigorous SMS filtering mecha-
nisms for spam and flooding, which represents one of
the most direct and practical countermeasures against
location identification attacks [6]. Enhancing the core
concept of resilient spamming/flooding filters, networks
are encouraged to integrate advanced anomaly detection
systems in order to accurately distinguish between nor-
mal and anomalous patterns of SMS traffic. However,
it’s important to acknowledge that these systems pri-
marily operate based on predefined rules and thresholds
for anomaly detection, thereby limiting their efficacy to
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continuous as the sample sizes expand. We include BD, , DV, & BDV for 2 (o), 3 (O0), 4 (A), & 5 (¢) classes.

merely delaying, rather than outright preventing, the ex- tiple locations (also through roaming) targeting a
ecution of such attacks. single number, the system can flag potential coor-
To further complicate the attacker’s efforts in utilizing dinated attacks.

timing information, the implementation of adaptive jitter
mechanisms introduces a more nuanced counterstrategy.
These mechanisms, capable of introducing variable de-
lays in SMS processing, adjust dynamically in response
to fluctuating network conditions and traffic patterns.
This adaptability ensures that networks can impede side-
channel analysis through effective timing obfuscation.
Nevertheless, considering the sophisticated strategy of
attackers deploying multiple senders across different ge-

2. Adaptive Routing: Dynamically alter the rout-
ing of messages based on real-time analysis to dis-
rupt the timing measurements of attackers. This
could involve randomizing the path messages take
through the network or introducing variable delays
for messages from identified suspicious sources and

ographical locations and leveraging various networks, roaming.
the effectiveness of previously mentioned countermea-
sures could be compromised. To address this, networks
could adopt a multi-layered defense strategy that also 3. Joint Defense Initiatives: Since the attacks can
considers the following methods: happen internationally from any location, it is im-
perative to establish shared intelligence on known
1. Geographic Analysis of Source: Implement attack patterns, including the use of multiple
anomaly detection systems that not only monitor the senders, across networks. Networks that work to-
frequency and pattern of messages but also analyze gether can implement joint defense measures, such
the geographic origins of SMS traffic. By identify- as coordinated blocking of attack sources and uni-
ing unusual patterns of messages coming from mul- fied response strategies to emerging threats.
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6.3 Limitations

In this work, we alleviated the problems of some limita-
tions present in the location identification attack. First,
the attacker is not constrained by one location only and
can combine multiple sender measurements to signifi-
cantly improve the model’s accuracy. In addition, our
sample size study showed that the attacker is not con-
strained by the data size in most cases, making the attack
more efficient. The adversary has also the flexibility to
choose the best-performing multi-sender technique per
classification and is not restricted by one method only.

Despite the initial success of our experimentation, sev-
eral challenges remain in multi-sender attacks. Firstly,
while our study did not directly encounter coordination
or resource challenges, expanding the attack to incor-
porate multiple senders may necessitate significant re-
sources. This includes not only hardware but also lo-
gistical efforts to strategically position devices across
various locations. Such expansion could substantially
increase the complexity, cost, and effort required, po-
tentially making the attack viable only for adversaries
with substantial resources. Secondly, even though our
experiments did not face any issues with anomaly de-
tection systems, attacks conducted by multiple senders
are more likely to be identified as anomalous, resem-
bling patterns of spam or malicious activity more closely
than those conducted by single senders. Lastly, our focus
has largely been on closed-world scenarios, where the at-
tacker has predefined knowledge of the victim’s potential
locations. The efficacy of multi-sender attacks in open-
world scenarios, where the victim’s location is unknown,
remains less explored. We are planning to investigate
these aspects of the attack in the future.

7 Related Work

Recent studies have increasingly focused on the exploita-
tion of timing side-channel analysis for various secu-
rity and privacy implications. Schnitzler et al. [27] ex-
plored the feasibility of distinguishing the location of
message recipients in messenger applications using a
technique based on timing differences, focusing on In-
ternet infrastructure, similar to the concept examined by
Bitsikas et al. [6] which was centered on cellular net-
works. This line of inquiry is part of a broader spec-
trum of research into timing side-channel analysis even
across different web aspects, as evidenced by works such
as Rasmussen et al. [23], Kohlbrenner et al. [15], Brum-
ley et al. [7], and Goethem et al. [10], highlighting the
versatility and risk of timing attacks in various online en-
vironments.

In the domain of cellular networks, a rich body of lit-
erature has methodically explored both active and pas-

sive techniques to localize cellular network users. Stud-
ies range from capturing specific identifiers to leverag-
ing vulnerabilities within the network’s paging messages
and Radio Link Failure reports [12, 13, 17, 18, 29, 30].
The MAC layer and timing advance values have been
investigated for their potential in enhancing localization
accuracy [22,26]. Notably, LTrack [16] demonstrated
an improvement in localization accuracy to as precise as
20 meters, significantly enhancing tracking capabilities
with minimal adversary involvement. Furthermore, Lak-
shmanan et al. [18] showed that by collecting data from
the public scheduling channel and finding unique identi-
fiers, one could trace a target’s path with an accuracy of
less than 1 kilometer.

Various SMS attacks have been demonstrated, exploit-
ing vulnerabilities to extract sensitive user information or
execute commands, as seen in the case of Simjacking [4]
and studies on spamming, spoofing, DoS, and silent SMS
in LTE networks [31]. Mulliner et al. [19] introduced
a vulnerability analysis framework for monitoring unex-
pected smartphone behaviors leading to large-scale DoS
attacks. Furthermore, audio call features have been ex-
plored for security applications, such as fingerprinting
and anomaly detection to combat call redirection/hijack-
ing. Techniques leveraging audio latency and network
characteristics have been investigated, with notable ex-
amples including Sonar [20] and PinDrOp [5].

8 Conclusion

In this work, we explored various multi-sender tech-
niques of the SMS location inference attack, which
provide a substantial accuracy improvement compared
to the single-sender approaches. Our results showed
that the best-performing method for all devices, sam-
ple sizes, and number of classes was the multi-sender
MMS method. Additionally, we performed an analysis
on the effects of the sample size on the model’s accuracy
for single- and multi-sender attacks, which revealed that
the attacker can leverage smaller sample sizes to conduct
the attack saving measurement collection time, resources
and reducing the possibility for detection. Finally, we re-
examined the potential countermeasures with extra sug-
gestions.
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Abstract

The bicycle industry is increasingly adopting wireless gear-
shifting technology for its advantages in performance and
design. In this paper, we explore the security of these systems,
focusing on Shimano’s Di2 technology, a market leader in the
space. Through a blackbox analysis of Shimano’s proprietary
wireless protocol, we uncovered the following critical vulner-
abilities: (1) A lack of mechanisms to prevent replay attacks
that allows an attacker to capture and retransmit gear shift-
ing commands; (2) Susceptibility to targeted jamming, that
allows an attacker to disable shifting on a specific target bike;
and (3) Information leakage resulting from the use of ANT+
communication, that allows an attacker to inspect telemetry
from a target bike. Exploiting these, we conduct successful
record and replay attacks that lead to unintended gear shifting
that can be completely controlled by an attacker without the
need for any cryptographic keys. Our experimental results
show that we can perform replay attacks from up to 10 meters
using software-defined radios without any amplifiers. The
recorded packets can be used at any future time as long as
the bike components remain paired. We also demonstrate
the feasibility of targeted jamming attacks that disable gear
shifting for a specific bike, meaning they are finely tuned to
not affect neighboring systems. Finally, we propose coun-
termeasures and discuss their broader implications with the
goal of improving wireless communication security in cycling
equipment.

1 Introduction

Modern bicycles are cyber-physical systems that contain em-
bedded computers and wireless links to enable new types of
telemetry and control. The key motivating factors for moving
away from traditional mechanical systems are the ability to
gain insights about a rider’s physical performance, better re-
sponsiveness in gear shifting, customizability of how the gear
shifters operate, and easier setup and maintenance.

Among all these technologies, we observe that the one with

the most impact on bike control and safety is wireless gear
shifting.' It uses wireless links between the gear shifters and
the derailleur — an electro-mechanical component that uses
motors to move the chain between gears. Electronic control
provides increased precision in shifts and is less prone to
issues like cable stretch and contamination that plague me-
chanical gear shifting systems. Although wired electronic
control of gear shifting exists, the current trend in the bicycle
industry is to move towards wireless control. All major man-
ufacturers now support wireless shifting (Shimano, SRAM,
Campagnolo).

In this work, we analyze the security guarantees of wire-
less gear shifting. Any security vulnerability in this system
can significantly impact the rider’s safety and performance,
especially in professional bike races, where an attacker could
target a victim rider to gain an unfair competitive advantage.
In a professional race, a peloton of hundreds of riders are close
to each other, often a few feet apart, and can reach speeds up to
40 mph. Any sudden changes to a bike’s performance can be
catastrophic. For example, if an attacker were to target a sub-
set of riders and shift the gears or jam the shifting operation,
it could result in crashes and injuries. As another example, if
the riders are climbing slowly (or descending at high speed),
an attacker could shift a target rider’s bike into high gear or
jam their shifting, leading them to lose their position in the
race and even lose control of the bike itself.

The sport of professional cycling has a long and troubled
history with the use of illegal performance-enhancing drugs
— security vulnerabilities in one of the most critical compo-
nents of the bike could be viewed as an attractive alternative
method for people who want to compromise the integrity
of the sport. Furthermore, our attacks do not leave any de-
tectable trace, unlike the use of performance-enhancing drugs.
As such, with the introduction of wireless gear shifting, one
must adopt an adversary’s viewpoint — professional bike
races are adversarial environments, and the technology must
withstand motivated attackers. We focus on the Shimano 105

The other important component is the brakes, but these are mechanical
systems.
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Di2 [10] and Shimano DURA-ACE Di2 [16] wireless shift-
ing systems. Shimano is a leader in the bicycle control sys-
tem industry, commanding approximately 50% of the market
share [15,28]. We purchased a recent version of the control
system and performed a black box security analysis, from
capturing raw physical signals, examining their behavior on
gear shifting, and finally performing packet structure/content
analysis. This study seeks to address the following research
questions: (1) What are the security guarantees provided by
these wireless gear-shifting systems? (2) Do these wireless
systems, when integrated into bicycles, maintain robust de-
fenses against specific cyber attacks, such as replay attacks,
similar to those observed in automotive key fob systems [20]?
Have the lessons learned from analyzing similar systems con-
tributed to the design of these wireless gear shifters? (3) What
is the practical feasibility of executing the identified cyber
attacks? In other words, what constraints and requirements
would an attacker face in attempting to compromise these
systems?

Our key contribution is the discovery of a record-and-replay
attack that allows an unauthorized party to fully control gear
shifting on a victim bike at ranges up to 10 meters with-
out the use of amplifiers. This attack can be realized using
commercial-off-the-shelf software-defined radios (SDR). The
attacker only needs to record two signals — an upshift and a
downshift.

We make the following contributions in this paper.

Analysis of the Shimano Wireless Gear Shifting Protocol.
We investigate the proprietary protocol used by Shimano for
its wireless gear shifting. This process allows us to decode
the communication framework of these systems, providing
insights into their operational mechanics.

Identify Security Weaknesses. Based on the analysis, we
identify several security weaknesses within the protocol, no-
tably the absence of replay protection mechanisms such as
timestamps or sequence numbers. Despite the implementa-
tion of cryptographic primitives, these vulnerabilities present
significant security risks.

Record-and-Replay and Targeted Jamming Attacks.
Leveraging the identified weaknesses, we successfully ex-
ecute record-and-replay attacks. These attacks can cause un-
expected gear shifts in arbitrary patterns by interacting at the
physical layer, bypassing the need for extracting any cryp-
tographic secrets and making the attack independent of the
cryptographic layer. Furthermore, we explore the potential
for targeted jamming attacks that specifically disable gear-
shifting capabilities on targeted bicycles without impacting
nearby cyclists.

Experimental Evaluation. We conduct various experiments
with two identical Shimano 105 Di2 wireless gear shifting
systems. We also confirmed our findings on Shimano DURA-
ACE Di2 system. Through these experiments, we executed

replay and jamming attacks utilizing SDRs and explored their
effective range. Additionally, we examined the shifting sys-
tem’s behavior in response to interference. Our experiments
indicate that replay attacks using SDRs are effective up to a
distance of 10 meters without amplification. The effectiveness
of replayed packets persists as long as the pairing between
shifters and derailleur remains unchanged.

Countermeasures. We provide a discussion of potential coun-
termeasures. Wireless gear shifting operates in a highly con-
strained environment — security mechanisms should not add
significant time delay in shifting and must not degrade bat-
tery life. While implementing techniques such as timestamps
has particular challenges, employing rolling codes or distance
bounding within wireless gear shifting can effectively miti-
gate replay attacks.

Although our paper’s main focus is on Shimano’s gear-
shifting systems, we also examine vulnerabilities in the com-
munication protocol used for telemetry on bike displays, no-
tably the ANT protocol. This protocol is widely used in Shi-
mano and other low-power wireless data transmission sys-
tems, extending the relevance of our findings. We have shown
that any nearby third party with Shimano’s private key and
knowledge of the channel configuration can intercept all trans-
mitted information. In our replay attack scenario, this informa-
tion enables the attacker to determine the targeted bike’s cur-
rent gear and replay the upshifting/downshifting commands
to adjust the gear according to their preference. For example,
the attacker waits until the rider is in gear 3 and then launches
a downshift replay to move it to gear 2.

Our study aims to highlight vulnerabilities in wireless gear
shifting systems, especially focusing on Shimano’s Di2, and
offers a first look into the security challenges of bicycle wire-
less communication technologies. Through this work, we
hope to contribute to the ongoing effort to secure wireless
communications in cycling equipment.

Responsible Disclosure. We notified Shimano about the
vulnerabilities, along with detailed information on replicat-
ing the attacks, part numbers of the devices we tested, and a
description of countermeasures that might be helpful in this
context. Shimano has acknowledged these vulnerabilities and
is working on fixes at the time of this writing.

2 Wireless Gear Shifting: An Overview

In the cycling industry, all major manufacturers have ventured
into developing wireless gear-shifting systems, aiming to en-
hance the cycling experience through technology. Brands like
SRAM [17] and Campagnolo [3], alongside Shimano, have
introduced their versions of wireless shifting, each bringing
unique features and innovations to the market. These systems
signify a leap forward in bicycle design, offering cyclists
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Table 1: The equipment list on the test bikes for Shimano 105
Di2 groupset.

Item Model Firmware Version
Rear Derailleur | RD-R7150 ver 4.0.2

Front Derailleur | FD-R7150 ver 4.0.1

Right Shifter ST-R7170-R | -

Left Shifter ST-R7170-L | -

Battery BT-DN300 ver 4.0.1

Table 2: The equipment list on the test bikes for Shimano
Dura-Ace Di2 groupset.

| Item | Model | Firmware Version |
Rear Derailleur | RD-R9250 ver 4.0.7
Front Derailleur | FD-R9250 ver 4.0.3
Right Shifter ST-R9270-R | -
Left Shifter ST-R9270-L | -
Battery BT-DN300 ver 4.0.1

improved performance, convenience, and integration. Due
to Shimano’s significant market presence and role as a pio-
neering force in cycling technology, we’ve selected Shimano
as our case study to examine the vulnerabilities inherent in
wireless gear-shifting systems.

For our experiments, we chose the Shimano 105 Di2 and
the Dura-Ace Di2 wireless gear-shifting systems as our case
study. Tables | and 2 contain the equipment list, their respec-
tive model numbers, and firmware versions. We note that the
two groupsets, Shimano 105 Di2 and Shimano Dura-Ace Di2,
are compatible. Therefore, we tested pairing various shifters
and derailleurs from these groupsets and confirmed that they
all use the same protocol. Consequently, the vulnerabilities
identified are consistent across both systems.

The Shimano gear-shifting system consists of four main
components.

(1) Rear Derailleur: The rear derailleur is the core of the
gear-shifting system and facilitates all wireless communica-
tions. This includes connections with the shifters, Bluetooth
Low Energy (BLE), and ANT+ communications. It offers
eleven gear levels (and, in some newer versions, 12 levels),
ranging from the lowest to the highest.

(2) Front Derailleur: The front derailleur is wired to the rear
derailleur through the battery and allows switching between
two distinct gear levels, which are large gear changes.

(3) Right and Left Shifters: These components wirelessly
transmit gear-shifting instructions to the rear derailleur using
Shimano’s proprietary protocol, which we will explore in
detail in the following section. One of the shifters controls the
rear derailleur, and the other controls the front derailleur. This
setting can be customized through the E-TUBE PROJECT [4]
over BLE.

(4) Battery: The battery ports are connected to the rear and

Shimano's
Proprietary Protocol

(((( o Shifter

BLE ANT
- - 4
ETUBE PROJECT Cycle Computer
Rear . W
Derailleur

Figure 1: Shimano’s RF communication.

front derailleur, ensuring they are powered for operation.

The Shimano system employs three key protocols to estab-
lish connections among its various components, each serving
a distinct function. The communication methods within Shi-
mano’s network are illustrated in Figure 1.

2.1 Bluetooth Low Energy

The Shimano E-TUBE PROJECT is a software tool that con-
nects cyclists to their bike configuration. This platform can
personalize the settings, such as customizing shifter button
functions and conducting firmware updates. It employs BLE
for efficient communication in many power-constrained de-
vices, which fits the requirements of a system like E-TUBE
PROJECT that aims to provide seamless and user-friendly
interaction with bicycle components. While BLE is essential
for configuring and updating the system, it does not control
real-time biking actions such as shifting gears.

Also, the initial setup of shifters and the rear derailleur
involves pairing them through the E-TUBE mobile app. Users
need to register and connect the rear derailleur to the mobile
app, then scan the QR code on the shifters to pair both shifters
with the rear derailleur. Given that Bluetooth Low Energy
(BLE) vulnerabilities have been extensively documented in
existing literature [41], our paper did not focus on this aspect.

2.2 ANT+

ANT is a low-power wireless protocol designed to transmit
information between devices efficiently and reliably. It is
known for robustness and adaptability in different network
setups, including mesh networks, making it ideal for gathering
and sending sensor data.

Building on the ANT protocol, ANT+ is an enhancement
that standardizes how specific data types are communicated.
It establishes device profiles for consistent data transmission,
like heart rate, bike speed, and cadence. This standardization
allows devices from various manufacturers to work together
seamlessly. In cycling, ANT+ plays a crucial role in the Di2
system. It wirelessly sends vital information such as gear
position and battery life to compatible cycling computers,
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Figure 2: The sequence of command and acknowledgment
packets between the shifter and rear derailleur after a button
press. The user’s actions can influence the sequence and num-
ber of command packets, which are subsequently followed by
an acknowledgment.

allowing riders to monitor these details in real-time during
their rides. The frequency range for ANT devices spans from
2.400 GHz to 2.524 GHz, but 2.457 GHz is reserved specifi-
cally for ANT+ devices. These devices can operate using a
public network key, a private one, or a managed network key
owned privately, providing flexibility in network security and
access [1]. In summary, ANT and ANT+ offer versatile and
efficient solutions for wireless communication, especially in
scenarios where reliable data transmission and interoperabil-
ity are essential.

2.3 Shimano’s Proprietary Communication
Protocol

In the Shimano Di2 system, gear shifting is controlled through
a unique, Shimano-specific protocol. This protocol operates
on the 2.478 GHz frequency band, facilitating communica-
tion between the rear derailleur and the shifters. However,
Shimano’s official documentation does not disclose detailed
information about this protocol, leaving specifics such as mod-
ulation, data rate, and packet structure unclear. Thus, we ana-
lyze Shimano’s proprietary communication protocol as a first
step.

Figure 3: One command packet being transmitted from the
shifter to the rear derailleur, along with the corresponding
acknowledgment sent from the rear derailleur back to the
shifter.

3 Analyzing Shimano’s Wireless Gear Control
Protocol

We begin with an overview of Shimano’s Wireless Gear Con-
trol Protocol, providing a detailed examination of the com-
mand and acknowledgment packet sequences exchanged be-
tween the shifter and the rear derailleur. Next, we analyze the
physical layer, focusing primarily on demodulating captured
RF signals into binary data to understand the underlying com-
munication mechanisms. We employ a black-box methodol-
ogy to passively capture raw signals. Subsequently, we delve
into the packet structures within the Shimano wireless com-
munication protocol, exploring all components of the various
packet types. Finally, we discuss the security weaknesses that
could potentially threaten the protocol’s integrity.

3.1 High-Level Protocol Overview

The shifters send two types of commands to the rear derailleur
— Gear Up and Gear Down. On each press of the shift button
(either up or down), the shifter transmits at least three packets
to the derailleur. Upon receiving each packet, the derailleur
transmits an acknowledgment to the shifter. The quantity of
packets transmitted is influenced by the speed at which the
user presses and releases the shifter button. If the button is
pressed and held, packets will be sent for the hold duration.
Conversely, a single press of the button results in the transmis-
sion of at least three packets. Figure 2 illustrates the sequence
of packets triggered by the user pressing the button, leading
to one upshift on the rear derailleur. As noted, the sequence of
command packets followed by an acknowledgment can vary
based on the user’s actions. Figure 3 displays one command
packet being transmitted from the shifter to the rear derailleur,
along with the corresponding acknowledgment sent from the
rear derailleur back to the shifter. Each command packet has
an approximate duration of 112 ps, while each acknowledg-
ment packet is about 76 ps.

If the shifter fails to receive an acknowledgment within
a time frame, it initiates a burst transmission. Each burst
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Table 3: Behavior of different packets during a replay attack: Pressing the button by the user results in the transmission of three
packets from the shifter to the derailleur. To understand the packet’s functionality, we conducted experiments by replaying the

packets both individually and in various combinations.

. First | Second | Third .
Setting Packet | Packet | Packet Observations
This will cause the derailleur to shift up by one gear.
A 1 The repeating signal will not function until you manually press the button once.
After that, the signal can be replayed successfully once more.
B 1 Similar to A.
C No reaction.
D 1 1 Works like a normal replay. Repeated many times.
E 1 1 Similar to D.
F 1 1 Every time the signal was replayed, it resulted in shifting twice instead of a single time.

Figure 4: Segments from a burst sequence when acknowl-
edgments are not received, showcasing a total of 748 packets
transmitted over 1.5 seconds.

contains 748 packets and lasts 1.5 seconds. We captured the
packet burst while the rear derailleur was disconnected from
the battery. Figure 4 illustrates a segment of this burst. In
Section 4.3, we discuss the relevance of the packet burst under
conditions like interference.

In the next step, we conducted tests by individually trans-
mitting the three captured packets associated with a single
gear shift to analyze each packet’s effect. Furthermore, we
experimented with various combinations of these three pack-
ets to examine the outcomes, acknowledging that redundancy
among them might be designed to guarantee command recep-
tion by the derailleur to prevent potential interference.

Table 3 summarizes the functionality of the packets. We
monitored how the packets behaved under different conditions
(labeled A to F), continuously replaying the specific packet(s)
relevant to each condition. This was then contrasted with a
baseline scenario, wherein all three packets were replayed
in their original sequence, mirroring the authentic command
exactly. Our observations indicated that the behaviors of the
first and second packets were strikingly similar.

On the other hand, replaying only the third packet triggers
no derailleur action, leading us to speculate that this packet
might serve as a "button released" command.

In scenarios D and E, eliminating the first or second packet
does not affect the behavior of the packets compared to the

Table 4: Signals information derived from publicly available
documents

| Signal Feature | Value \
Frequency 2.478 GHz
Bandwidth 2127 KHz
Modulation GFSK
Emission Reference | <TX3064779>
Emission Designator | 2M13F1D-

baseline scenario. This suggests that one of the packets may
be sent as a form of redundancy. In both cases, D and E, repeat-
edly replaying the packets consistently triggers a single gear
shift, akin to the baseline scenario. However, replaying the
same packet in scenarios A and B does not lead to subsequent
gear shifts after the successful initial replay.

Furthermore, in scenario F, sending both the first and sec-
ond packets causes the gear to shift twice, which could mirror
the situation where the user keeps the button pressed.

We clarify that our analysis in Table 3 focuses exclusively
on individual shift events rather than MultiShift settings. Mul-
tiShift settings in Shimano’s wireless gear-shifting system
allow multiple gear changes with a single button press, en-
abling quicker transitions across gears. This distinction is
important as our experimental setup and data collection were
designed to evaluate single-shifting actions.

In conclusion, our experiments revealed that the roles of
the first and second packets might stem from redundancy and
correspond to the user’s button press, while the third packet
appears to be associated with the user releasing the button.

3.2 Physical Layer Analysis

The primary focus is demodulating the captured RF signals
into binary data and subsequently examining their contents.
We use a black box methodology that passively captures raw
signals.

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 79




16 bit 32 bit 16 bit 4 bit 4 bit 48 bit 80 bit
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Figure 5: Overview of Command and Acknowledgment Packet Structures. Illustrating the differences between 200-bit command
packets and 128-bit acknowledgment packets, including the content of their respective fields.

Table 5: Modulation/Demodulation parameters for Shimano’s
proprietary protocol

Modulation Parameter | Value

Carrier Frequency 2.478 GHz

Data Rate 2 Mbps

Bit per Symbol 1

Frequency Deviation -250 kHz/250 kHz
Gauss BT 0.5

Gauss Filter Width 1

The first step in analyzing a wireless signal is determining
its precise frequency and modulation type. We found this data
in documents from the Federal Communications Commis-
sion (FCC) and the Radio Equipment List (REL). Table 4
presents the information summarized from these documents.
The communication between devices occurs at 2.478GHz and
does not utilize frequency hopping. The signal’s bandwidth is
2127 KHz.

The term ‘Emission Reference <TX3064779>’ is identified
as a distinct code or number linked to specific emission prop-
erties. The ‘Emission Designator 2M13F1D’ is recognized
globally to categorize a signal’s bandwidth, modulation type,
and content. ‘2M13’ details the required signal bandwidth.
‘F* denotes the modulation type of the primary carrier as fre-
quency modulation, ‘1’ represents a single channel carrying
quantized or digital data without an additional modulating
sub-carrier, and ‘D’ describes the nature of the transmitted
information, highlighting the transmission of digital data.

Shimano gear shifting utilizes Gaussian Frequency Shift
Keying (GFSK) for their proprietary communication protocol,
a form of Frequency Shift Keying that applies Gaussian filter-
ing to smooth out signal transitions or frequency shifts. GFSK
is a prominent modulation technique employed across various
wireless technologies, including Bluetooth, IEEE 802.15.4,
and Z-wave. Dealing with GFSK presents more complexity
in the analysis compared to systems using simpler modu-
lation techniques like amplitude shift keying, where signal
demodulation can be straightforwardly achieved using open-

source tools such as Inspectrum [8]. However, demodulating
GFSK requires identifying the correct demodulation param-
eters, which increases the complexity. For Shimano devices,
all specific modulation parameters were initially unclear. The
FCC documents did not disclose any of these parameters.
We utilized Universal Radio Hacker (URH) [34], a tool
specifically designed to analyze and manipulate wireless com-
munication signals for our analysis. This tool facilitates the
recording, analysis, and modification of signals across various
wireless devices. However, the automatic parameter detec-
tion feature in URH failed to demodulate our captured signal
effectively. We were unclear about the data rate, a critical
piece of information for GFSK demodulation, which depends
heavily on the correct sample/symbol ratio. Through a com-
bination of trial and error and visual analysis of our signals,
we identified the necessary parameters to successfully demod-
ulate the captured data. Table 5 outlines the required modu-
lation/demodulation parameters we identified. The Gaussian
filter in GFSK modulation has a parameter called the time-
bandwidth product (BT), which is the product of the filter
bandwidth and the bit duration. The BT value affects the
shape of the data pulses and the resulting GFSK signal.

3.3 Packet Structure and Content

Upon successful demodulation, we could distinguish two pri-
mary types of packets within the Shimano communication
protocol: command and acknowledgment. Command packets,
originating from the shifter, comprise 200 bits and are directed
towards the derailleur. Conversely, acknowledgments follow
these command signals and consist of 128 bits, transmitting
from the derailleur back to the shifter. Figure 5 graphically
illustrates these packet structures, annotated with their com-
ponents.

In our analysis of numerous packet sequences, we identify
and describe specific fields within the packets as follows:
Preamble: Each packet starts with a 16-bit preamble, repre-
sented as 0101010101010101. The preamble plays a critical
role in various RF communication protocols by helping to syn-
chronize the receiver’s timing with the sender’s signal. This
synchronization aids in accurately detecting the beginning
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Table 6: Analysis of different fields in Shimano command packets. It shows our observation of how different fields in the packets
change under various conditions, helping to clarify how the fields are connected.

Action/Condition Counterl | Counter2 . Observ?tions .
changes? | changes? | Payloadl Consistency | Payload2 Consistency | Destination ID Consistency

Bikel, Upshifting No No Yes Yes Yes

Bikel, Upshifting Yes No No No Yes

Bikel, Upshifting No Yes No No Yes

Bikel, Downshifting No No Yes No Yes

Bike2, Upshifting No No No No No

Bike 1? Upshlftmg No No Yes No Yes

(Repairing)

of a new packet. Additionally, the preamble facilitates the
adjustment of the receiver’s Automatic Gain Control (AGC)
circuits to the strength of the incoming signal. We verified
the correct demodulation of the preamble at the start of each
packet during our adjustments of the modulation parameters.
Protocol Identifier: Following the preamble is a 32-bit pro-
tocol identifier, which remains unchanged across all packets
captured under this specific Shimano’s proprietary protocol.
This identifier functions similarly to the “access address” in
BLE protocols and helps distinguish Shimano’s protocol from
other traffic in the 2.4 GHz spectrum.

Packet Type: A 16-bit field follows, identifying the packet as
either a command or acknowledgment packet. In our observa-
tions, every 200-bit command packet contains 0x8888 within
this field, while acknowledgments are marked with 0x1010.

Counters: The first counter (Counterl) increments with
each transmitted packet. The second counter (Counter?2)
increments only upon receiving an acknowledgment, indi-
cating a successful transmission. If the shifter does not re-
ceive an acknowledgment and begins to emit a burst of pack-
ets, Counter?2 remains constant, whereas Counterl cycles
through 15 possible values.

Payload: The next segment within command packets involves
Payloadl and Payload?2, together spanning 128 bits. We
divided the payload into two parts because some parts of the
payload in command packets are exactly replicated in the
acknowledgments.

Table 6 offers a comprehensive look at our findings, illus-
trating how each field varies across different test scenarios
and setups. For any given wireless shifting setup and com-
mand type (either upshifting or downshifting), Payloadl and
Payload? remain consistent as long as the counters are iden-
tical.

Specifically, Payloadl comprises a sequence that is
present both in the command packets and in the acknowledg-
ment packets. This section of the payload, a 48-bit sequence,
is repeated in the acknowledgment packets to confirm which
command the acknowledgment is intended for. On the other
hand, Payload?2 is exclusive to the command packets and
does not appear in the acknowledgment packets. If two pack-
ets have similar values for counterl and counter2, the values

of both Payloadl and Payload2 would be the same too. This
consistency holds true while the same shifters are consistently
paired with the same derailleur.

However, if the shifters are unpaired and re-paired,
Payload2 will have a different value under the same counter
conditions, while Payloadl remains unchanged even after
unpairing. So, in other words, Payload2 is susceptible to
changes upon reconfiguring the shifting system components.
Destination ID: The acknowledgment packets feature a 16-
bit Destination ID attheir conclusion. This ID corresponds
to the identity of the shifter—the commanding device or the
device that the acknowledgment is intended for. Through
extensive testing involving various pairings of shifters and
derailleurs, we consistently observed that the Destination
ID is determined by the shifter that sends the command packet.
In other words, the acknowledgment identifies and responds
to the shifter initiating the command.

Additionally, our experiments revealed that the
Destination ID remains constant, even after devices
are unpaired and then repaired. This consistency indicates
that the Destination ID is inherently linked to the shifter it-
self and does not change with different pairing configurations.
It highlights that the identity encoded in the Destination
ID is intrinsic to the shifter rather than being dependent on
the pairing status or the particular session of interaction
between the devices.

It is worth mentioning that the command packets lack a
feature similar to the Destination ID, which is consistent
and unencrypted, that would allow one to identify the receiver
from captured messages.

For our analysis, we looked into the packets from shifters
controlling both the rear and front derailleurs. We confirmed
that the packet structure remains consistent for all command
packets and constant across all acknowledgment packets.

3.4 Security Weakness

Our analysis revealed that Shimano’s wireless gear shifting
protocol employs a form of encryption, which hinders attack-
ers from creating and transmitting their own packets to the

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 81



Rear
Derailleur

AN N , Y
Shifter y N
S 2
i =

Attacker

Figure 6: The attacker model for the replay attack. The at-
tacker captures the command signal from the shifter, sends it
to the derailleur, and later replays it.

derailleurs. However, the protocol does not offer protection
against replay attacks, as the packets lack timestamps and
sequence numbers, rendering the protocol vulnerable to such
attacks. In this scenario, the attacker is not required to fab-
ricate packets but can simply capture and replay them. We
further describe this vulnerability with our experimental find-
ings in the following section.

4 Replay and Jamming Attacks

In the following, we will explore the susceptibility of Shi-
mano’s wireless gear shifting protocol to replay attacks in
Section 4.2, and discuss targeted jamming against this proto-
col in Section 4.3.

4.1 Attacker Assumptions and Experimental
Setup

The attacker is equipped with an SDR capable of transmitting
and receiving signals in the 2.4 GHz band. All commercial
off-the-shelf SDRs, such as the USRP B210 [5], HackRF [7],
PlutoSDR [11], and LimeSDR [9], are potential options for
this purpose. In our experiments, we used an USRP B210.
While the attacker may opt for more advanced setup, e.g.,
amplifiers to extend the attack range, these are not essential
components in our baseline attacker model.

A replay attack in RF communications is when an attacker
captures the legitimate signals and retransmits them to exe-
cute authenticated actions on a system without authorization.
This vulnerability poses significant risks as it can bypass vari-
ous security measures, including data encryption. To perform
a successful replay attack, the attacker does not need to know
the packet’s format or contents. Replay attacks can even work
against systems with encrypted protocols. In our targeted jam-
ming attack, we capture and retransmit the signal similar to

Attacker's
receiver and

rear and front

right and left
derailleur

shifters

Figure 7: Our experimental setup, featuring the Shimano wire-
less gear shifting system (including shifters and derailleurs)
and the USRP B210 as the attacker’s transceiver.

the replay attack. The methodology and details are explained
in Section 4.3.

As previously mentioned, the attacker is equipped with an
SDR; for our experiments, we used a USRP B210 to trans-
mit and receive signals without external amplifiers. Figure 6
depicts the attack model. The attacker’s strategy involves cap-
turing the signal emitted when the user engages the button to
shift gears up or down. Once captured, replaying this signal
enables gear shifting on the target’s bike, The attack works
independently of the system’s current gear, effectively allow-
ing for unauthorized control over gear adjustments. Figure 7
shows a photo of our evaluation setup.

A pre-requisite is that the attacker can capture a single
upshift and downshift signal. There are several situations
in which the attacker could collect these transmissions. An
attacker does not need physical access to the bike; being in
the vicinity is sufficient to capture the signal remotely in just
a matter of seconds. For example, at a professional race, many
individuals are within close proximity to a racer’s bike. The
attacker can capture the signals on the fly as the victim rider
is actually shifting their bike’s gears. Recall that our attack
works irrespective of which gear the bike is currently in; thus,
it is sufficient for the attacker to capture any upshift and any
downshift signal. In a professional race, the attacker is easily
within the signal range of the victim rider (e.g., riders are just
a few feet apart).

4.2 Replay attack

We explored the mechanics and implications of replay attacks
within the context of Shimano’s Wireless Gear Control Proto-
col. We detail our experimental setup and methodology using
SDRs to transmit and receive signals, demonstrating how an
attacker can exploit the system without needing to decrypt or
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Successful Gear Shifts vs. Distance for Replay Attack
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Figure 8: Assessing the Effective Distance for Replay Attacks
without amplifier. Replay attack success rate vs distance from
the target system.

even understand the signal’s content.

Figure 8 presents the outcome of our replay attack exper-
iments. The distance is measured from the attacker’s trans-
mitter to the bike’s rear derailleur. At various distances, we
conducted tests to shift the gear from the lowest to the highest
level, encompassing eleven levels in total. Our results indi-
cate that the replay attack is effective up to a distance of 9
meters without encountering any failures. At a distance of 10
meters, we observed an average success rate of 10 out of 11
attempted gear shifts. Each test involved shifting through all
11 gears, from the lowest to the highest. Beyond 10 meters,
the signal falls outside the effective range. Consequently, for
the attack to be viable, the attacker must be within 10 meters
of the target bike. All tests were conducted multiple times
to ensure reliability. Specifically, each test was repeated at
least five times across all shift levels. Additionally, for critical
aspects of our study, such as measurements beyond 10 meters,
we increased the number of repetitions to up to ten times to
confirm the protocol’s effective range.

A critical point is that the attacker does not require direct
physical access to the bike to capture and store the necessary
signal. Once recorded, these signals can be reused at any
future point without issue, owing to the lack of timestamps in
the packet data.

The system completely lacks defenses against replay at-
tacks, a finding reinforced by our ability to successfully replay
the same signals two months after initially capturing the pack-
ets. Additionally, we conducted an experiment in which we
recorded and replayed the signal, manually made at least 400
shifts, and subsequently performed the replay again, which
proved to be effective. As long as the shifters remain paired
with the same derailleur, the captured packets remain effective
for replay.

Furthermore, by capturing just one instance of upshifting
and one of downshifting from the targeted bike, an attacker

can create any sequence of gear shifts at varying intervals.
This enables them to carry out attacks at any future point as
long as the derailleur remains paired with the same shifters.
We successfully created and executed our arbitrary sequences
of upshifting and downshifting through replay attacks. In sum-
mary, this has the effect of creating an unauthorized shifter
that completely controls the rear derailleur and the front de-
railleur of the victim. We successfully replicated the exper-
iments by replaying the control commands (upshifting and
downshifting) for the front derailleur and managed to take
control of it.

4.3 RF Jamming Attack

A jammer operates as an RF transmitter, transmitting noise
that interferes with wireless communications. Our study uti-
lized two varieties of jammers: one generating random noise
and another broadcasting sine and cosine waves. To assess
the effectiveness of our jammers, we carried out tests under
various conditions. Based on our observations, using sine
and cosine waves for the jamming signal proved more effec-
tive than noise. Consequently, we conducted our experiments
to assess the jamming range by generating sine and cosine
waves.

We transmitted the generated signal precisely at 2.478 GHz
to interfere with the communication, as this is the specific
frequency used for all Shimano proprietary communications.
Consequently, the jamming would affect all nearby bikes op-
erating on this frequency. In our jamming tests, we positioned
the shifter and the derailleur one meter apart, reflecting the
typical distance between these components on a bike. We
then experimented with the jammer at varying distances.

We use GNURadio [6] for generating our jamming signals
and a USRP B210 to transmit them over the air.” The effec-
tiveness of jamming depends on various factors, including the
power of the jamming device, the type of signal being jammed,
the environmental conditions, and the distance between the
jammer and the receiver. The result of jamming can vary
significantly based on these conditions. If the jammer is lo-
cated anywhere within the one meter zone from the derailleur,
the gear-shifting system becomes completely non-functional,
losing all capability for successful communication.

Generally, jamming effectiveness increases as the jammer
gets closer to its target. Outside the tested ideal jammer zone
(1 meter from the derailleur), the jammer still disrupts com-
munication to some extent, but it doesn’t completely disable
the bike’s functionality. Our jamming range experiment was
conducted using a baseline setup without the enhancement of
amplifiers or directional antennas. There are multiple methods
to make jamming more effective. Directional antennas, for
instance, could intensify the jamming signal’s focus toward
a particular area while lessening its effect elsewhere. The

2We note that although the devices operate in ISM band, care was taken
to isolate the experimental setup in a separate area.
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Success Rate of Gear Shifting in Bike2
vs. Packet Interval in Replay Bikel
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Figure 9: Analysis of Gear Shifting Success Rate in Bike2
Relative to Packet Interval Timing from Bikel: Demonstrat-
ing the Impact of Interference on Functionality

operational success and strategy of jamming can be greatly in-
fluenced by directionality, based on the jammer’s construction
and strategic goals.

In a targeted jamming attack, the attacker would try to
replay the signal on one bike so that it doesn’t cause any inter-
ference to other bikes. In our study, we labeled two Shimano
wireless gear-shifting sets as Bikel and Bike2. We captured
an upshifting signal from Bikel and replayed it at various
intervals using a USRP B210. The targeted bike suddenly
goes to the highest gear and stops there. Simultaneously, we
attempted manual gear shifting on Bike2 in the vicinity. Our
findings, illustrated in Figure 9, reveal that if the interval is
less than 112 ps, which is equal to one packet length, Bike2
also stops working due to interference. The interference on
Bike2 ceases when replay intervals exceed 112 ps, allowing
normal communication due to sufficient time for transmitting
command packets and receiving acknowledgments. In conclu-
sion, when the attacker sends the replay packets with 112 ps
interval, Bikel ceases to function, whereas Bike2 or any other
bike continues to operate normally.

5 Eavesdropping ANT Communication

Shimano utilizes the ANT+ protocol to transmit data, which
devices like cycle computers can then pick up and display
for cyclists. It’s important to note that the Shimano wireless
gear shifting system does not send control commands via the
ANT+ protocol. In ANT+ communication, multiple devices
can connect to a single source. This means that with the Shi-
mano network key, any nearby ANT+ receiver can pick up
the data being transmitted. For instance, if two bikes are close
together, the second bike can link to the first bike’s transmis-
sion and access its data simultaneously as the first bike is
connected to its cycle computer. This allows an attacker to
time their gear shifting replay based on precise knowledge of

Table 7: Configuration for Capturing Shimano’s ANT+ com-
munication

Channel Frequency | 57 (0x39), 2457 MHz
Network Key A9-AD-32-68-3D-76-C7-4D
Channel Type Master (0x10), Slave (0x00)
Device Number 1-65535, 0 searching

Device Type 1 (0x01)

Transmission Type | 5 (0x05)

Channel Period 8198 counts, 4 Hz

what gear the victim rider is using.

We emphasize that eavesdropping on ANT+ communica-
tion does not form a core component of our attacker model.
However, being able to target a specific gear through eaves-
dropping can indeed offer a strategic advantage to an attacker.

Table 7 outlines the configuration parameters necessary for
capturing data using Shimano’s ANT+ protocol. The critical
piece of information is the Shimano network key, a unique
identifier that secures and enables communication on the Shi-
mano ANT+ network. Cycle computers need this network
key to capture ANT+ communications from Shimano de-
vices. The Channel Frequency identifies the specific radio
frequency used for communication, with channel 57 operat-
ing at 2457 MHz, which helps avoid signal interference. The
Channel Type indicates whether a device acts as a ‘Master’
(initiating communication) or a ‘Slave’ (receiving data), with
specific hexadecimal values for setup. The Device Number
serves as a unique identifier within the ANT+ network. Num-
bers range from 1 to 65535, with O reserved for searching
mode to connect with nearby devices. Device Type corre-
sponds to the ANT+ standard for different device categories,
with a type of 1 usually denoting a generic sensor. Trans-
mission Type refers to specific patterns or information for
device communication. The Channel Period details the fre-
quency of data broadcasts, with ‘8198 counts’ equating to a
4 Hz rate, affecting both data timeliness and device battery
life. Using the ANTware II [2] application and the correct
configuration, we managed to intercept communications on
the Shimano ANT+ network. ANTware I is a tool for manag-
ing ANT/ANT+ devices via an ANT+ USB stick. Figure 10
displays the captured packets during gear shifts from 8 to 1
on Shimano’s ANT+ network. The data highlighted in red
represent the current gear values. Having a detailed knowl-
edge of the network parameters and packet structure allows
an attacker to easily replicate these packets.

6 Discussion

Shimano’s protocol incorporates basic encryption techniques
to prevent attackers from creating counterfeit signals. Reverse
engineering was notably demanding due to its use of GFSK
modulation, which complicates demodulation when parame-
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Received BROADCAS 1_1DATA_Ox4E

:: 4e, 00-00-FF-02 08 3C-00-FF-FF
Received BROADCAST _[IATA_Ox4E

:: 4e, 00-00-FF-02-07-3C-00-FF-FF
Received BROADCAS T_DIATA_Ox4E

:: 4e, 00-00-FF-02--06 3C-00-FF-FF
Received BROADCAST _[IATA_Ox4E

:: 4e, 00-00-FF-02-05 3C-00-FF-FF
Received BROADCAS T_DATA_Ox4E

:: 4e, 00-00-FF-02-04 3C-00-FF-FF
Received BROADCAST_DIATA_Ox4E

:: 4e, 00-00-FF-02-03 3C-00-FF-FF
Received BROADCAST_DIATA_Ox4E

:: 4e, 00-00-FF-02--02--3C-00-FF-FF
Received BROADCAST_DIATA_Ox4E

:: 4e, 00-00-FF-02-01 3C-00-FF-FF
Received BROADCAST _[IATA_Ox4E

:: 4e, 00-00-FF-02 01-3C-00-FF-FF

Figure 10: Eavesdropping ANT communication. The data
highlighted in red represent the current gear values in each
packet.

ters are undisclosed. This is very different from the amplitude
shift keying used by numerous security systems, which, due to
its simplicity, leaves them more open to security breaches. In
the current landscape, where many wireless devices commu-
nicate without encryption, exposing them to security threats,
Shimano stands out by implementing encrypted communica-
tion, enhancing its defense against direct hacking. However,
the system remains exposed to replay attacks. Below, we out-
line recommended strategies to mitigate the risk of replay
attacks.

Effects of the Attacks. A modern bicycle typically has two
derailleurs that control the chain position: rear and front. The
rear derailleur typically has 11 or 12 levels, and the changes
between levels are usually minor but still impact the rider’s
performance. The front derailleur has two levels with large
gear ratios. For example, consider a racer who is climbing a
mountain. They will typically be in the smallest gear on the
front. If the attack targets the front derailleur, causing it to
move into a larger gear (i.e., harder for the rider), it can signif-
icantly impact rider performance, force them to stop, or even
snap the chain. In professional races, any unintended changes
to the gear position will have drastic consequences and affect
the integrity of the sport. We believe that unauthorized gear
changes through the attacks highlighted in our paper have a
similar effect on the sport as performance-enhancing illegal
drugs.

Size/Cost of Attack Device. In the current implementation
of our signal capture and replay system, we utilize a setup
comprising a SDR and a laptop. While effective, this con-
figuration is not optimized for size or portability. However,
with advancements in miniaturization and integrated circuit
(IC) technology, it is feasible to reduce the size of the attack

device significantly. By custom designing specific circuits,
we can integrate a receiver, a modest amount of memory
for signal storage, and a transmitter into a compact, single
System on a Chip (SoC) or small circuit board. This minia-
turization process makes the attack system more discreet and
enhances its portability and deployment ease. For example,
researchers demonstrated relay attacks [20] on passive key-
less entry systems with SDRs costing more than $1500 in
2011. A few years later, the same attack was demonstrated
using $225 [12].

Countermeasures. Adding timestamps into wireless com-
munications can mitigate replay attacks to some degree by
allowing only messages sent within a designated timeframe,
thereby rendering older, possibly replayed messages invalid.
Nonetheless, integrating timestamps into wireless communi-
cation poses challenges. Effective use of timestamps requires
precise synchronization between the devices. This can be
challenging, particularly in settings where devices lack con-
sistent access to a shared time source, such as the Internet or
GPS signals.

Rolling or hopping codes stand as another prevalent strat-
egy in wireless systems to prevent replay attacks. Within this
framework, each transmitted signal is accompanied by a dis-
tinct code generated through a specific algorithm known to
both the sender and receiver. These codes are one-time-use
only, ensuring that once a code has been utilized for authenti-
cation, it is voided, prompting both devices to proceed to the
subsequent sequence code. This method is especially preva-
lent in scenarios prone to signal interception and unauthorized
reuse, such as passive keyless entry in cars and garage door
systems. Although rolling codes significantly counter basic
replay attacks, they are not foolproof against more sophisti-
cated threats, such as code grabbing and delayed playback if
an attacker intercepts the original code’s delivery to the re-
ceiver. However, this approach can significantly increase the
difficulty of performing a replay attack in Shimano wireless
gear shifting.

There are other types of countermeasures designed for spe-
cific applications that can be highly effective and useful. Par-
ticularly for Shimano bikes, implementing distance-based
restrictions could be beneficial [35]. Since legitimate inter-
actions occur only between shifters and derailleurs within
limited distances, establishing range limitations on the re-
ceiver to only accept commands from close proximity can
be helpful. This approach is based on the assumption that
attackers are more likely to conduct replay attacks from a
distance, so by restricting the range at which commands are
accepted, we reduce the likelihood of successful remote at-
tacks. However, securely measuring distance is a challenging
problem [33,36] in itself, and therefore, while it can reduce
the risk of replay attacks, it should be used in conjunction
with other security measures for comprehensive protection.

Our current observation indicates that it is likely that Shi-
mano is not using any kind of rolling code or other mentioned
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countermeasures. Our study reveals that the current security
measures in Shimano’s wireless gear shifting systems are
insufficient to protect against replay attacks. The practical fea-
sibility of executing these identified attacks demonstrates that
attackers could exploit these vulnerabilities with relatively
modest resources. Despite advancements in similar systems,
the lessons learned have not been fully integrated into the
design of Shimano’s wireless gear shifters, leaving them vul-
nerable to specific cyber attacks such as those observed in
automotive key fob systems. Moving forward, it is crucial to
implement robust defenses, including rolling codes and other
complementary security measures, to enhance the security
guarantees of these wireless systems and safeguard against
potential attacks.

E-TUBE PROJECT. The Shimano E-TUBE PROJECT is a
platform that allows users to customize, update, and diagnose
Shimano’s electronic gear-shifting systems via BLE. When
connected to the E-TUBE PROJECT over BLE, the rear de-
railleur would be out of operation. If the malicious attacker
has any chance to physically access the derailleur, they can
easily pair their phone with it and cause a DoS (Denial of
service). The biker in this situation would not know what is
wrong, and the only way to fix it is to completely disconnect
the derailleur from the battery to cut off the power. Users are
strongly advised to change the default passkey immediately af-
ter acquisition. Often, the initial pairing occurs at dealerships,
which may result in the default code remaining unchanged if
the end-user is not prompted to modify it. Furthermore, en-
hancing BLE security with unique, secure passkeys for each
bike, rather than a standard default passkey, is recommended
to prevent unauthorized access. If an attacker manages to con-
nect the bike to his E-TUBE PROJECT, the implications can
be severe. They could easily alter the bike’s settings and even
change the passkey, preventing any quick fix.

Future Work. In future research, we intend to expand our
investigation into the security architecture of wireless gear-
shifting systems beyond the scope of Shimano. We plan to
analyze and compare various manufacturers’ vulnerabilities
and defense mechanisms, identifying common weaknesses
and best practices within the industry. This comprehensive
analysis will allow us to develop more robust security guide-
lines and recommendations for all wireless gear-shifting sys-
tems. Our goal is to ensure safer and more secure cycling
experiences for users.

7 Related Work

In this section, we will review two primary areas of focus re-
lated to our work. First, we examine previous research on the
reverse engineering of wireless systems. Second, we describe
the security challenges posed by replay and relay attacks,
exploring how these threats impact various technological do-
mains.

7.1 Analysis of Proprietary Wireless Protocols

Many devices contain inherent security flaws. They often rely
on security through obscurity by keeping their protocols and
information secret, hoping this discourages efforts to reverse
engineer and uncover potential vulnerabilities.

Various reverse-engineering studies have been conducted
on different devices [18,40], each with unique attributes and
methodologies. For example, Garcia et al. [22] investigated
the security of wireless smart cards used in payment systems,
while Strobel et al. [39] examined a digital locking and access
control system prevalent in corporations and educational insti-
tutions. Both studies required physically opening the devices
to connect the wireless chips to a logic analyzer, which is in-
vasive and could be easily detected compared to non-invasive
techniques. Contrastingly, non-invasive reverse engineering,
such as intercepting wireless communications using SDRs,
offers a less detectable, scalable, and repeatable approach.
This method avoids the complications of hardware tampering
while still providing deep insights into wireless protocols.
For example, [32] research on wireless mice and keyboards,
which often use proprietary protocols in the 2.4 GHz ISM
band.

Kim et al. [26] report instances in which authors could
eavesdrop by recovering the 128-bit AES key. In [27], the pro-
cess of demodulating RF signals into binary data for analysis
was documented for a smart home alarm system known as
SecuritasHome.

Researchers have recently adopted hybrid approaches for
reverse engineering and launching attacks. Notable instances
include Samy Kamkar’s innovative methods for remote key-
less entry systems [25] and Mike Ryan et al. [37] for electric
skateboard control interfaces. Also, in [23], the authors fo-
cused on a case study with rolling codes.

Tools like URH [34] have aimed to streamline the re-
verse engineering process of wireless protocols, offering an
open-source solution for signal capture and protocol analysis
through SDRs. RFQuack [29] represents another advance-
ment, a modular RF dongle system that allows for the cus-
tomized development of dongles tailored to specific reverse
engineering needs in wireless protocols. This tool underscores
the evolving landscape of non-invasive techniques in security
research.

In addition to academic studies, there have been non-
academic reverse engineering efforts on the Shimano Di2
system [13, 14, 30]. However, these efforts primarily focus
on reverse engineering the ANT communication protocol.
To the best of our knowledge, none of these works have ex-
plored Shimano’s proprietary protocol. Furthermore, none
have investigated replay attacks or targeted jamming attacks
on Shimano’s command signals.
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7.2 Replay and Relay Attack

Replay and relay attacks pose significant threats in wireless
communications. It enables attackers to capture and rebroad-
cast packets for unauthorized access or service disruption,
impacting various systems such as keyless vehicle entry, GPS,
and remote garage door openers. For instance, previously,
researchers have shown that through a relay attack, where
a device is used to extend the communication between two
legitimate devices, it’s possible to unlock a vehicle and drive
away even when the actual key is far from the car [20].

Similarly, GPS spoofing mirrors these concerns, with stud-
ies like [24,31] demonstrating the potential for GPS signal
manipulation, impacting navigation and timing. In RF com-
munication, Roland et al. [21] explore relay attack risks in
NFC transactions, commonly used in touchless payment and
entry systems. The challenge in the abovementioned works
would be relaying the signal in real-time. However, as shown
in this paper, our attack on the wireless gear shifting system
doesn’t necessitate real-time relays and can be executed using
any packet previously captured. RFID systems, crucial for
secure access and transactions, face similar threats, with [38]
addressing these system’s susceptibilities to replay attacks.

Additionally, the increase in replay attacks on smart home
systems underscores growing security gaps, as examined by
Fernandes et al. [19], spotlighting exploitable weaknesses in
smart home protocols.

8 Conclusion

The sport of cycling is an adversarial environment. Modern
bicycles are cyber-physical systems that support wireless con-
trol of gear shifting. We conducted the first security analysis
of the Shimano wireless shifting protocol and discovered its
vulnerability to replay and jamming attacks. This allows at-
tackers to target riders and take over control of the bike’s
gear shifting behavior. Allowing attackers such control can
lead to negative outcomes on the performance of riders in
professional races and can affect the integrity of the sport.

We discussed our analysis of Shimano’s protocol with the
hope that it would bring additional scrutiny to these tech-
nologies. We envision that future work will investigate the
security of other wireless gear control manufacturers. Long
term, we outlined countermeasures that manufacturers could
use to reduce the impact of attacks. For example, a rolling
codes system can reduce the attacker’s ability to arbitrarily
control gear changes.
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Engineering a backdoored bitcoin wallet

Adam Scott
Block, Inc.

Abstract

Here we describe a backdoored bitcoin hardware wallet. This
wallet is a fully-functional hardware wallet, yet it implements
an extra, evil functionality: the wallet owner unknowingly
leaks the private seed to the attacker through a few valid
bitcoin transactions. The seed is leaked exclusively through
the ECDSA signatures. To steal funds, the attacker just needs
to tap into the public blockchain. The attacker does not need
to know (or control) any aspect of the wallet deployment
(such as where in the world the wallet is, or who is using it).
The backdoored wallet behavior is indistinguishable from the
input-output behavior of a non-backdoored hardware wallet
(it is impossible to discern non-backdoored signatures from
backdoored ones, and backdoored signatures are as valid and
just “work”™ as well as regular, non-backdoored ones). The
backdoor does not need to be present at wallet initialization
time; it can be implanted before or after key generation (this
means the backdoor can be distributed as a firmware update,
and is compatible with existing bitcoin wallets). We showcase
the feasibility of the backdoored wallet by providing an end-
to-end implementation on the bitcoin testnet network. We
leak an entire 256-bit seed in 10 signatures, and only need
modest computational resources to recover the seed.
Version: 2024-05-30

1 Introduction

Bitcoin, introduced in 2008], transacts in 2024 over
5 billion USD per day. Bitcoin is a distributed ledger that ac-
cumulates signed transactions conveying movement of funds.
Cryptocurrencies like bitcoin are designed so that access to
cryptographic keys directly controls the ability to move funds.
In other words, in a cryptocurrency system, a security or cryp-
tographic mistake normally results in the loss of funds.
Cryptocurrency users typically handle cryptographic keys
in one of two ways: either they engage with a custodian to
handle keys on the customer’s behalf; or the users themselves

Sean Andersen
Block, Inc.

store keys in specific-purpose hardware walletsﬂ Hardware
wallets are essentially small-scale HSMs that at a minimum
store (or derive) keys and sign transactions using public-
key cryptography. Examples of hardware wallets are Tre-
zor or Ledger [SAS22]]. Hardware wallets typically
use a key derivation strategy such as BIP32 [Wuil2] to sim-
plify storage requirements and overall key management com-
plexity. In a deterministic key derivation strategy like BIP32,
all private keys are deterministically derived from a mas-
ter secret seed using a suitable key derivation function (like
HMAC-SHAS512 in the case of BIP32).

This paper focuses on cryptographic subversion of bitcoin
wallets. We assume an attacker designs a backdoor and can
inject custom firmware on the hardware wallet unit. The objec-
tive of the backdoor designer is to steal the wallet funds after
the wallet is deployed. The custom wallet firmware contains
a backdoored implementation of the signature scheme. This
signature scheme is sound: it produces valid signatures. In
addition, signatures themselves contain an extra, subliminal
message embedded onto the signature values. This sublimi-
nal message is recoverable only to the backdoor designer. In
our scenario, the subliminal message is the secret seed that
generates all wallet private keys. Note that it is very easy
for the attacker to obtain the signatures: since signatures are
part of transactions and hence public information, the back-
door designer can easily recover the seed by monitoring the
blockchain.

Previous work. Simmons introduced the problem of sub-
liminal messages in signatures schemes and gave precise
constructions back in the 1980s [Sim83][Sim84] [Sim83].
Later Young and Yung generalized and coined the term
“kleptography” to refer to backdoored cryptographic algo-
rithms designed to steal information through covert chan-

nels [YY96,[YY974,[YY04]. They also gave a very efficient
kleptographic version of DSA that just requires two leaked

I Alternatively, the user can store the key directly on their personal device.
This is considered to be riskier since general-purpose computers have a richer
attack surface.
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signatures assuming the signer is stateful. For formal
definitions, see Ateniese et al. [AMV15,[AMV20]]. Crypto-
graphic subversion is widespread: a notorious example of a

(standardized) backdoor is Dual EC PRNG [SF07,BLN16].

Our contribution. This paper details the design and imple-
mentation of a flavor of Simmons backdoored DSA, heavily
tailored towards an actual deployment onto a bitcoin hardware
wallet. We focus on crafting a stealth backdoor that can be
readily deployed in many different scenarios. We implement
this backdoor end-to-end using the bitcoin testnet network and
discuss optimizations and limitations. The backdoor designer
can recover the whole seed with just 10 signatures and modest
computational resources. We hope this example contributes to
the development of more secure wallets and and ecosystems.

Applicability to other cryptocurrencies. This paper fo-
cuses on bitcoin, but the ideas easily transfer to other cryp-
tocurrencies that use ECDSA with minimal modifications.
Similarly, while this paper focuses on “personal” hardware
wallets like Trezor or Ledger, the same observations carry to
special-purpose, cold storage solutions.

1.1 Attacker model

We assume the adversary has control over the wallet code.
Gaining control over a hardware wallet firmware can be at-
tained by a variety of paths, including supply-chain attacks on
any wallet software components, a compromise of the build
system, a malicious insider with write access to source code
or a compromise of the firwmare signing key.

On stealth backdoors. We note that when an attacker has
achieved (essentially) remote-code execution in the hardware
wallet firmware, there are many other exfiltration vectors avail-
able. For instance, a malicious wallet firmware could exfil-
trate keys in unused fields in a bitcoin transaction, or resort to
fancier physical exfiltration channels such as EM leakage or
sound (if targeting a deep cold storage appliance). There is a
plethora of work in this direction (sometimes called “covert
channels”) [KA98|[VPO9,[LU02|[GMMET5|MSSTO5|/GSE20].
However, these exfiltration channels often introduce new as-
sumptions that significantly increase the cost of the attack:
either by requiring a compromise of other system components
(as needed if the exfiltration technique relies on introducing
new messages) or some kind of physical proximity (as needed
in all EM / sound leakage techniques). Our exfiltration tech-
nique works in a significantly more constrained setting (our
attacker model is weaker) since we rely on less assumptions.
We do not require compromise of additional system com-
ponents nor require physical proximity (not even knowledge
about the specific deployment). Thus, our techniques are more
broadly applicable and can be universally deployed on bitcoin
wallets.

2 Design space

Informally, we design a ECDSA signing algorithm featuring
extra functionality: the signature values (r,s) convey extra
information that allow the backdoor designer to extract the
BIP32 seed. The basic idea traces back to Simmons, 40 years
ago.

2.1 Backdoored wallet requirements

We present in this section a brief reminder of what makes a
good cryptographic backdoor plus some particular properties
of good backdoored wallets. This concept was first introduced
by Young and Yung [YY96]. The following properties are
desirable:

R1 Backdoor is efficient, both for signing and leaking. On
the one hand, this means there is no noticeable perfor-
mance loss in the signer (signing is fast), and that only a
handful of signatures are required to leak the secret (the
subliminal channel has appropriate bandwidth). We as-
sume the attacker can afford some moderate computation
when recovering the secret from the signatures.

R2 Backdoor is stealth: backdoored signatures should be
computationally indistinguishable from non-backdoored
ones. This ensures the backdoor is undetectable from its
input/output behavior. Relatedly, the backdoor should
be sound: leaked secrets are unrecoverable to anyone
without the backdoor recovery seed.

R3 Backdoor is suitable for deployment in a typical cryp-
tocurrency scenario. This means that the backdoor sys-
tem should tolerate loss of signatures (for example, a
transaction is signed but never broadcasted) or reorder-
ing (in general, we cannot assume the order the signa-
tures are generated is the same as transactions in the
blockchain). The backdoor should be able to leak arbi-
trary data, not just the long term ECDSA key. Also, in
typical deployments of hardware wallets, each signature
is generated under a different long-term key (this is the
case in BIP32). This means the backdoor should work
when the long-term key changes from signature to sig-
nature. In addition, the backdoor should be stateless: in
some systems, non-volatile storage may not be available
(either as a security feature) or storing extra data in non-
volatile storage may not be desirable (to lower detection
probability, and simplify backdoor deployment).

2.2 Backdoor syntax

We first revisit the synatax of non-backdoored signature
schemes and later augment it to construct backdoored sig-
nature schemes.
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Digital signature. We adopt the usual syntax for a digi-
tal signature scheme, consisting of the following three algo-
rithms:

* Sig.KeyGen() — (pk,sk) generates a public/private key
pair.

* Sig.Sign(sk,m) — & emits a signature G on a message
m using private key sk.

* Sig.Verify(pk,m,c) — {0,1} verifies signature G on
message m using public key pk.

For a definition of the ECDSA algorithm, see Appendix [A}

Backdoored signatures. A backdoor signature scheme aug-
ments a signature scheme with two extra algorithms and mod-
ifies the signing algorithm:

* BSig.SysParam() — (bp.sign,bp.extract). Generates
backdoor system parameters required for signing bs.sign
and for recovery bs.extract. The attacker typically runs
this algorithm once to initialize the backdoor parameters.

» BSig.Sign(sk,m,S,bp.sign) — ©. Generates a back-
doored signature ¢ on message m. The signature ¢ con-
veys the subliminal message S (potentially only partially)
to be exfiltrated.

* BSig.Recover({c;},bp.extract) — [ recovers the sub-
liminal message S from a set of signatures {G;}.

In practice, the signature scheme BSig.Sign may not fully
leak the whole subliminal message S in a single signature,
but only a part of it. To address this, the backdoor designer
implements BSig.Sign to leak different parts of S on each in-
vocation. Conversely, BSig.Extract takes multiple signatures
{ci} to reconstruct S. In other words, the backdoor designer
may bake message fragmentation and reassembly into the
backdoored algorithms.

3 Backdoor description / our construction

Basic idea overview. The backdoor designer wants to leak
an arbitrary value S. For example, S could be the BIP32 seed
that generates the whole wallet. The basic idea is to leak S in
two steps. The first step is splitting S into several partial sub-
liminal messages /;. The second step is picking the ECDSA
nonce to encode /; into o; such that BECDSA.Extract can
recover [; from G;.

We write in Figure[T] the full description of the backdoored
signature scheme BECDSA. In the next sections, we describe
step by step the construction of BECDSA.

Backdoor description:

* BECDSA.SysParam() — (bp.sign,bp.extract). Gener-
ate an ECIES public/private key pair esk, epk. Generate
a backdoor recovery secret b €g Z. Return bp.sign <
(epk,b) and bp.extract « (epk,b).

* BECDSA.Sign(sk,m,S,bp.sign) — ©. Signing consists
of two parts. First we compute a subliminal message to
leak I = p(S,m,bp.sign). Then we generate a signature
that leaks /: compute a nonce r from the message m,
subliminal message / and backdoor recovery secret b
as r < [-hy(m,b) € Z,. Call ECDSA.Sign(sk,m;r) and
emit the signature.

* BECDSA.Recover({c;}, bp.extract) — S. Given a col-
lection of signatures G;, extract each subliminal message
I; «+— Extract(bp.recover, 5;) and then invert p using sub-
liminal messages /; to recover S.

Figure 1: BECDSA backdoor description.

Notation and parameters. We write / for a hash function,
and add a subindex &; when we want different hash functions
to separate domains. We work with the prime order group G of
elliptic curve points. In the bitcoin case, this is the secp256k1
curve.

3.1 Step 1: construction rationale

Here we detail the construction rationale for step 1, perform-
ing fragmentation and assembly.

Mapping S to /;. We need a way to map the 256-bit S secret
to several “short”ﬂL—bit l;. Simply assigning /; to each L-bit
chunk of S would work, but has important drawbacks. This
raw method requires the receiver to receive all the subliminal
messages /; in order, and does not tolerate loss of /;. In the
context of bitcoin transactions, these two points can be hard to
guarantee in practice since the signer may not broadcast every
transaction (loss of /;) or transactions may be broadcasted in
a different order in which they were generated.

A more robust approach is to use the message m itself to
“select” which linear combination of few bits from § are actu-
ally leaked. Since the message is public, BECDSA.Recover
can invert this operation. More precisely, we use bit vector-
matrix multiplication to “compress” S:

li < SM (1)

where S is seen as a 1 x 256 row vector of bits and M is a

Typically, L is in the range of few dozen bits. This is a constraint coming

from @
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256 x L public matrix. The output /; is L bits long. Intuitively,
each /; “picks” a “random” combination of bits from S.

The matrix M is spanned from the message m. Each mes-
sage m generates a unique matrix M. Since the message is
public, the backdoor designer can easily reconstruct M. For
the concrete definition of M see Appendix [B]

Recovering S from {/;}. Recovering § from multiple /; is
very easy once enough /; are recovered from the signatures o;.
Each /; adds L linear equations to a linear system of equations
over GF(2). Solving for S recovers the seed.

Mapping properties. Using a map like Eq. (I) tolerates
partial loss and reorder of some /;. It also provides an enter-
taining feature: the backdoor designer gets an early progress
report on how many bits from S are left to guess by computing
the kernel dimension of the linear mapping. Note that it is not
necessary to have a determined or over-determined system,
but we only need to collect enough equations so that the last
remaining bits can be bruteforced. We elaborate in §4.1]

3.2 Step 2: construction rationale

In what follows, r is the ECDSA secret nonce (also called
short-term key) and the signature is the pair 6 := (c,s) where
¢ = f(g") (in our case, f just returns the x-coordinate of the
curve point). For a complete description of ECDSA and nota-

tion, see §A]

Picking nonces. The basic working principle of backdoor-
ing ECDSA signatures is that the signer picks the ECDSA
secret nonce r to convey the subliminal message /;, a way that
the backdoor designer can recover r and thus /;. At the same
time, the nonce r should still be unpredictable for someone
that does not know the backdoor secret b. This ensures that
the security of the ECDSA signatures is preserved. ElAn easy
way to do this is by setting r < b - ;.

Cross-stealing resistance. The basic method for cooking
nonces r <— b-I; makes a very fragile signature scheme. Since
[; is small, a collision between r; can happen with large prob-
ability, leading to complete loss of security of the signing key
(if the same key is used for different signatureﬂ). To fix this,
we diversify the backdoor recovery secret b on a per-message
basis as b; < h(b,m) where h is a suitable key derivation
function and set r <— [ - b;. This ensures the security of the sig-
nature scheme is preserved (no one but the backdoor designer
can steal funds).

3Note that the “long-term” ECDSA key sk may change across invoca-
tions; thus, different signatures may correspond to different public keys. This
happens in modern bitcoin wallets that are based on HD derivation [BIP32].

4While we cannot assume the same key sk is used for different messages,
we cannot either discard this possibility, and the backdoor should yield a
good signature scheme even if this is the case.

Recovering {/;} from {c;}. To recover /;, the attacker
computes the discrete logarithm of rG with respect of bG.
This is relatively easy since /; is small by construction. One
straightforward procedure to solve this discrete logarithm
is to just iterate over all possible 27 values of /;. More pre-
cisely, to recover /; from a signature 6; = (c;,s;), we first
unblind the first signature component s = f(b;/;G) and com-
pute the point V; < bi_lb,'l,'G = [;G. From V;, we extract [;
as [; «+ Extract(V;). This procedure simply iterates over all
possible /; until finding the value. We describe the conjpu-
tational optimizations to speed up this process below in §5

Discovery resistance. Assume the backdoor implementa-
tion gets leaked. This includes the secret b. Everyone who
knows b can recover the leaked seed S. If this is a concern,
then the backdoor implementation should leak a public-key
encryption E(S) of S instead of bare §. A gdod choice for the
encryption functionality E is ECIES [Sho0O1] over secp256kI1.
This greatly simplifies the implementation as all the elliptic
curve machinery is already in the signing implementation.
The only drawback of tlﬁls approach is ciphertext expansion:
ECIES roughly doubles the size of the subliminal leakage
(512 bits), requiring more signatures to be leaked.

4 Discussion

4.1 How many signatures are needed to leak
the full seed?

Tradeoff between L and number of signatures. There is a
tension between the number of leaked bits per signature L and
the number of required signatures to reconstruct the seed S.
Obviously, we want to keep the number of required signatures
as low as possible to leak the seed as soon as possible. That
forces a high L, which in turns makes the recovery compu-
tationally expensive. The running time of BSig.Recover is
exponential in L. We study this tradeoff in this section.

O

How much efficiency are we losing? The map from Eq. (1)
is quite efficient: there is little redundancy across multiffl¢
l;. Each [; as generated per the mapping from Equation (1)
leaks approximately L Hifs of S. This is because the rank of
a random| square matrix® over GF(2) is very close to its di-

SPure trapdoor-based public key encryption do not yield a more efficient
scheme. RSA encryption would add zero overhead, but obviously for the
parameters in question RSA-256 would provide an unacceptable security
level. Even state-of-the-art trapdoors with low oGH’T 19] still
would be more expensive than KEM+DEM for such a short plaintext size
(256-bit). For example, if the construction fro] is asymptotically
perfect (rate-1 ciphertext expansion), for 64-byte messages the ciphertext is
274-byte long §6]. Another alternative is to use ECIES over a
smaller curve.

OThis naturally assumes the matrix M is constructed as per which can
be considered uniform essentially random in {0, 1}.
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Figure 2: Remaining bruteforce effort needed to recover a
unique S after solving the linear system from (T)), for varying
number of signatures leaked and bits per signature L. From
top to bottom, each line corresponds to L = 22,24,...,38.
We plot a horizontal line at 40-bit effort level (representing a
feasible bruteforce effort).

mension [Kol99, §3.2]. To get full rank with high probability,
it suffices to add a few additional rows. This means that we
need to leak around 256/L signatures to have a system of
equations with almost unique solution for S.

Using less than 256 /L signatures. Typically, we have ac-
cess to an oracle that allows us to distinguish a correct guess
for § from an incorrect one. (For example, when S is a seed,
we can quickly tell if a guess for S is correct by checking if
S unlocks some outputs.) This means that we do not need a
fully determined system of equations to solve for S. When
the system is not fully determined, the remaining few bits can
be bruteforced by exhaustively generating all solutions for
the system and checking each candidate. Note that generating
solutions is a very efficient linear algebra operation (span the
null space). This process only wpiks when the remaining bits
to be bruteforce is kept low (e.g. under 2%°).

Empirical results. In Figure 2 we empirically study how
many signatures we need to leak the full sed:at S. As an
example, we can see that if we allow L = 35 bits leaked per
signature, after leaking 7 signatures there is only 11 bits left
to bruteforce. This means that we can leak the whole 256-bit
HD wallet seed with a handful signatures. Setting L = 35 bits
per signature is feasible, as detailed below in §5. ||

Déterministic signatures

ECDSA signatures come in two broad flavors: randomized
and derandomized (aka deterministic signatures [MNPV98,
Por13]).” A backdoor signature scheme should mimic the
existing wallet behavior to remain stealthy. Otherwise, the
backdoored schemé | trivially distinguishable.

Deterministic mmd signatures The schemuas de-
scribed in Sec deterministic, except for the ECIES
encryption E for discovery resistance. To make ECIES de-
terministic, we can use a Encrypt-with-hash variant® from
Bellare et al. [BBOO7, §5.1]. This is possible in our case
since the plaintext input to ECIES comes from a space with
large min-entropy (a 256-bit seed S). This reduces to using a
hash of the plaintext S as the randomness required for ECIES.

Randomized backdoored signatures. If the backdoor de-
signer wishes to emulate a “randomized” version of ECDSA,
they can randomize the backdoored nonce r by multiplying
by a small integer v as r < v-h(b,m) - [;. This comes at a
increased cost at recovery time (exponential in the bitsize of
v). The random factor v should be large enough so that col-
lisions are below a threshold backdoor detection probability.
This is not a fully randomized ECDSA, since typically to be
indistinguishable from a real random ECDSA signature, the
value v would need to be very large (in the order of 128 bits).
As aresult, this backdoored ECDSA is not fully randomized,
but may be useful to avoid light detection.

4.3 Recovery discussion

Variant: lighter recovery. To improve recovery speed, set
r < b -2l instead of r <— b-I;. This will speed up recovery,
since it replaces elliptic curve point additions by point dou-
blings, which are typically faster.

Identifying backdoored signatures. By design, there is no
“in-protocol shortcut” to determine which signatures on the
blockchain the recovery procedure should be applied to. This
means that the backdoor designer should apply the recovery
procedure to every signature, and discard those signatures
for which the recovery procedure fails (i.e. does not yield a
subliminal message /;). Note that the backdoor designer could
make use of additional side-channel information outside the
raw ECDSA signature (like the way the transaction looks in

"Derandomized ECDSA signatures uses a deterministic process to gener-
ate the (pseudo-)random value k needed at signing time. They are prefered
in practice since they are more resilient to imperfect randomness (at the
cost of slightly increased computation). Many bitcoin wallets implement this
strategy, usually in the form of RFC6979.

8This deterministic public-key encryption construction does not attain
the usual standard level for encryption (semantic security) but in our specific

case this is acceptable [BBOO7).
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vulnerable wallets) to speed up this process, but this is not
necessary and orthogonal to our casg. |

Outsourcing recovery We note here that when using the
discovery resistance feature from §3.2, it is possible to out-
source the computationally expensive process in recovery to a
different party. This party does not learn the content of S (only
E(S)). Thus, this party, without access to bp.extract, cannot
steal funds, nor correlate to a specific transaction. This can be
useful to externalize this computationally expensive process.
This party can also amortize its computational effort across
different back door users, potentially by doing a heavy pre-
computation upfront and amortizing across different clients.

5 Recovery implementation

In this section, we focus on the Extract procedure, which
is the most computationally demanding procedure from
Recover. The Extract(rP) — r takes a curve point Q = rP
and outputs the discrete logarithm with respect to P, assuming
ris bounded 0 < r < 2.

Basic implementation. The basic implementation is just a
linear search on /;. Extract (V;) essentially loops sequentially
over candidate /. till it hits /G = V;. The cost is 2* elliptic
curve additions and point comparisons, which is manageable
when we keep L small. We can optimize this search at differ-
ent levels.

Optimizations: baby-step giant-step. First, we can apply
a classic time-vs-memory tradeoff (TMTO) by precomputing
a table T'[j] storing M multiples of G, evenly spread over the
search interval (from G to 2LG). This speeds up the search
since Extract just needs to compute L/M additions V; +
G,Vi+2G,....Vi+ ﬁG and on each step check for inclusion

on T[] to recover /;. This is essentially baby-step giant-step
algorithm to solve discrete logarithms.

Optimizations: point representation. Secondly, we can
keep the points in Jacobian form (thus making point addi-
tion very fast) and perform the inclusion check on 7'[j] af-
ter converting to affine representation. The speed-up comes
from batching several points in this conversion and leveraging
batched modular inversion.

Optimizations: compressed table. To lower memory re-
quirements we can store compressed points in the table T
(just the x-coordinate). This compression could be loosy (a
short “fingerprint” of each point, such as some bits from the x-
coordinate), at the cost of false positives (which can be filtered
out easily).

Optimizations: parallelization. This search is amenable
to parallelization at different levels. First, the search is embar-
rasing parallel on the search interval 1,...,M. Second, SIMD
operations can speed-up the search by computing in parallel
different chains of V;. Note that in contrast with the usual
context of elliptic-curve cryptography, the main objective in
this search is to maximize throughput in point operations, not
latency.

Implementation results. We wrote a prototype in Go fea-
turing the TMTO optimization. This implementation tests
about 2372 candidates /; per second on a single core of a 2014
MacBook Pro with a table 7 holding 22? points (compressed
to 64 bits of the x-coordinate). The implementation is concise
and takes around 30 lines of code. It is not particularly op-
timized for speed. It relies on math.big for multiprecision
integers (field arithmetic is not optimized for secp256k1). For
fast lookups, the table 7 is implemented as a hash map.

Real-time detection. In this section we see how quickly
can an attacker leak a full 256-bit seed S if their computing
power is the 2014 laptop from the section above. The fact
that a single laptop can test about 237 candidates per second
means& single laptop can run Ext ram on real time on ev-
ery trabnsaction getting mined on the Blockchain when each
signature is leaking at most L < 34 bits. This rough estimate
assumes the blockchain has a throughput of 8 transactions per
second’. In turn, by looking up Figure 2, leaking L = 34 bits
per signature means after just 7 signatures are leaked, there is
enough information leaked to completely recover the seed S.
(Leaking 7 signatures leaks about 238 bits, and the remaining
8 bits can be easily bruteforced).

Naturally, the estimations above are done with a single
2014 laptop as computing device. If the attacker has fancier
hardware, they can use it to leak more bits per signature and
accelerate the process, as they would need to leak less signa-
tures.

Other techniques. It might be tempting to implement
Extract based off generic techniques to solve the discrete
logarithm problem in an interval. One such method is Pol-
lard’s lambda algorithm (also called Pollard’s Kangaroo).
This is left as future work.

6 Experiments

We implemented the backdoor end-to-end. This experimental
backdoored wallet software runs on a laptop (rather than an
actual hardware wallet) to make it easy to perfor: peri-
ments. We implement the full backdoor except the “discovery

9This is a conservative estimation, the actual number is more between 3
and 7
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resistance” feature (ECIES encryption) discussed in §3.2. The
implementation is written in python for simplicity.

Results. We leak 19 bits per signature. The imple-
mentation signs 13 transactions. Signing overhead is
negligible (an additional vector-matrix multiplication).
The recovery process recovers the leaked arbitrary mes-
sage in a matter of seconds. We set the leaked message to:

0x1234567890123456789012345678901234567890123456789012345678901234.

We extract in total 247 bits from the signatures and the
remaining 9 bits we just brute force by going through all the
27 solutions to the linear system of equations.

Transaction hashes. We put a chain of 13 transactions
signet (a Bitcoin staging network) starting with the transaction
f019bd3461309ae48c48a9ceeSedactb8ffdef4c921tbd9d43377ff64162d77b.
The full 1ist of transactions can be found in Appendix C
and the example output of the recovery tool can be found in
Appendix D.

Generalizations. Whilst these concrete transaction chain
uses the same private key for every transaction, this is coinci-
dental (to make the implementation easier) and not essential.
Therefore, the backdoor is compatible with BIP32 wallets.
Also, even if these concrete transactions are chained, this is
not a requirement. The different backdoored signatures could
come from unrelated, unlinked transactions.

7 Detection, deployment

7.1 Distinguishing backdoored signe‘t-_u-res

We elaborate here on the requirement R2 from §2.1.

Unknown-key scenario. For an observer that does not
know the secret key material (but only observes the black-box,
input/output behavior of the wallet), backdoored signatures
are indistinguishable from regular ones. This follows from
the PRF security of the hash function h(b,m).

Known-key scenario. For an observer that knows secret key
material (or can choose the key), the backdoored scheme is
trivially distinguishable. For example, the backdoored scheme
will not pass test vectors. This observer can take the refer-
ence test vectors from a known-good implementation (or
from the signature algorithm specification, such as RFC6979).
Note that a backdoor could easily hide itself (by computing
non-backdoored signatures) whenever it detects from its en-
vironment that it is running in test mode (for example, the
backdoor could detect if it is being fed test vector inputs from
a publication) or is running in a developer machine, or in the
software build pipeline, or is using a test key, or the key was
not generated internally at random inside the signer device.

7.2 Deployment aspects

Build pipeline. An attacker can plant the backdoor by com-
promising the software build pipeline. These systems are
typically operated by different teams and could become an
easy target.

Stealing firmware signing keys. Alternatively, this back-
door could also be planted by stealing the firmware signing
keys. Conversely, note that the firmware writer has a lifelong
liability to keep this signing key safe.

Evil maid. The evil maid is a particularly attractive vector
for introducing this backdoor. Say you buy a Trezor or Ledger
from Amazon. Replacing the whole hardware wallet with an
evil, backdoored one is an option to deploy this backdoor.
Ironically, the fact the code is open-source makes this pro-
cess extremely easy. (Maybe by sending the wallet back to
Amazon through the RMA process after having injected the
backdoor.)

Implementing the backdoor at other abstraction levels.
In this paper, we assume we implemented the backdoor at
the application firmware level. The backdoor could be imple-
mented at other levels: at the OS level (detecting whenever
the ECDSA nonce is generated), or at a hardware level (for
example by tampering with the RNG peripheral on nonce
generation.)

Lowering detectability. The retrieval strategy is out of
scope of this document. One possibility is to plant this back-
door in many wallets, but steal funds only from a few well-
funded wallets. This can be used to lower the suspicion on a
systemic breach like a firmware compromise. For example,
one could only siphon out the top 0.1% of the wallets.

Multi-user setting. The backdoor description in §3] as-
sumes we want to leak a secret from a single wallet. We
can extend this to the multi-user setting (multiple wallets) in
several ways. We can diversify the backdoor recovery secret
b on a per-wallet basis. This is a clean approach on the wallet
side; the recovery effort increases linearly with the number
of backdoored wallets. Alternatively, the w-th wallet can leak
first a single, short subliminal message /" using a global back-
door recovery secret b. This [}” encodes a “session” backdoor
recovery secret by, = KDF(b,li"). The w-th wallet uses this
“session” recovery secret b,, for subsequent subliminal mes-
sages. This makes the complexity of recovery substantially
smaller.

7.3 Comparison

Our construction relies on subliminal messages in ECDSA.
Simmons already provided in the 1980s several constructions
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for this [Sim83}[Sim84}/[Sim853]| that relied on manipulating

the DSA secret nonces. Our construction adds a layer on top
for message fragmentation.

The early construction of Young and Yung is very
efficient, requiring only two signatures. However, it needs
to set the same key for both signatures, and the signer must
be stateful. In an actual hardware wallet, statefulness may
be hard to guarantee since this requires write capabilities to
non-volatile storage (which may be not even present).

The construction of Ateniese et.al is tangentially
related to ours. However, the running time for the backdoored
signer is exponential in the number of bits leaked, which
makes the backdoor easy to detect by measuring execution
time.

8 Mitigations

Split trust: multisignatures. Many protocols (including
Bitcoin) accept multisignatures natively. This consideration
can be taken at design time to generate a 2-of-2 wallet be-
tween the host and the hardware wallet. This technique can
be used to avoid the consequences of a backdoored signa-
ture, but comes at the price of longer transaction (hence more
expensive) and more complexity.

As with any technique that relies on splitting trust, diversity
and heterogeneity are critical to actually gain security. In this
case, if both the software running in the host and the firmware
running in the hardware wallet are developed by the same
teams, the cost of mounting an attack against both is not much
higher.

Split trust: firewalled signatures. As noted by Dauterman
et al , this problem can be solved with crypto-
graphic reverse firewalls [MST5]. This is a general technique
that protects against cryptographic subversion and assumes
some system parts (the reverse firewall) are trusted and behave
correctly. Cryptographic reverse firewalls can be built from
zero-knowledge techniques, but the performance is typically

much worse than custom designs such as [DCM™19].

Split trust: multi-party computation. Firewalled signa-
tures can be implemented also with multi-party computation.
There are a myriad of threshold ECDSA designs that could
be used [Lin17,|GG18}|CCL " 19,[MPS19,CGG *20].

On the more practical side, Dauterman et al
design a lightweight 2-party protocol for firewalled ECDSA
signatures between a signer and a firewall. By construction,
the signer cannot exfiltrate any message via bits of the signa-
ture. At first sight, it is easy to fall into this circular reasoning:
what does this buy us if we anyways have to trust the firewall?
This construction is appealing since the firewall itself does
not require to store any secret key material (thus making it

easy and cheap to manufacture with commercial, off-the-shelf
parts, and hence trust).

We see an opportunity in standardizing the protocol the
signer and the firewall (potentially, multiple firewalls) so that
interoperability between different manufacturers for the fire-
wall and signer is possible. Diversity here is beneficial for
security.

At run time: attestation. One way to mitigate evil-maid
style attacks is by using attestation: the hardware wallet could
prove its authenticity to the host before the host trusts the
hardware walletm This requires setting some kind of PKI
between the hardware wallet manufacturer and host software;
and heavy modifications to the hardware wallet (quote gener-
ation functionality and provisioning secrets or certificates in
the hardware wallet.)

General supply-chain mitigations. A backdoored wallet is
a hardware and software supply chain problem, hence, generic
mitigations against supply chain threats apply. These are not
specific to the problem of a backdoored wallet, but apply to
every security-critical hardware or software product. Without
being exhaustive, generic mitigations like code audit, code
signing, build system hardening, artifact store hardening, re-
producible builds, artifact signing and secure boot will help.

Strengthening firmware signing. A take away is that we
need to make firmware signing more robust. Firmware signing
keys protect too much value, so it is convenient to diffuse this
pressure. One way for example is by using multiple firmware
signing keys, each owned by a different party that performs
independent authorization of the signing action. This is essen-
tially a straight multi-signature scheme. One can use more
complex multi-signature schemes like MuSig2 [NRS2I]. Po-
tentially some of the firmware signing keys could be stored
offline with a tight, verifiable log of key utilization.

At validation time: known-answer tests. A mitigation
strategy could be cross-validation with a known-good imple-
mentation. As noted in §7.2] the backdoor could recognize the
test vector inputs and react accordingly to hide the backdoor.
This can be mitigated by using random, unpredictable inputs.
In addition, the backdoor could sense the environment that is
currently running on, and only get activated in a production
environment, while the debug/development builds hide the
backdoor behavior.

Applicability to other wallets. We focus here on hardware
wallets, but the same principles could be applied to hot wallets
or purpose-specific cold storage appliances.

10We need some mental gymnastics when laying out the threat model here
since the raison d’étre of hardware wallets is the host is untrusted.
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9 Lessons learned

We collect here lessons we learned that could be useful in
the threat modeling process. The lessons here can assist the
security architect in gauging the risk level when developing
Bitcoin wallets.

Firmware signing key: lifetime responsibility. The tech-
nique presented in this paper can be used to turn an existing,
uncompromised wallet into a backdoored one. This means the
wallet designer has a lifetime responsibility of safeguarding
the firmware signing key (provided the wallet has some kind
of firmware update mechanism).

Firmware signing key: value. The monetary value of the
firmware signing key can be roughly estimated as the sum
of the wallet balances where the signed firmware runs. This
is typically much larger than the firmware signing key of
consumer electronics. Thus, significant more resources should
go to protect this key.

Build system: value. The previous observation carries also
to the build system: the cost of sneaking a backdoor anywhere
in the supply chain should be commensurate to the reward
of backdoor wallets. Otherwise, there’s an opportunity for an
attacker to make a profit.

The previous two points make clear the need for making
firmware signing robust. We described mitigations in §8]

Eliminating exfiltration channels is not enough. A com-
mon good practice is to reduce or eliminate the “free slots” to
exfiltrate data from the signer. This could take the shape of
exfiltrating data through unused data fields (in case the API
allows that), or by using representations that are not deter-
ministic (i.e. admit several different representations for the
same input). Whilst this is generally a good idea, it is not
enough, since just the signature is enough to exfiltrate seeds
in a backdoored wallet.

Physical exfiltration ranks lower in priority. For the secu-
rity architect designing a Bitcoin wallet, physical exfiltration
concerns rank lower than supply-chain security, since attacks
using physical exfiltration are strictly harder to mount than
supply-chain ones.

Compromise of the signer is enough. A relevant metric
in assessing the attack difficulty or chances to get detected
is how many different components need to be compromised.
In this case, we do not need to compromise any other sys-
tem upstream of the signer. (The attack works if the host
computer that the hardware wallet is connected to remains
uncompromised.)

Air-gap may give false sense of security. The backdoored
wallet described here works also in “air-gapped” systems. By
definition, in an air-gapped wallet the signature will always
need to cross the air gap, and hence air-gapping is not enough
to prevent this attack (even if it can help to reduce the attack
surface.)

RMA process can be a can of worms. The reverse order
fulfilling system is also a good opportunity to inject back-
doors: a malicious user may return a wallet claiming it does
not work properly, in the hope that the wallet gets later sold
to another customer as a refurbished device. The wallet man-
ufacturer is thus forced to inspect the wallets for backdoors if
they want to sell later refurbished devices. This is a very hard
problem.

10 Conclusion

In this paper, we engineered a bitcoin backdoored wallet. The
backdoor is very efficient and can leak a full seed in about
a dozen signatures. We demonstrated the feasibility of our
approach by implementing an end-to-end demo. We hope
some of our observations help the development of hardware
wallets.

Future work. This backdoor is efficient, but could scale
better in the number of injected backdoors. The effort required
to recover exfiltrated seeds is linear in the number of injected
backdoors and this could be improved.

Ethical considerations. The observations in this paper
could be used to cause harm. We have performed our ex-
periments in a non-production network using mock values.
We believe the recommendations in this paper for mitigating
backdoored wallets outweigh the potential harm.

A ECDSA definition

We adopt the same notation and exposition as [FKP16]. We
have a prime order group G of order ¢ generated by g € G, H :
{0,1}* — Z, a hash function, and f a “conversion function”
f:G —Z, (in ECDSA f typically returns the x-coordinate
of the input curve point). We define ECDSA as the following
three algorithms:

» ECDSA.KeyGen() — (pk,sk). Sample x € Z, at uni-
form random. Set x as the private key and X = ¢g* € G
as the public key.

 ECDSA.Sign(sk,m) — ©. Pick a random nonce r €g Zy,.
Compute ¢ + f(g") and s < r~!- (H(m) +c-x). Output
G+ (c,5) € Zf']. When the caller picks the random nonce
r, we write ECDSA.Sign(sk,m;r).
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Figure 3: Transaction hashes for 13 transactions that leak a
backdoor

» ECDSA Verify(pk,m,c") — {0,1}. Write X for the pub-
lic verification key. The purported signature 6 = (c, s)
is valid if and only if f(R’) is equal to ¢, where R’
(gH(m)Xr)l/s cG.

B Definition of M

The matrix M is a 256 x L random-looking matrix spanned
by the public message m. We compute L different 256-bit
hashes hj(m),...,hy(m) of m and stack them to construct
M. (For example, h;(m) := h(i||M-matrix||m) This ensures
the matrix has balanced statistics and we can model it as
uniformly random bits for the purposes of Section @1}

C Transaction hashes

In Figure 3] we write hashes for 13 transactions. We leak 19
bits per transaction.

D Recovery output

In Figure [ we put an exemplary output of the recovery pro-
cess. The tool recovers the leaked seed from 13 signatures
after trying 2° candidates.
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Abstract

Indoor base stations are expected to play a crucial role in 5G
and beyond, as they are required to provide millimeter wave
connectivity in buildings. However, they are a prime target
for attacks, as they are difficult to secure against physical ac-
cess attacks and highly connected within the RAN, especially
for Open Radio Access Network (O-RAN) indoor base sta-
tions. In this work, we develop and introduce a threat model
for indoor base stations. We conduct a security analysis of a
proprietary O-RAN Radio Unit and present four novel vul-
nerabilities. Further, we analyze the Radio Unit regarding its
hardware, software, and services, highlighting deviations from
the O-RAN standards. The vulnerabilities we discover lead
to remote code execution on the Radio Unit, highlighting se-
curity issues arising from the novel attack surface introduced
by indoor base stations.

1 Introduction

Two trends in the fifth-generation technology standard for
cellular networks (5G) make indoor base stations (BSs) a
prime target for attacks, especially in the Open Radio Access
Network (O-RAN): (1) Achieving physical access control for
indoor BSs is hard, if not infeasible, and (2) indoor BSs are
highly connected within the O-RAN.

While mobile network operators (MNOs) have thoroughly
designed policies regulating the security of outdoor BSs, phys-
ical access control is impractical for indoor BSs. Unlike out-
door BSs, typically secured with fences, security cameras,
and stringent physical access control measures [14], indoor
BSs are often deployed on walls or ceilings, similar to enter-
prise Wi-Fi routers [40]. As a result, only some of the outdoor
BS policies apply to indoor BSs. This lack of access con-
trol exposes indoor BSs to potential physical port access by
attackers, significantly expanding the attack surface of the
Radio Access Network (RAN) and the cellular network. The
aspect of cellular network security has received limited atten-
tion in the research community so far, which motivates us to
introduce a threat model for indoor BSs.

O-RAN BSs are highly connected using various interfaces
to communicate with other cellular network componens. In
O-RAN, the BS is disaggregated into several components
[52], leaving only the Radio Unit (RU) deployed at the cell
site (Figure 1). Within the O-RAN ecosystem, the RU di-
rectly interfaces a Distributed Unit (DU) and the Service
Management Orchestration Framework (SMO) featuring one
of the RAN Intelligent Controllers (RICs) [52]. The O-RAN
Alliance has released specifications for the Open Fronthaul
Interface surrounding the RU [46,47]. In this work, we con-
duct a security analysis of a proprietary O-RAN RU to
evaluate how vendors implement the specifications in the real
world.

Physical access to indoor BS makes adjacent attacks on
the RAN feasible, drawing attention to the security of RAN
hardware. We deem this novel attack surface one of the major
security challenges for RAN vendors and MNOs. To highlight
this issue, we present four vulnerabilities we discovered
on a proprietary O-RAN RU, two exploitable to achieve
Remote Code Execution (RCE). In summary, our key contrib-
utions are as follows:

* We develop a threat model for indoor BSs (Section 3).

* We conduct a security analysis of a real-world O-RAN
RU, highlighting deviations from the Open Fronthaul
standards (Section 4).

* We present four vulnerabilities we discovered on a pro-
prietary O-RAN RU (Section 5), which we classify as
high or critical.

* We discuss our findings in the context of research trends
for future cellular networks, including mitigation of the
found exploits (Section 6).

We responsibly disclosed all identified issues to Airspan
Networks Inc. and are in the process of requesting Common
Vulnerabilities and Exposures (CVE) entries for our findings.
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Figure 1: In

, users connect to indoor or outdoor Next Generation NodeBs (gNBs) that directly

connect to the core network (CN), from where traffic is forwarded to the Internet. The Open Radio Access Network (O-RAN)
disaggregates the gNB into Radio Unit (RU), Distributed Unit (DU), and Central Unit (CU) with an additional Service Manage-
ment Orchestration Framework (SMO). DU, CU, and SMO are typically virtualized and deployed remotely.

2 Background and Related Work

This section introduces relevant concepts and terminology
of 5G networks (Section 2.1), the Open Radio Access Net-
work (O-RAN) (Section 2.2), and indoor base stations (BSs)
(Section 2.3) before summarizing related work (Section 2.4).

2.1 5G Cellular Networks

As depicted in Figure 1, in conventional Radio Access Net-
works (RANSs), the user equipment (UE) connects to a Next
Generation NodeB (gNB) that handles all layers of the 3rd
Generation Partnership Project (3GPP) stack [2] from the
physical layer (PHY) to the Radio Resource Control (RRC)
and Service Data Adaptation Protocol (SDAP) and sends
user traffic to the core network (CN) [3]. The CN is the cen-
tral point of the cellular network, providing numerous core
network functions (NFs), e.g., user authentication, session
management, access- and mobility management, and policy
control [5]. When users access the Internet via 5G, the CN
converts user plane (U-Plane) traffic from the 3GPP stack to
the Internet Protocol (IP) stack and forwards it to the Internet.

2.2 O-RAN and Open Fronthaul

The O-RAN-specific parts of the cellular network are high-
lighted in blue in Figure 1. One of the innovative ideas of the
O-RAN is that the gNB is disaggregated into three compo-
nents [41], as depicted in Figure 2: The Radio Unit (RU)
handles the radio frequency (RF) connectivity and lower
PHY [4] before sending user traffic via the Open Fronthaul
interface [46,47] to the Distributed Unit (DU) [41]. The DU
handles the remaining upper PHY, the medium access con-
trol (MAC) layer, and the Radio Link Control (RLC) layer.
Finally, the Central Unit (CU) handles the Packet Data Con-
vergence Protocol (PDCP) and RRC layers before forwarding
the traffic to the CN [41,52]. In contrast to the RU, which is
deployed physically at the cell site, DU and CU are typically

virtualized [10]. The CN, CUs, DUs, and RUs often build a
tree topology where multiple RUs connect to one DU, mul-
tiple DUs connect to one CU, and multiple CUs connect to
the CN [41,52]. The O-RAN Alliance uses the data modeling
language Yet Another Next Generation (YANG) to model
Network Configuration Protocol (NETCONF) configuration
and state data of O-RAN components and interfaces. Thus,
NETCONF and YANG models facilitate standardization and
interoperability between O-RAN vendors.

The Open Fronthaul interface is one of the numerous
interfaces in O-RAN, connecting RU and DU. While con-
trol and user plane (CU-Plane) traffic is sent via enhanced
Common Public Radio Interface (eCPRI), synchronization
plane (S-Plane) traffic is sent via Precision Time Protocol
(PTP) [46]. Management plane (M-Plane) traffic is sent via
NETCONF [21,47].

The above description suits the O-RAN Split 7.2x [52],
where the RU/DU split is within the PHY. Other popular
O-RAN splits are Split 6 below the MAC layer [1], also
referred to as network functional application platform in-
terface (nFAPI) [56] and preferred by the Small Cell Fo-
rum (SCF) [57] or Split 8 above the analog-to-digital and
digital-to-analog converter (ADC/DAC) [2].

2.3 Indoor Base Stations

Indoor BSs are expected to play a crucial role in 5G and be-
yond to utilize the extremely high frequency (EHF) band for
millimeter waves (mmWave) communications [2, 62]. Ven-
dors of indoor BSs include Airspan Networks Inc. (Airspan),
Nokia Corporation (Nokia), Telefonaktiebolaget LM Eric-
sson (Ericsson), and Hon Hai Precision Industry Co., Ltd.
(Foxconn). This paper focuses on the Airspan AirVelocity
2700 (AV2700) because it is intended for indoor deployments,
supports mmWave communications, and is compatible with
O-RAN Split 7.2x [7].

102 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association



Central Unit

SDAP
PDCP PDCP
F1 C-Plane U-Plane
Scrambling RLC Distributed Unit
Modulation ;
Layer Ma‘pping MAC
Precodin,
RE Mappiﬁg PHY—hlgh |
Open CU-Plane |S-Plane M-Plane
Fronthaul eCPRI PTP NETCONF
Radio Unit

Precoding I PHY-low I
iFFT/CP

Beamforming
ADC/DAC

Figure 2: Open Radio Access Network (O-RAN) disaggre-
gation of a Next Generation NodeB (gNB) into a Central
Unit (CU), Distributed Unit (DU), and Radio Unit (RU). This
figure depicts O-RAN Split 7.2x, where the control and user
plane (CU-Plane) of the is split within the
physical layer (PHY). The connects DU and CU.
This figure is adapted in parts from [52].

2.4 Related Work

We summarize general O-RAN-security-related publications
(Section 2.4.1), address existing work related to the Open
Fronthaul and RU security (Section 2.4.2), and distinguish our
work from the aforementioned publications (Section 2.4.3).

24.1 O-RAN Security

Liyanage et al. [36] analyze security risks and challenges
within the O-RAN ecosystem by classifying security-related
risks. They offer a detailed overview of various threat cat-
egories, including descriptions and evaluations of their ap-
plicability to the O-RAN ecosystem. They discuss potential
security solutions derived from Cloud Radio Access Net-
work (C-RAN) and delve into design errors while explor-
ing their consequences and available mitigation options for
O-RAN. Klement et al. [33] investigate the O-RAN environ-
ment, evaluating the security status of its deployed compo-
nents and proposing measures to ensure their secure opera-
tion. They identify critical stakeholders in the O-RAN context
and list best practices to enhance O-RAN security. Groen et
al. [30] investigate the security aspects of O-RAN systems,
adopting a holistic approach, including the O-RAN interfaces
and the overall platform. They identify potential threats and
offer solutions to address security issues in these areas.

Without a specific focus on the O-RAN architecture, Fa-
rooqui et al. [23] present a threat model for 5G-based systems,
defining a layered architecture and mapping threats to the re-
spective applicable layers. Sattar et al. [54] model the threats
arising from small cells in Long-Term Evolution (LTE) net-
works. They define trust boundaries including physical secu-
rity as one aspect.

2.4.2 Open Fronthaul and Radio Unit Security

Abdalla et al. [6] delve into the standardization efforts of the
O-RAN Alliance, focusing on network threats with a specific
emphasis on the Open Fronthaul. They identify end-to-end
security threats affecting the interface and recommend coun-
termeasures and best practices against the identified threats.
They detail an attack scenario involving unauthorized access
to the physical layer of the Open Fronthaul by compromising
the physical connection between the DU and the RU. Liao
et al. [35] developed a Denial-of-Service (DoS) attack tool
for the Open Fronthaul control plane (C-Plane) by generating
C-Plane packets that initiate DoS attacks. Dik et al. [16, 17]
contribute two consecutive works on the security of the Open
Fronthaul. In their first work [16], the researchers examine
the transport security of the Open Fronthaul by investigating
threats that can impact the interface. They survey the data
types transported over the different data planes and derive
necessary security measures. In their second work [17], Dik
et al. conduct a more in-depth analysis of the transport net-
work security in the Open Fronthaul. They discuss threats and
vulnerabilities of the interface and their network impact. They
provide a threat protection solution in MACsec as a layer
two security mechanism implemented on field-programmable
gate arrays (FPGAs) to secure the Open Fronthaul.

2.4.3 Distinction from Related Work

The publications presented in this section are relevant to our
work as they introduce overarching challenges, threats, and
vulnerabilities associated with O-RAN, showing the larger
attack surface of the ecosystem and shedding light on various
approaches attackers can take when attacking the O-RAN
components and interfaces. The presented papers all take a
theoretical approach to analyzing O-RAN security. In con-
trast, our work focuses on the security of a single O-RAN
component, i.e., the RU. We investigate the AV2700 as an
example of a proprietary RU and present real-world vul-
nerabilities and security issues of the AV2700.

3 Threat Model

In contrast to wireless access points [37,59, 65], RUs pose
an especially interesting attack surface with their multiple
interfaces to other RAN components. Our threat model is con-
sistent with existing publications [6,23,31,36,42,45,54,55]
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and applicable standards [22,43] tailored towards indoor BSs.
It aligns with existing threat models of indoor BSs in conven-
tional RANS, including femtocells [28], for all non-O-RAN
aspects. This section defines our system model (Section 3.1)
and discusses an adversary’s motivation (Section 3.2) and
their assumed capabilities (Section 3.3).

3.1 System Model

Figure 1 depicts our system model. We assume an O-RAN in-
frastructure with one or more RUs deployed indoors. The RUs
connect to a corresponding DU via Ethernet to handle control,
user, synchronization, and management plane (CUSM-Plane)
communication. The RU also connects to the Service Man-
agement Orchestration Framework (SMO), where one of the
RAN Intelligent Controllers (RICs) is deployed [42,43].

In contrast to physically protected outdoor cell towers [14],
RUs are installed akin to prevalent enterprise Wi-Fi routers,
implying that they are accessible from within the build-
ing [15]. We consider an RU affixed to a wall. The RU might
be located within or without the reach of an adversary. The
RU might be secured with anti-theft protection means, e.g.,
a Kensington lock. Surveillance measures might be imple-
mented to mitigate undiscovered interactions with the RU.
The network infrastructure might be configured so an adver-
sary can achieve Ethernet access from an adjacent Ethernet
port connected to the RU. Depending on these deployment
options, the adversary can gain different capabilities (Sec-
tion 3.3). Possible scenarios enabling such access include
installations in shared or multi-tenant buildings, e.g., office
complexes, shopping centers, or universities.

3.2 Adversary Motivation

The adversary we consider aims to attack the 5G network,
using the O-RAN RU for their initial foothold. Note that the
cellular network is classified as a critical infrastructure [24]
and, hence, is particularly interesting to adversaries. In the
context of this work, the adversary aims to gain complete
control of an RU to facilitate further attacks.

While any attacks beyond controlling the RU are outside
this work’s scope, the adversary’s next steps might include
local operation or lateral movement: (1) On the RU, the adver-
sary might manipulate in-transit traffic by recording, manip-
ulating, or redirecting, potentially targeting UEs [12,34,51].
Additionally, the adversary might extract sensitive configura-
tion data. (2) The adversary might prepare attacks for lateral
movement in the O-RAN by escalating attacks from the con-
trolled RU to the DU [6] or SMO [58, 60].

3.3 Adversary Capabilities

We consider an adversary targeting the RAN by abusing physi-
cal access to an indoor RU, directly achieving physical access,

Table 1: Summary of the adversary’s potential actions achiev-
able with capabilities C; - C4. Checkmarks imply that the
adversary is capable of the potential action and imply
that the adversary is not.

Potential Action

Accees to the RU’s Ethernet ports
Access to the RU’s power socket
Access to the RU’s debug ports
Evaluation in own environment
Redeployment of a modified RU

x % % % |0
*x % NN N &
YNNI
AN N NS

or connecting to an adjacent Ethernet port connected to the
RU’s Open Fronthaul interfaces. In doing so, our assumed
adversary achieves a subset of the following four capabilities
summarized in Table 1:

Ethernet Access With access to the RU via Ethernet (C)),
the adversary can communicate with the RU’s Open Fronthaul
interface (Figure 3). This access enables the adversary to
take the logical position of another RAN component, e.g., the
DU or SMO, to target exposed services on the RU and any
attack surface provided by the Open Fronthaul interface. By
exploiting vulnerabilities in this attack surface, they attempt
to obtain control over the RU. The adversary can achieve C;
with access to an adjacent Ethernet port connected to the RU,
regardless of surveillance and anti-theft protection means in
place.

Full Interface Access Access to all of the RU’s interfaces
(C,) grants the adversary all of C; and access to the RU’s
power socket and, potentially, to debug ports. With the power
socket, the adversary can shut down and restart the RU, e.g.,
for trivial DoS attacks and to activate the RU’s start-up proce-
dure. Additionally, the adversary can inspect the RU’s High-
Definition Multimedia Interface (HDMI) debug port, poten-
tially facilitating gaining control of the RU. Capability C,
requires physical access to the RU, the feasibility of which
depends on surveillance and access control means in place.

RU Theft If the adversary can remove the RU (C3), they
can conduct further attacks in a prepared environment. This
enables the adversary, on top of C; and C,, to perform more
intrusive operations that require disassembly. If no hardware
security features exist, they can use this access to extract
secrets from the device. In addition, they can inspect and
modify the firmware running on the device. After probing
the RU, e.g., to extract non-default secrets and potentially
tamper with the software and hardware of the device, the
adversary can use the findings to attack other RUs. Capability
C3 requires direct physical access to the RU and an unguarded
deployment.
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SMO DU

HDMI Debug Port

Figure 3: The AV2700’s interfaces feature a ,an
HDMI debug port, and two Open Fronthaul interfaces (Small
Form-factor Pluggable+ (SFP+) and RJ45; blue) that connect
to the Distributed Unit (DU) and Service Management Or-
chestration Framework (SMO).

RU Redeployment Redeploying the RU (C4) grants the ad-
versary all of C; - Cs and the option to set up a manipulated
RU into the O-RAN. After probing, modifying, and possibly
gaining control over the removed RU, the adversary can re-
deploy the device to its designated spot. Taking the position
of the RU enables interaction with the other components in
the RAN and lays the basis for further attacks. Capability C4
requires physical access to the RU and a deployment envi-
ronment that is unguarded and unsecured over an extended
period.

4 Analysis

The AV2700’s hardware and software structure is not publicly
disclosed, so we decided to learn as much as possible about
its inner workings to understand its attack surface. We con-
nected a computer to the AV2700 (Section 4.1) to understand
the network interfaces, remotely connected to the AV2700 to
explore the file system, and reverse-engineered firmware parts.
We report insights into the AV2700’s hardware and software
structure (Section 4.2) and its exposed services (Section 4.3).

4.1 Setup

Our hardware setup comprises two components interconnec-
ted via an Ethernet cable: A commercial off-the-shelf (COTS)
computer and an AV2700. We utilize the computer to com-
municate with the AV2700, investigate the device, and cap-
ture network traffic for analysis. The AV2700 connects to
the computer via Ethernet. In this connection, we observed
unencrypted traffic between the AV2700 and the PC for differ-
ent reasons: (1) During start-up, the RU initiates a call-home
procedure to the DU, and (2) some services running on the
RU’s host system are not directly related to O-RAN. In nor-
mal operation, RU and DU communicate over an encrypted
channel. Apart from the AV2700, our setup solely comprises
COTS hardware, highlighting that only minimal resources are
necessary to replicate our findings.

4.2 Hardware and Software Structure

The AV2700 hardware (Figure 3) is based on the Mercury+
XU8 System-on-Chip (SoC) [20] containing a Xilinx Zyng
UltraScale+, which includes an FPGA [64], an ARM Cortex
A53 [8] and an ARM Cortex R5F [9].

We investigated the AV2700 with firmware 19.6.3 of
System Release 1.6.37. The operating system (OS) on the
AV2700 is an embedded Linux solution built and deployed us-
ing Petalinux 2019.1. PetaLinux is an embedded software
development kit (SDK) for Xilinx FPGA-based SoC designs
that includes auxiliary functions for building Linux solutions
for embedded systems [63]. Further, BusyBox v.1.29.2,a
Unix software suite for embedded systems and mobile de-
vices [11], provides Unix functionality on the AV2700.

Besides a power socket, the AV2700 has three physical in-
terfaces (Figure 3), two connecting to other RAN components,
while we assume the third to be a physical debug interface:

SFP+ port The first physical port is an SFP+ Ethernet
port, providing high-speed connectivity, which is ideal for
the Open Fronthaul control, user, and synchronization plane
(CUS-Plane). It requires an SFP+ module and connector.

RJ45 port The second physical interface is an RJ45 Ether-
net port, allowing communication to the AV2700.

Debug port The third physical interface is an HDMI port,
which we suspect to be an HDMI-muxed debug port similar
to [50] and compatible with HDMI-muxed debug cables [49].

4.3 Services

Figure 4 outlines the service architecture deployed on the
AV?2700. Seven ports are open, out of which four are unau-
thenticated. The most notable components are:
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Table 2: Summary of our findings. The impact of | - F4 is a combination of reconfiguration (Reconf.), Denial-of-Service (DoS),
and Remote Code Execution (RCE). The CVSS scores refer to the Common Vulnerability Scoring System (CVSS) version 4.

Finding Impact CVSS! Affected Services Mitigation
F;  Exposed TCF Agent RCE 9.3 tcf-agent Remove before deployment
F, Missing Access Control  DoS, Reconf. 8.4 clish_agentd, mosquitto Implement authentication
F3z  Memory Corruption DoS/RCE 8.3  All management daemons Secure coding best practices, bound checking
F4 Command Injection RCE 9.3 itf-mgmt Sanitize user input

1 we self-assigned the CVSS scores to vulnerabilities Iy - [F4 according to [25].

[ bbp_mgmt = AV2700
[ cbrs_mgmt H | ftpd | ftp g
[ dev_mgmt = | =shd l ssh
[ fm_mgmt = I oinota l telnet | >
I itf momt I_ mqtt :
I il = o [
I DI_MOME - I clish_agentd | ; sgs
[ process mgmt ] | tcf-agent | L 1%1
| svc_mgmt - InetopeerZ—server l netconf]

830
| sw_mgmt =
| wuplane mgmt |- | sysrepo-agent |

® unauthenticated ® authenticated port — inter-process communication

Figure 4: Service architecture of the AV2700. The central
point is the mosquitto service communicating to the

via inter-process communication (IPC).
Three of the ports are and four unauthenticated.

FTP Server The AV2700 runs the ftpd of BusyBox started
as an inetd server. The firmware misconfigures the File
Transfer Protocol (FTP) server using an unsupported argu-
ment without a directory to serve the supplied files, preventing
successful file transfers. Consequently, its purpose is unclear,
especially when considering that the O-RAN standard man-
dates Secure File Transfer Protocol (SFTP) and File Transfer
Protocol Explicit-mode Secure (FTPES), which secure FTP
with Secure Shell (SSH) and Transmission Control Proto-
col (TCP), respectively, see Section 5.1 of [47]. Furthermore,
per standard, the FTP service is located on the DU, where the
RU is supposed to connect for file uploads.

SSH server The sshd service is provided by the OpenSSH
7.8 SSH server. This service is required for secure M-Plane
connections; see Section 5.4 of [47]. However, the SSH server
with enabled shell access also allows command execution on
the RU, which is not a functionality described in the standard.

Telnet The built-in telnetd of BusyBox provides Tele-
type Network (Telnet) remote access. It offers functionality
similar to the SSH server without the confidentiality or integ-
rity protection of the transmitted data. Identical to the SSH

server, the remote access capabilities offered by Telnet are
not mandated by any standard covering the RU, nor are they
part of the M-Plane. However, when considering Telnet as a
vendor extension of the M-Plane specification, it violates the
end-to-end security requirement stated in [47].

Mosquitto MQTT server The mosquitto Message Queu-
ing Telemetry Transport (MQTT) server listens on all inter-
faces and is externally reachable. In extension, the IPC func-
tionality to the manager daemons can also be called from out-
side, indirectly exposing the manager daemons. The MQTT
server appears to be unrelated to any O-RAN standard. We
assume it to be a leftover implementation detail of the IPC
mechanism that the internal manager daemons (described
below) use to communicate.

Clish-agent service The clish-agentd implements the
functionality of a local oru-shell over ZeroMQ [66]. It
dispatches commands sent to the shell to the corresponding
internal manager daemon by publishing them on the MQTT
topic. No O-RAN standard describes the oru-shell, but it is
directly derived from the NETCONF YANG models. Conse-
quently, supported options overlap with settings configured
over NETCONF. The clish-agentd violates the mandatory
end-to-end security of the M-Plane because it uses an unau-
thenticated plain-text protocol [47].

TCF debugger The tcf-agent exposes debugger func-
tionality for the FPGA. The Target Communication Frame-
work (TCF) is an open-source network protocol to commu-
nicate with embedded devices [18]. The tcf-agent is unre-
lated to any O-RAN specification and appears to be a left-
over development artifact. We checked recent Board Support
Packages (BSPs) for the Zyng UltraScale+ and found the
tcf-agent enabled by default. Therefore, its presence might
be unintentional and not the result of a deliberate decision
during development.

NETCONF The netopeer2-server implements the
NETCONF protocol over SSH. NETCONF over SSH is re-
quired by the M-Plane specification [47]. In addition, the
specification also requires NETCONF over Transport Layer
Security (TLS), which we found missing (Section 5.5.1).
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Wireshark - Packet 9 - 2023-03-29-tcf-eclipse-launch-terminal.pcapng

> Frame 9: 288 bytes on wire (2304 bits), 288 bytes captured (2304 bits) on interface en15, id @
> Ethernet II, Src: Airspan_00:05:88 (00:a0:0a:00:05:88), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
> Internet Protocol Version 4, Src: 192.168.1.137, Dst: 192.168.1.255
> User Datagram Protocol, Src Port: 1534, Dst Port: 1534
Data (246 bytes)
Data: 544346320200000049443d544350323139322e3136382e312e3133373a31353334004¢€61...

ff ff ff ff ff ff 00 a0
01 12 42 36 40 00 40 11
01 ff @5 fe 05 fe 00 fe
00 00 49 44 3d 54 43 50
2e 31 2e 31 33 37 3a 31
3d 54 43 46 20 41 67 65
65 3d 4c 69 6e 75 78 20
69 6c 69 6e 78 2d 76 32
65 72 4e 61 6d 65 3d 72
74 49 44 3d 34 39 38 62
34 2d 34 33 61 38 2d 39
66 64 32 62 34 31 64 66
72 74 4e 61 6d 65 3d 54
63 65 4d 61 6e 61 67 65

0a 00 05 88 08 00 45 00
72 cc c@ a8 01 89 c0 a8
79 2f 54 43 46 32 02 00
3a 31 39 32 2e 31 36 38
35 33 34 00 4e 61 6d 65
6e 74 00 4f 53 4e 61 6d
34 2e 31 39 2e 30 2d 78
30 31 39 2e 31 @0 55 73
6f 6f 74 00 41 67 65 6e
39 65 30 33 2d 33 30 39
35 66 33 2d 64 31 62 63
00 54 72 61 6e 73 70 6f
43 50 00 53 65 72 76 69
72 49 44 3d 34 39 38 62

B6@-@ r
y/TCF2:+
CP :192.168
.137:1 534-Name

F Age nt:0SNam
e=Linux_ 4.19.0-x
ilinx-v2 019.1-Us
erName=r oot:Agen
tID=498b 9e03-309
4-43a8-9 5f3-d1bc
fd2b41df -Transpo
rtName=T CP-Servi

ceManage rID=498b
9e03-309 4-43a8-9

39 65 30 33 2d 33 30 39 34 2d 34 33 61 38 2d 39
35 66 33 2d 64 31 62 63 66 64 32 62 34 31 64 66
2d 30 00 50 6f 72 74 3d 31 35 33 34 00 48 6f 73
74 3d 31 39 32 2e 31 36 38 2e 31 2e 31 33 37 00

5f3-dlbc fd2b4ldf
-0-Port= 1534:Hos
t=192.16 8.1.137-

Bytes 42-287: Data (data.data)

¥ Show packet bytes

Help

Figure 5: Target Communication Framework (TCF) packet
broadcasted periodically by the TCF agent on port 1534, dis-
closing the TCF agent with ID, port, and version, and the op-
erating system Linux 4.19.0-xilinx-v2019.1 with user
root, leading to [F.

Sysrepo agent The sysrepo-agent is another central com-
ponent that implements the NETCONF protocol’s internal
YANG datastore as part of the O-RAN M-Plane [47]. Fur-
thermore, it connects to the MQTT server to trigger man-
ager functions as a reaction to NETCONF remote proce-
dure calls (RPCs). This component directly results from the
M-Plane specification, which requires NETCONF support for
device management.

Manager daemons The AV2700 software is structured into
multiple manager daemons (the leftmost box in Figure 4),
which are used to configure and monitor device aspects re-
lated to the O-RAN: The sw_mgmtd, e.g., is used to update,
install, and activate firmware archives. These managers use
the publish-and-subscribe-based MQTT protocol for IPC to
exchange messages encoded with JavaScript Object Nota-
tion (JSON) via the shared mosquitto [26] server.

5 Findings

This section presents four novel vulnerabilities we discovered
on the AV2700, which are summarized in Table 2: An exposed
TCF agent (Section 5.1), missing access control (Section 5.2),
multiple memory corruption vulnerabilities (Section 5.3), and
an OS command injection vulnerability (Section 5.4). We also
discuss deviations from the O-RAN standards identified on
the AV2700 (Section 5.5). All vulnerabilities [y - [F4 are ex-
ploitable for adjacent adversaries with capability C; using
low-complexity attacks without user interaction, special
privileges, or additional attack requirements (Figure 6).

3 context =

7 con =

zmq
zmg.Context ()
# Socket to talk to server
("Connecting to remote
context.socket (zmg.DEALER)

an-ru-ip:8888")

server...")

con.connect ("tcp: 0-1

con.send (b"view=system-view subview=s reboot

1:
message = con.recv ()

(message.decode (), end="")

Listing 1: Python code to interact with ORU shell views. In
this example, the reboot command in the system view is
invoked to disrupt the device (IF;).

5.1 Exposed TCF Agent

In the context of the AV2700, TCF enables developers to
communicate with the built-in FPGAs [19], e.g., from within
Eclipse with the TCF debugger add-on that opens a terminal
for debugging. In the background, TCF opens a terminal on
the device and runs commands as root.

The AV2700’s TCF agent periodically sends out User Data-
gram Protocol (UDP) packets on port 1534 (Figure 5) while it
waits for connections. The O-RAN standards do not describe
the use of TCF to communicate to the RU, so we assume it to
be a leftover service that the vendor unintentionally enabled
during development. As the TCF agent was not removed be-
fore deployment, adversaries can abuse its functionality with
at least capability Cj, yielding ;. The TCF packets disclose
detailed information about the device, including the host and
port. After recording the handshake between Eclipse and the
AV2700, we reconstructed the TCF messages required to exe-
cute arbitrary shell commands on the embedded device.

Finding F gives an adversary full control over the RU,
which we further discuss in Section 6.1. While mitigation is
straightforward, i.e., removing the TCF agent before deploy-
ment, we assign Fy a critical CVSS score of 9.3 (Figure 6a)
with a high impact regarding all security goals with low sub-
sequent impact on confidentiality and integrity and a high
subsequent impact on availability.

5.2 Missing Access Control

While the NETCONF, Telnet, and SSH interfaces require
authentication, the mosquitto MQTT and clish-agentd
services can be accessed unauthenticated, yielding [F,. In con-
trast to NETCONF, these services are not required by the
applicable O-RAN standards. The clish-agentd is a more
user-friendly way to access the NETCONF settings and can,
therefore, be considered a vendor-specific O-RAN extension.
The MQTT server is an exposed implementation detail with-
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sA

SC none

SI none

high  none

(a) Exposed TCF Agent ()

high
(b) Missing Access Control (F;)

none low high  none high

(c) Memory Corruption (F3) (d) Command Injection (Fy4)

Figure 6: The Common Vulnerability Scoring System (CVSS) scores of F; - F4. The colored sectors depict the three CVSS
metrics: Exploitability, vulnerable system impact, and subsequent impact metrics. Each figure shows, starting from the top, the
following items: attack vector (AV), attack complexity (AC), attack requirements (AT), privileges required (PR), user interaction
(UD), confidentiality (VC), integrity (VI), availability (VA), confidentiality (SC), integrity (SI), availability (SA). The individual
scores of the exploitability metric are as follows: None, low, high for PR; none, passive, active for UI; low, high for AC; none,

present for AT; and network, adjacent, local, physical for AV.

out significant user benefits. As a result of the missing authen-
tication, the entire interface of the cl1ish-agentd is available
to a remote adversary with at least C;. It can be used to set rel-
evant configuration options of the AV2700 (Listing 1). While
there is no built-in option to execute arbitrary commands, the
shell can be abused to misconfigure the device. Since the avail-
able configuration options include vital system parameters
such as the sending power, which affects the transmission of
user data, this attack vector endangers the system’s availabil-
ity. Communication with the mosquitto server grants com-
parable capabilities to accessing the c1ish-agentd since the
majority of commands implemented by this agent are also
dispatched via MQTT. However, it poses a higher risk be-
cause direct access to the underlying MQTT broker allows
the adversary to control message contents fully. A remote
adversary possessing at least C; can exploit vulnerabilities in
the supposedly internal management daemons by carefully
crafting messages, which we discuss further in Sections 5.3
and 5.4. We assign [F, a high CVSS score of 8.4 (Figure 6b)
with a high impact on availability, low impact on confidential-
ity and integrity, high subsequent impact on availability, and
low subsequent impact on integrity.

5.3 Memory Corruption Vulnerabilities

The custom-written management daemons of the AV2700
(the leftmost box in Figure 4) are most likely written in C,
judging by the libraries used, some strings referring to file-
names with a . c extension, and the overall observable pro-
gramming paradigms in place. Consequently, these compo-
nents suffer from a lack of language-based memory safety,
leading to [F3. Examples of such issues include multiple null
pointer de-references crashing the affected components.

In the custom components, bounds checking is done im-

void* buffer = calloc(l, 0x102c);
void* build_id = cJSON_GetObjectItem(json_obj,
"build_id");
if (build_id != 0) {
// Fortified version of strcpy (safe)

__strcpy_chk (buffer,
[...]
void* buffer_ptr =
void* filename_field =

*(build_1id + 32), 64);

buffer + 0x188;
cJSON_GetObjectItem (

json_obj, "file-name");
if (filename != 0) {
// strcpy call with indirect pointer,
// not fortified (unsafe!)

strcpy (buffer_ptr - 0x84,
*(file_name_field + 32));

}

Listing 2: Reverse-engineered code surrounding the heap
buffer overflow in Line 13 due to unfortified functions (IF'3).

plicitly using the fortified versions of security-relevant func-
tions such as __strcpy_chk instead of strcpy () [27]. These
functions perform checks to ensure sufficient buffer sizes and
prevent the exploitation of buffer overflows. However, this
means that all services using such functionality immediately
crash when encountering an out-of-bounds error, resulting
in straightforward attacks on availability. We found this a
problem in almost every case where input is copied from an
MQTT message containing a user-supplied JSON payload.
While one can argue that in our threat model, the adversary
can always attack availability by pulling the plug that sup-
plies the unit with energy, this attack vector allows for the
disruption of specific sub-services in a stealthier manner.

Fortified functions can only be used if the length of the
target buffer is known during compile time. This requirement
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19

20

create_interfaces (
if_name [10];
cmd_buff[1007];

if the size 1s exceeded

__sprintf_chk (if_name, 1, 10,
"$s.%d", inf, vlan_id);
(!check_if_inf_exists (if_name)) {
__sprintf_chk(cmd_buff, 1, 100,

"vconfig add qr,
inf, vlan_id);
system (cmd_buff);

}

Listing 3: Reverse-engineered code excerpt of the operating
system (OS) command injection vulnerability in Line 18 (IF4).

is violated when accessing dynamically allocated memory
areas such as heap buffers with pointers, and their fortified
counterparts cannot replace unsafe functions. We attribute
the existence of I3, a heap buffer overflow in the sw_mgmtd
daemon, to this fact (Listing 2): Surrounding code relies on

__strcpy_chk () in combination with stack-located buffers,

while the problematic code copies data from an MQTT
message into a heap buffer (Line 13). Here, the unfortified
strcpy () function is used, thus producing an overflow bug
when copying from untrusted input. The impact of such issues
goes beyond simple DoS attacks against services on the RU
and can lead to full RCE [32] with severe consequences for
the whole O-RAN (Section 6.1). At least C; is required to
exploit this finding since the service is exposed on the Open
Fronthaul interface. We assign 3 a high CVSS score of 8.3
(Figure 6¢) with a high impact on availability, a low impact
on integrity, and a high subsequent impact on availability.
We base this score on the conservative assumption that ex-
ploitation for full RCE might be infeasible due to insufficient
primitives.

5.4 Command Injection Vulnerabilities

Memory-related issues are not the only area where user
input sanitization is lacking. Generally, we noticed that com-
mands executed by the system function were built using
string formatting techniques. A review of associated input
parameters uncovered an exploitable command injection vul-
nerability in one of the management daemons (Listing 3),
resulting from the passing of untrusted user input to system
(IF4). Since the management daemons run as root, this en-
ables the execution of arbitrary commands in the context
of the super-user. Similar to memory corruption issues, this

vulnerability is also externally exploitable with at least C;
and no authentication due to the missing access control on
the MQTT server. As described in Section 4.3, no O-RAN
standard mandates the MQTT server. Instead, it is an imple-
mentation detail of the RU vendor. The exposure of internal
services that implement O-RAN-specific functionality leads
to additional attack surfaces that could have been avoided.
The specific command injection vulnerability we found gives
an adversary-controlled buffer of seven bytes (Line 12). Only
five usable bytes remain after accounting for two bytes to
terminate the previous command and cut off trailing charac-
ters. Although this length restriction prevents straightforward
execution of arbitrary code, known techniques exist to exploit
exactly such scenarios to gain full RCE [61], with effects on
the whole O-RAN, which we describe in Section 6.1.

We adapt this idea to create empty files with controlled
filenames by using the shell’s output redirection operator (>).
After creating the necessary files, we use 1s *> 0 to create a
file containing the chosen payload. Note that we get the trail-
ing zero for free due to the virtual local area network (VLAN)
ID appended to the injectable interface name (Line 15), al-
lowing us to stay within the payload length constraints. We
force 1s to list the files in the order of most recent creation by
creating a file called -tx beforehand, which is parsed as an
argument to 1s, controlling the sorting precedence of the out-
put. This order allows our files to appear first in the directory
listing, enabling us to ignore trailing characters. As 1s adds
whitespace between filenames, we facilitate a combination of
tr and sed invocations to remove whitespaces and construct
arbitrary payloads, inserting ${IFS} whenever we require
spaces in our payload. We assign F4 a critical CVSS score of
9.3 (Figure 6d) with a high impact on confidentiality, integrity,
and availability, a low subsequent impact on confidentiality
and integrity, and a high subsequent impact on availability.

5.5 Open Fronthaul Standard Deviations

The investigation of the AV2700 RU revealed several devi-
ations from the concepts and functionalities introduced in
the O-RAN M-Plane specification for the Open Fronthaul.
Specifically, various features specified in the standard for the
RU startup procedure were absent in the AV2700. This sec-
tion addresses the missing TLS option (Section 5.5.1) and the
persistent creation of users (Section 5.5.2) before discussing
the use of default credentials (Section 5.5.3). While none of
these deviations are exploitable, they can facilitate follow-
up attacks.

5.5.1 Missing NETCONF via TLS Option

The RU performs a call-home procedure during start-up,
which leads to the DU establishing a NETCONF connection
to the RU. The M-Plane specification mandates TLS encryp-
tion as an alternative to SSH for establishing the NETCONF
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connection [47]. However, we discovered that the NETCONF
via TLS option is missing in the AV2700. As a result, only
NETCONF via SSH is available during the initiation of the
call-home procedure. To use this deviation in combination
with a flaw affecting the SSH implementation, an adversary
will need C, to restart the RU and trigger the start-up pro-
cedure. Iy - F4 would still be exploitable when using TLS
encryption.

5.5.2 Persistent Creation of Users

The second discrepancy occurs when creating a new user ac-
count with super-user privileges on the AV2700. The M-Plane
specification states that upon creating a new user account and
assigning it super-user privileges, the default root account on
the device should be deactivated, and the active NETCONF
connection should be disconnected [47]. However, we found
that after creating a new user account and assigning super-user
privileges on the AV2700, the device neither disconnects the
active NETCONF connection with the default account nor
deactivates the default root account. This behavior deviates
from the specification and can facilitate follow-up attacks,
e.g., for adversaries that manage to create a user via the debug
port (Cy).

5.5.3 Default Credentials

The O-RAN Alliance has identified the use of default creden-
tials on RUs as a main security issue [44]. Considering the
prevalence of default password lists [38] and the associated
risks in network equipment [13], the failure to deactivate the
default account poses severe security risks. Adversaries can
gain access to deployed AV2700s by brute-forcing devices
with default password lists as long as the default super-user
remains active, which can be attacked by adjacent adversaries
with access to a connected Ethernet port (Cy).

6 Discussion

This section discusses the requirements of our findings and
their impact on the operation of the O-RAN (Section 6.1).
We outline mitigation means for IFy - F4 (Section 6.2). We
discuss the security implications of our findings considering
technological trends related to indoor BS (Section 6.3), 5G
and beyond (Section 6.4), and the O-RAN ecosystem (Sec-
tion 6.5). Finally, we address limitations of our work, future
work (Section 6.6), and the responsible disclosure process
(Section 6.7).

6.1 Impact on the Cellular Network

In Section 3, we defined the goal of our presumed adversary
as full control of an RU running in an O-RAN. This section
summarizes the exploitation requirements of findings [} - Fy

(Section 6.1.1) and their impact (Section 6.1.2) on the cellular
network. Figure 7 depicts which capabilities are required to
exploit Fy - [F4 and what level of control they enable. Finally,
we point out follow-up attacks (Section 6.1.3).

6.1.1 Requirements

Findings F; - F4 are all exploitable via the RU’s Open Fron-
thaul interface. Thus, adversaries with access to an adjacent
Ethernet port connected to the RU can exploit them (C). The
adversary is not required to have specific knowledge of any
credentials.

6.1.2 Impact

In the following, we discuss what adversaries can achieve with
Fi - F4 and how close that brings them to fully controlling an
RU running in O-RAN.

Reconfiguration With C;, adversaries can reconfigure the
running RU with [F,. Note how | and F, also enable recon-
figuration of the RU.

Denial of Service A DoS attack on the RU leads to users
losing access to the cellular network. An adversary that is lim-
ited to C; can exploit F; to achieve DoS by reconfiguration
of settings in the oru-shell: (1) data transmission can be
interrupted by modifying RF parameters, (2) access to the RU
can be hindered by configuring a VLAN tag unknown to the
network operator, or (3) the device can be rebooted repeat-
edly with the reboot option to disrupt availability. Note how,
with C,, Cs, or Cy4, adversaries can trivially achieve DoS by
repeatedly restarting or shutting down the RU.

Full Access Findings F; and F4 both grant the ability to
execute arbitrary code on the RU. Notably, both findings only
require C; and allow RCE in the security context of the root
user. Thus, IF; and 4 give the adversary full control of the
RU. Assuming it is feasible to gain RCE with 3, that finding
also gives the adversary full control of the RU.

6.1.3 Follow-Up Attacks

Figure 1 depicts to which O-RAN components the RU is con-
nected. With full control over an RU, there are three potential
follow-up goals: (1) targeting users via their UEs, (2) attack-
ing the O-RAN DU on the Open Fronthaul CUSM-Plane,
or (3) attacking the O-RAN SMO on the Open Fronthaul
M-Plane. Adversaries can target users by injecting down-
link traffic to attack UEs. While no known attacks target-
ing users from an O-RAN RU exist, similar attacks exist for
LTE [12,34,51]. Lateral movement in the O-RAN is possible
towards the DU and the SMO. Adversaries can conduct the
Open Fronthaul C-Plane DoS attack against the DU described
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Figure 7: The Requirements and impact of

Missing access control (FF,)

RCE?
——

| Exposed TCF Agent (F,) |——

—»
—»  Memory Corruption (F;) | —
—]

Command Injection ([F,)

. From left to right, the adversary’s capabilities C| - C4 determine

the level of access to the Radio Unit (RU). Our findings enable the adversary to achieve attacker goals, i.e., reconfiguration,
Denial-of-Service (DoS), or full control of the RU. While not required for the shown attacks, the

facilitate further attacks. We also highlight angles for

by Liao et al. [35]. They can also attempt to get in control
of a DU [6]. Adversaries can attack the SMO on the Open
Fronthaul M-Plane [58, 60].

6.2 Mitigating the Discovered Vulnerabilities

Mitigating [ is straightforward by removing the exposed
TCF agent before deployment. To mitigate [,, we recom-
mend limiting internal services to local addresses to avoid
exposing them to external threats. Regarding I3, we recom-
mend performing explicit bound checking on all untrusted
user input and considering switching away from the program-
ming language C [48]. Vulnerability 4 is addressable by
sanitizing user input before passing it to functions that eval-
uate commands, such as the system() function. Limiting
the internal services to local addresses, as suggested for [y,
also restricts the exploitability of this issue but still enables a
low-privileged user to escalate their privileges.

Generally, we recommend applying a reasonable threat
model (Section 3) during the software design phase to limit
the external attack surface from an architectural point of
view. Furthermore, we identified several deviations from the
O-RAN and Open Fronthaul specifications (Section 5.5). Co-
herency to these standards, especially regarding security, en-
sures the implementation of the best practices, thus mitigating
vulnerabilities in general.

6.3 Indoor Base Stations

The high number of security-related issues emphasizes the
need for an updated threat model for indoor BSs. This shift
voids the assumption that only trusted entities can directly
communicate with the RU. Combined with a system archi-
tecture that exposes many services without authentication,

as described in Section 4.3, the AV2700 presents a vast at-
tack surface. Large parts of the AV2700’s internal code are
probably written in C, requiring high security awareness and
rigorous security testing [53]. Without such precautions, mem-
ory safety bugs that lead to vulnerabilities are very likely.

As we show in Section 5, the security weaknesses affect-
ing the AV2700 spread beyond memory corruption issues,
including missing access control for dangerous services and
an OS command injection. These problems can also occur in
software written in memory-safe languages. Therefore, it is
necessary to follow security best practices and apply a proper
threat model during the development phase, reflecting the re-
ality that adversaries might have physical access to the RU
when deployed as an indoor BS in a public space.

6.4 Technologies of SG and Beyond

The intended application areas of 5G, namely enhanced Mo-
bile Broadband (eMBB), Ultra Reliable Low Latency Com-
munications (URLLC), and Massive Machine Type Commu-
nications (mMTC), incur high requirements on the RAN. 5G
facilitates novel technology, such as FPGAs for mmWave
beamforming to fulfill these requirements. However, using
novel technology in gNBs and O-RAN RUs introduces new
challenges for RAN vendors and mobile network operators
(MNOs), e.g., more complex hardware in indoor BSs (Sec-
tion 4.2) and other RAN components.

While F; is not a vulnerability within the cellular network
itself, it is exploitable by an adjacent adversary to gain ac-
cess to the AV2700’s host system, from where escalation to
the AV2700 is trivial with root privileges. The exposed TCF
agent vulnerability (Section 5.1) is a direct cause of devel-
opers not removing the TCF agent from the AV2700 before
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deployment. As FPGAs are included in O-RAN RUs to ful-
fill the requirements of 5G in the application areas, [F'; is a
consequence of the novel technologies of 5G and beyond. Ad-
ditionally, with the TCF debugger enabled by default for the
widespread Zynq UltraScale+, 'y can likely be reproduced
on other RUs.

6.5 Complexity of the Open RAN Ecosystem

The O-RAN ecosystem is complex with its new open inter-
faces and introduced features. The different components are
highly interconnected through the various interfaces, and re-
search identified that adversaries can use the interconnectivity
to their advantage to escalate attacks [36, 39]. As detailed
in [6], establishing control of an RU provides an adversary
with the means to escalate attacks upwards, penetrating the
O-RAN through the DU and beyond, consequently impacting
the entire O-RAN ecosystem, including the CU, the SMO,
and the RICs. The security implications of this intrusion into
the O-RAN are critical as adversaries might access user- and
other sensitive data. They might manipulate the O-RAN to
transmit malicious packets and data to users, potentially affect-
ing user devices. Additionally, an adversary might bring down
the entire O-RAN with a DoS attack, leading to a large-scale
outage in 5G, classified as a critical infrastructure.

6.6 Limitations and Future Work

We did not fully evaluate the RU’s HDMI debug port. An
adversary with access to all interfaces (C,) might use the
RU’s debug port to perform a DoS attack or prepare follow-
up attacks that lead to RCE, e.g., creating a new super user. An
adversary capable of removing the RU (C3) can perform more
intrusive operations to achieve full control of the RU, e.g.,
firmware modifications or hardware fault injection. However,
if these attacks lead to RCE in the security context of root,
the adversary still needs to redeploy the RU into the running
O-RAN to achieve their goal, requiring Cy.

We analyzed the AV2700 as an example of a proprietary
indoor O-RAN RU. We focused on the capabilities of an ad-
versary abusing physical access to an indoor RU, potentially
stealing, modifying, and redeploying the RU. As we did not
analyze an RU in a live O-RAN, future work might provide
valuable insights into how much CU-Plane traffic an adver-
sary with full control of the RU can access.

While we aimed to highlight general issues with indoor
O-RAN RUs, our evaluation considered only one product,
the AV2700. Future work might reproduce our findings on
other indoor RUs and assess to which extent our findings are
generalizable.

6.7 Responsible Disclosure

We privately reported [F| to Airspan on April 19, 2023. After
waiting for an acknowledgment or response, we sent a follow-
up email on February 13, 2024, with a revised deadline of
April 13, 2024, marking 360 days from the initial reporting.
On February 14, 2024, an Airspan executive responded to
our email, who acknowledged dismissing our initial email
as a phishing attempt. We were assured that the responsible
team at Airspan had been informed about our report and that
they would contact us regarding the vulnerability and next
steps. On February 21, 2024, we privately reported I, - F4 to
Airspan. We set a deadline for May 21, 2024, marking 90 days
from the day of reporting, which complies with recommended
industry practice [29]. To the best of our knowledge, Airspan
is now working on patches for F| - F4.

7 Conclusions

With this paper, we contribute to the RAN security of 5G and
beyond, especially regarding the deployment of indoor BSs.
We introduce a threat model for indoor BSs, considering they
are more easily accessible than outdoor BSs. Our security
analysis of the Airspan AirVelocity 2700 (AV2700) results
in multiple deviations from the O-RAN and Open Fronthaul
standards. We find four vulnerabilities on the AV2700 that we,
due to the lack of official scores, self-assign high or critical
CVSS scores (F; - F4) and recommend mitigation means
for all of them. Our findings show that vulnerabilities in the
host system of a state-of-the-art indoor BS are exploitable
to Remote Code Executions (RCEs), which facilitate follow-
up attacks on the RAN. This highlights the importance of
securing not only the RAN-related implementations of a RAN
component but also the underlying host.
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Abstract

Internet of Things (IoT) devices sit at the intersection of
unwieldy software complexity and unprecedented attacker
access. This unique position comes with a daunting security
challenge: how can we protect both proprietary code and
confidential data on a device that the attacker has unfettered
access to? Trusted Execution Environments (TEEs) promise
to solve this challenge through hardware-based separation of
trusted and untrusted computation and data. While TEEs do
an adequate job of protecting secrets on desktop-class devices,
we reveal that trade-offs made in two of the most widely-used
commercial IoT devices undermine their security.

This paper uncovers two fundamental weaknesses in IP
Encapsulation (IPE), the TEE deployed by Texas Instruments
for MSP430 and MSP432 devices. We observe that lack of
call site enforcement and residual state after unexpected TEE
exits enable an attacker to reveal all proprietary code and se-
cret data within the IPE. We design and implement an attack
called RIPencapsulation, which systematically executes por-
tions of code within the IPE and uses the partial state revealed
through the register file to exfiltrate secret data and to identify
gadget instructions. The attack then uses gadget instructions
to reveal all proprietary code within the IPE. Experiments
with commodity devices and a production compiler show
that—even after following all manufacturer secure coding
practices—RIPencapsulation reveals, within minutes, both
the code and keys from third-party cryptographic software, as
well as allowing unrestricted writes to TEE memory.

1 Introduction

The global IoT industry is projected to become a trillion-dollar
industry by 2027 [2]. IoT devices are widely deployed in both
safety- and mission-critical roles in government, healthcare,
transportation, manufacturing, defense, and telecommunica-
tions industries. Thus, these devices are a treasure trove of
sensitive information. Data security concerns are a major ob-
stacle to the growth of the IoT sensor market as data breaches

Matthew Hicks
Virginia Tech
mdhicks2 @vt.edu

continue to rise with the advancement of technology. In addi-
tion to data security, the growing software complexity of IoT
devices and proliferation of Artificial Intelligence mandate
code security, i.e., the protection of proprietary algorithms
and models. Failing to protect proprietary code and secret
data puts both consumers and companies at risk.

“Trying to design information security solutions without
due consideration of the complex human nature may prove
to be an Achilles heel” [9]. Cryptographic algorithms like
AES and RSA provide confidentiality of data, but the key
still ends up in device memory. This leaves keys vulnerable
to exfiltration by an attacker with physical access. Unfortu-
nately, physical access is the common case for IoT devices.
To address the threat of co-resident attackers, manufacturers
provide a Trusted Execution Environment (TEE). TEEs bi-
furcate hardware (either physically or virtually) into security
domains, where code and data in the high-security domain
are protected from the low-security domain. For IoT-class
devices, Texas Instruments provides a TEE called IP Encapsu-
lation (IPE), which physically partitions device memory into
a protected region and an unprotected region.

Texas Instruments is the world’s second-largest manufac-
turer of microcontrollers [7]. Their MSP family of devices
consists of over 2000 unique devices [3] making them one of
the most widely deployed microcontrollers [4, 5], . MSP430s
are 16-bit industrial-grade microcontrollers with low power
consumption at a low cost. The MSP432 line of microcon-
trollers extends the capabilities of the MSP430 with a 32-bit,
ARM-based architecture. Both devices have TEE support in
the form of IPE, making IPE the most widely deployed TEE.

While the community continues to probe the security of
TEEs provided by higher-end devices, the security of IoT-
class TEEs remains under-explored. This paper fills that gap
by analyzing the security of TI’s IPE. IPE protects code and
data within the IPE zone from all non-IPE zone read and
write accesses [37,45,48]. IPE is enforced by the Memory
Protection Unit (MPU) for MSP430 and the System Con-
tr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>