
USENIX Association

August 12–13, 2024
Philadelphia, PA, USA

Proceedings of the
18th USENIX WOOT Conference

on Offensive Technologies (WOOT ’24)

© 2024 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-43-4

Conference Organizers
Program Co-Chairs
Adam Doupé, Arizona State University
Alyssa Milburn, Intel

Program Committee
Brandon Azad, Apple Inc.
Antonio Bianchi, Purdue University
Fraser Brown, Carnegie Mellon University
Juan Caballero, IMDEA Software Institute
Lorenzo Cavallaro, University College London
Sofia Celi, Brave
Jiska Classen, Hasso Plattner Institute
Jake Corina, Independent
Adrian Dabrowski, CISPA Helmholtz Center for

Information Security
Audrey Dutcher, Arizona State University
Manuel Egele, Boston University
Aurélien Francillon, EURECOM
Fabian Freyer, Apple Inc.
Christophe Hauser, Dartmouth College
Xiali Hei, University of Louisiana at Lafayette
Yeongjin Jang, Samsung Research America
Alexandros Kapravelos, North Carolina State University
Vasileios Kemerlis, Brown University
Yongdae Kim, Korea Advanced Institute of Science

and Technology (KAIST)
Daniel Klischies, Ruhr University Bochum
Pierre Laperdrix, CNRS
Aravind Machiry, Purdue University
Federico Maggi, Amazon Web Services
Dominik Maier, Google
Marius Muench, University of Birmingham
Colin O’Flynn, Dalhousie University
Fabio Pagani, Binarly
Mathias Payer, EPFL
Jam (Vie) Polintan, Google
Andreea-Ina Radu, University of Birmingham
Thomas Roth, Hextree GmbH
Jose Sanchez Vicarte, Intel Corporation
Martin Schwarzl, Cloudflare
Natalie Silvanovich, Google
Takeshi Sugawara, The University of Electro-Communications
Sam L. Thomas, Binarly
Dave (Jing) Tian, Purdue University
Stephen Tong, Zellic
Thomas Unterluggauer, Intel Corporation
Victor van der Veen, Qualcomm
Tom Van Goethem, KU Leuven and Google

Yingchen Wang, The University of Texas at Austin
Ned Williamson, Google
Xinyu Xing, Northwestern University
Yuval Yarom, Ruhr University Bochum
Stefano Zanero, Politecnico di Milano
Kyle Zeng, Arizona State University
Andrew D. Zonenberg, IOActive

Artifact Evaluation Committee Chair
Marius Muench, University of Birmingham

Artifact Evaluation Committee
Asmita, University of California, Davis
Tolga Atalay, Virginia Tech
Aurélien Hernandez, EURECOM
Adrian Herrera, Interrupt Labs
Jingmei Hu, Amazon
Doreen Joseph, University of California, Davis
Endong Liu, University of Birmingham
Jing Liu, University of California, Irvine
Zeyan Liu, University of Kansas
Sabrina Manickam, Vellore Institute of Technology and

Max Planck Institute for Security and Privacy
Andrea Monzani, University of Milan
Paul Olivier, LAAS-CNRS
Samuel Pélissier, INSA Lyon, Inria
Davide Rusconi, University of Milan
Nathan Rutherford, Royal Holloway, University of London
Mahsa Saeidi, Oregon State University
Amit Samanta, University of Utah
Ryan Tsang, University of California, Davis
Billy Tsouvalas, Stony Brook University
Jayakrishna Menon Vadayath, Arizona State University
Nils Wiersma, Netherlands Forensic Institute
Lennert Wouters, KU Leuven
Yingao (Elaine) Yao, University of British Columbia
Matteo Zoia, University of Milan

Steering Committee
Aurélien Francillon, EURECOM
Yanick Fratantonio, Google
Casey Henderson-Ross, USENIX Association
Martina Lindorfer, TU Wien
Clémentine Maurice, CNRS
Collin Mulliner, Cruise
Colin O’Flynn, NewAE Technology and Dalhousie University
Mathias Payer, EPFL
Sara Rampazzi, University of Florida
Yuval Yarom, Ruhr University Bochum
Sarah Zennou, Airbus

External Reviewer
Mario D’Onghia

Message from the
WOOT ’24 Program Co-Chairs

We are delighted to introduce the proceedings of the 18th edition of the USENIX WOOT Conference on Offensive
Technologies (WOOT ’24).

What a journey it has been for WOOT: this year we’ve not only returned to USENIX (back to being co-located with USENIX
Security) but WOOT has also become a full conference, complete with formal proceedings. This would not have been
possible without the support of the amazing WOOT community.

To further WOOT’s goal of bringing together academics and practitioners in the field of offensive security research, we
introduced a new practitioner track aimed at encouraging more participation from non-academic researchers, and in
particular advocating submission of existing work which would benefit from publication in a more formal and complete form.

The 18 accepted papers out of 51 (35% acceptance rate) are split between 3 short papers in this new practitioner track, and the
remaining 15 full-length papers in the academic track. This technical program covers a range of different areas of offensive
security, and we look forward to seeing them at the conference, along with the demos, posters, and lightning talks which
make up the rest of the WOOT program.

Many members of the USENIX staff worked hard to guide our way and have organized much of the conference, and we
deeply appreciated their help and wisdom. We’d also like to extend our gratitude to the many people who volunteered so
much of their time and energy to help WOOT happen this year—this includes the Steering Committee, led by Aurélien
Francillon; the many members of the Program Committee and Artifact Evaluation Committees; our AEC chair, Marius
Muench; and our social media chair, Tom Van Goethem.

Finally, we want to express our appreciation for the generous support of WOOT’s sponsors, without whom WOOT would not
be possible.

Adam Doupé, Arizona State University
Alyssa Milburn, Intel
WOOT ’24 Program Co-Chairs

18th USENIX WOOT Conference
on Offensive Technologies (WOOT ’24)

August 12–13, 2024
Philadelphia, PA, USA

Monday, August 12
Practitioners at Work
Achilles Heel in Secure Boot: Breaking RSA Authentication and Bitstream Recovery from Zynq-7000 SoC. 1
Prasanna Ravi and Arpan Jati, Temasek Laboratories, Nanyang Technological University, Singapore; Shivam Bhasin,
National Integrated Centre for Evaluation (NiCE), Nanyang Technological University, Singapore

WhatsApp with privacy? Privacy issues with IM E2EE in the Multi-device setting. . 11
Tal A. Be’ery, Zengo

Introduction to Procedural Debugging through Binary Libification. . 17
Jonathan Brossard, Conservatoire National des Arts et Métiers, Paris

Security Can Be Tricky
The Power of Words: Generating PowerShell Attacks from Natural Language. . 27
Pietro Liguori, Christian Marescalco, Roberto Natella, Vittorio Orbinato, and Luciano Pianese, DIETI, Università degli
Studi di Napoli Federico II

Attacking with Something That Does Not Exist: ‘Proof of Non-Existence’ Can Exhaust DNS Resolver CPU 45
Olivia Gruza, Elias Heftrig, Oliver Jacobsen, Haya Schulmann, and Niklas Vogel, National Research Center for Applied
Cybersecurity ATHENE, Goethe-Universität Frankfurt; Michael Waidner, National Research Center for Applied
Cybersecurity ATHENE, Technische Universität Darmstadt, Fraunhofer Institute for Secure Information Technology SIT

Amplifying Threats: The Role of Multi-Sender Coordination in SMS-Timing-Based Location Inference Attacks . . . 59
Evangelos Bitsikas, Northeastern University; Theodor Schnitzler, Research Center Trustworthy Data Science and
Security and Maastricht University; Christina Pöpper, New York University Abu Dhabi; Aanjhan Ranganathan,
Northeastern University

Embedded Security
MakeShift: Security Analysis of Shimano Di2 Wireless Gear Shifting in Bicycles. . 75
Maryam Motallebighomi, Northeastern University; Earlence Fernandes, UC San Diego; Aanjhan Ranganathan,
Northeastern University

Engineering a backdoored bitcoin wallet. . 89
Adam Scott and Sean Andersen, Block, Inc.

Oh No, My RAN! Breaking Into an O-RAN 5G Indoor Base Station. . 101
Leon Janzen, Lucas Becker, Colin Wiesenäcker, and Matthias Hollick, Technical University of Darmstadt (TUDa)

Tuesday, August 13
Hardware Security
RIPencapsulation: Defeating IP Encapsulation on TI MSP Devices. . 117
Prakhar Sah and Matthew Hicks, Virginia Tech

Reverse Engineering the Eufy Ecosystem: A Deep Dive into Security Vulnerabilities and Proprietary Protocols. . . 133
Victor Goeman, Dairo de Ruck, Tom Cordemans, Jorn Lapon, and Vincent Naessens, DistriNet-KU Leuven

SoK: Where’s the “up”?! A Comprehensive (bottom-up) Study on the Security of Arm Cortex-M Systems. 149
Xi Tan and Zheyuan Ma, CactiLab, University at Buffalo; Sandro Pinto, Universidade do Minho; Le Guan, University
of Georgia; Ning Zhang, Washington University in St. Louis; Jun Xu, The University of Utah; Zhiqiang Lin, Ohio State
University; Hongxin Hu, University at Buffalo; Ziming Zhao, CactiLab, University at Buffalo

Memory Corruption Is a Solved Problem
Not Quite Write: On the Effectiveness of Store-Only Bounds Checking . . 171
Adriaan Jacobs and Stijn Volckaert, DistriNet, KU Leuven

SoK: On the Effectiveness of Control-Flow Integrity in Practice . . 189
Lucas Becker and Matthias Hollick, Technical University of Darmstadt; Jiska Classen, Hasso Plattner Institute,
University of Potsdam

Exploiting Android’s Hardened Memory Allocator. . 211
Philipp Mao, Elias Valentin Boschung, Marcel Busch, and Mathias Payer, EPFL

Physical Attacks
Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection. 229
Jeroen Delvaux, Technology Innovation Institute; Cristofaro Mune, Raelize; Mario Romero, Technology Innovation Institute;
Niek Timmers, Raelize

Basilisk: Remote Code Execution by Laser Excitation of P–N Junctions Without Insider Assistance. 245
Joe Loughry, Netoir.com; Kasper Rasmussen, University of Oxford

SOK: 3D Printer Firmware Attacks on Fused Filament Fabrication. . 263
Muhammad Haris Rais, Virginia State University; Muhammad Ahsan and Irfan Ahmed, Virginia Commonwealth University

Achilles Heel in Secure Boot: Breaking RSA Authentication and
Bitstream Recovery from Zynq-7000 SoC

Prasanna Ravia Arpan Jatia Shivam Bhasina,b
aTemasek Labs, Nanyang Technological University, Singapore

b National Integrated Centre for Evaluation (NiCE), Nanyang Technological University, Singapore
Email: {prasanna.ravi, arpan.jati, sbhasin}@ntu.edu.sg

Abstract
Secure boot forms the backbone of trusted computing

by ensuring that only authenticated software is executed
on the designated platform. However, implementation of
secure boot can have flaws leading to critical exploits. In
this paper, we highlight a critical vulnerability in open
source First Stage Boot Loader (FSBL) of AMD-Xilinx’s
flagship Zynq-7000 System on Chip (SoC) solution for
embedded devices. The discovered vulnerability acts as
a ‘single point of failure’ allowing complete bypass of
the underlying bypass RSA authentication during secure
boot. As a result, a malicious actor can take complete
control of the device and run unauthenticated/malicious
applications. We demonstrate an exploit using the dis-
covered vulnerability in form of first practical ‘Starbleed’
attacks on Zynq-7000 devices to recover the decrypted
bitstream from an encrypted (using AES-256) boot im-
age. The identified flaw has existed in the secure-boot
software for more than 10 years. The vulnerability was re-
sponsibly disclosed to the vendor under CVE 2022/23822.
The vendor thereafter patched the FSBL software and
issued a design advisory. Our work therefore motivates
the need towards rigorous security evaluation tools to
test for such trivial security vulnerabilities in software.

1 Introduction

Due to the demand of System on Chips in sensitive ap-
plications, they support various security features such
as secure boot, device authentication, bitstream encryp-
tion, readback protection, etc. However, the robustness
of these security features remains unclear due to a
lack of proper documentation and third-party evalu-
ation/scrutiny. In this work, we perform an in-depth
analysis of the RSA authentication feature of the Zynq-
7000 SoC from AMD-Xilinx. AMD-Xilinx Zynq-7000
SoCs have been a market leader in the integrated FPGA
and processor market, with wide adoption across sev-
eral industries such as automotive, aerospace, industrial,

and healthcare sectors. We identified a critical double
fetch security flaw in the RSA authentication feature
within the First Stage Boot Loader (FSBL) provided by
Xilinx. Its exploitation makes it possible to execute an
unauthenticated software application on the Zynq-7000
SoC. The identified flaw is only present in the FSBL soft-
ware and thus can be easily fixed through appropriate
modification of the FSBL software.

Thus, the first contribution of our work is the identifi-
cation of a critical security flaw in the FSBL software
to bypass RSA authentication.

Upon bypassing RSA authentication, we utilize the
unauthenticated software application to demonstrate a
novel attack to recover the encrypted bitstream in the
boot image, thereby subverting the bitstream encryp-
tion feature. To the best of our knowledge, there does
not exist any prior work that has reported a bitstream
recovery attack on the Zynq-7000 SoC. In this context,
Ender et al. [3] in 2020 proposed the Starbleed attack,
capable of breaking bitstream decryption on standalone
Virtex-6 and 7-series Xilinx FPGAs. The design advisory
from Xilinx as a response to the Starbleed attack claims
that the Zynq-7000 SoC is resistant “due to the use
of asymmetric and/or symmetric authentication in the
boot/configuration process" [4]. Due to the security flaw
found in the FSBL, we managed to identify a novel ap-
proach to mount the Starbleed attack on the Zynq-7000
device for full bitstream recovery.

Thus, as a second contribution of our work, we present
the first practical demonstration of the Starbleed attack
on the Zynq-7000 SoC with practical validation on
PYNQ-Z1 platform

We have thus performed an end-to-end recovery of the
bitstream exploiting the RSA bypass vulnerability and
the Starbleed attack. We communicated our findings to
Xilinx in a vulnerability disclosure on March 8, 2022.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 1

Xilinx quickly confirmed the vulnerability on March 24,
2022, and also published a patch for the FSBL software on
March 25, 2022 [6]. Information about the vulnerability
was also published as a design advisory by Xilinx on
April 28, 2022 [5]. Furthermore, we also investigated if
the flaw in the FSBL software is also present in the
BootROM code of the Zynq-7000 SoC. Analyzing the
BootROM behavior presents significant challenges, since
the BootROM code is unavailable or cannot be modified,
as it is hard-coded within the SoC.

Thus, as a third contribution of our work, we present
a novel black-box analysis of the communication inter-
face between the Zynq-7000 SoC and the NVM during
BootROM execution.

However, our analysis was able to positively confirm
that the BootROM software does not suffer from the
RSA vulnerability present in the FSBL.

Availability of Software

All the software used for this work is avail-
able in the public domain at the following link:
https://github.com/PRASANNA-RAVI/RSA_Bypass_
Vulnerability_Zynq_7000_SoC.

1.1 Threat Model
The boot image of the victim Zynq-7000 SoC device
boots from a boot image stored in a Non-Volatile Mem-
ory (NVM) accessible to an attacker. The SoC typically
consists of two components: (1) Programmable System
(PS) which refers to the dual-core ARM Cortex-A9 pro-
cessor and (2) Programmable Logic (PL) which refers
to the FPGA fabric. The victim boot image has three
partitions - FBSL, PL partition (bitstream to execute
on the FPGA), and PS partition (software application
to execute on the processor). The target device man-
dates RSA authentication of the boot image (i.e.) the
RSA eFUSE is enabled, and all partitions in the vic-
tim boot image are encrypted as well as authenticated.
This means that every partition has its corresponding
RSA signature stored along with it, and is referred to
as the Authentication Certificate (AC). Refer to Figure
1 for the structure of the victim boot image we con-
sider for our attack. The attacker’s goal is to execute an
unauthenticated application on the Zynq-7000 SoC.

2 Background

We now provide a brief background on the secure boot
feature of the Zynq-7000 SoC, to facilitate the under-
standing of our attack, described later in Sections 3-6.

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

- Unencrypted

- Encrypted

PHT Authenticate
Certificate

FSBL Authenticate
Certificate

Bitstream Authenticate
Certificate

SW Application

SW Application
Authenticate Certificate

Figure 1: Authenticated victim boot image

2.1 Secure Boot of Zynq-7000 device
The central component of secure boot is the secure boot
image which consists of various partitions that will be
sequentially loaded securely into the appropriate loca-
tions within the Zynq-7000 SoC (either DDR, On-Chip
Memory (OCM) or FPGA). The important components
of a boot image are as follows:

• Boot Image Header (BIH) and BootROM
code: The BootROM code is the first piece of soft-
ware executed upon resetting the Zynq-7000 SoC. It
is hard-coded onto the BootROM of the chip (and
not part of the boot image), and cannot be modified.
It initializes the device based on information in the
BIH. Its main function is to retrieve the FSBL from
the NVM, after which it authenticates the FSBL us-
ing its Authentication Certificate (AC that contains
its RSA signature), and further decrypts the FSBL,
before securely passing control to it.

• Partition Header Table (PHT): The PHT is a
critical component of the boot image, which con-
tains metadata information about each PL and PS
partition in the boot image. Each partition has an
associated entry of 64 bytes in the PHT and con-
tains information such as encrypted partition size,
decrypted partition size, total partition size includ-
ing its AC, destination address in the device, loca-
tion within the boot image, authentication status,
etc. The PHT is used by the FSBL to get informa-
tion about each partition in the boot image. We
remark that the PHT is present unencrypted within
the boot image allowing an attacker to gain infor-
mation about the metadata of each partition in the
secure boot image.

• First Stage Boot Loader (FSBL): The FSBL
is responsible for loading each of the PS and PL
partitions in the boot image into the appropriate

2 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/PRASANNA-RAVI/RSA_Bypass_Vulnerability_Zynq_7000_SoC
https://github.com/PRASANNA-RAVI/RSA_Bypass_Vulnerability_Zynq_7000_SoC

locations within the device (i.e.) PL partition is
loaded into the FPGA, and PS partition is loaded
into the DDR memory. The FSBL first retrieves
the PHT from the NVM and authenticates it using
its AC. Upon successful authentication, then FSBL
securely loads the PL and PS partitions individually
in the same manner, from the boot image, based on
information in the PHT. However, if PHT authenti-
cation fails, then the FSBL simply aborts the secure
boot procedure. After loading all the PS and PL
partitions, the FSBL transfers control to the last
software application that was loaded from the boot
image. In this work, we use the official FSBL code
for the Zynq-7000 SoC provided by Xilinx (FSBL
version 2018.1).

• Programmable Logic (PL) or Programmable
System (PS) Partition: After the FSBL, the re-
maining portion of the boot image is occupied ei-
ther by a PL partition or a PS partition. For an
authenticated partition, there is an Authentication
Certificate (AC), that contains its RSA signature,
which is appended to it in the boot image.

2.2 RSA Authentication in Zynq-7000
SoC

The Zynq-7000 SoC uses the well-known RSA-2048-based
signature scheme for authentication. It is done with two
keys: the Primary Key and the Secondary Key. While
the primary key is stored in the eFuse of the device (fixed
for a given device), the secondary key is associated with
each partition. The primary key is used to authenticate
the secondary key of a partition, and the secondary key
is used to authenticate the partition data itself, thereby
forming an authentication chain. The authentication
operation (i.e.) signature verification is carried out by a
cryptographic software library, part of the BootROM and
FSBL of the Zynq-7000 SoC. Since an understanding
of the intricate details of RSA authentication is not
required for our attack, we refer the reader to [10] for
more details.

RSA authentication is an integral component of the
FSBL. FSBL is an open-source and modifiable piece of
software. We analyze the FSBL source code to under-
stand how it authenticates various components of the
boot image.

3 Analyzing the RSA Authentication
Procedure within FSBL

We noticed that the PHT authentication serves as a sin-
gle point of failure in the secure boot procedure. If an at-
tacker can bypass PHT authentication, he/she can mount

a tampered PHT that can be used to execute an unau-
thenticated application. We analyzed the PHT authen-
tication procedure by FSBL (implemented within the
image_mover.c source file in the embeddedsw project [9]).
Refer to Figure 2 for a pictorial illustration of the au-
thentication procedure of the PHT by the FSBL.

1. The FSBL first retrieves the PHT data from the
NVM and stores it into a global variable denoted
as GVAR. We denote the fetched PHT data from
NVM as PHT1.

2. The FSBL then checks the status of the RSA eFUSE.
If enabled, the FSBL again retrieves the PHT along
with its AC. We denote the fetched PHT data as
PHT2 since it is retrieved at a different time than
PHT1.

3. If verification of AC of PHT2 is successful, then the
FSBL uses the data in GVAR (PHT1) as the PHT
to load the PS and PL partitions in the boot image.

In other words, the FSBL authenticates PHT2 but
uses the unauthenticated PHT1 for secure boot. This is
mainly because of the double fetch of the PHT data from
the NVM which is external to the security boundary
of the device. This is the critical vulnerability that we
have identified that could be exploited to bypass PHT
authentication.

We remark that our experiments were done on FSBL
version 2018.1, they also applied to the latest FSBL ver-
sion dated 23 Apr 20201, during the time of our research.

3.1 Related Works
Double fetch is a term referring to a bug that occurs
when a process reads and uses the same value twice,
expecting it to be identical while it is possible for an
attacker to modify it between the two reads. This term
was first coined by Serna [7], and there have been several
works that have exploited double-fetch bugs in what
is commonly referred to as Time-of-Check to Time-of-
Use (TOCTTOU) attacks [1]. Well-known instances of
such attacks include attacks on the Linux kernel [8],
applications such as Firefox [11] and Intel BootGuard [2].

3.2 Exploiting the RSA Security Flaw in
FSBL

We formulate an attack methodology to exploit the dou-
ble fetch PHT, using an NVM emulator, which is con-
figured to behave in the following manner during PHT
authentication.

1https://github.com/Xilinx/embeddedsw/blob/master/lib/
sw_apps/zynq_fsbl/src/image_mover.c

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 3

https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_apps/zynq_fsbl/src/image_mover.c
https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_apps/zynq_fsbl/src/image_mover.c

1. When the FSBL fetches the PHT for the first time
(PHT1), the NVM emulator provides a tampered
PHT, configured according to the attacker’s require-
ments. Thus, the tampered PHT is stored in GVAR
variable, within the DDR.

2. The FSBL then checks the status of RSA eFUSE
and if enabled, again fetches the PHT (PHT2) along
with its AC. This time, the NVM emulator provides
the valid PHT along with its AC.

3. The FSBL successfully authenticates PHT2, but now
uses the tampered PHT1 for secure boot present in
GVAR. Based on the tampered PHT1, the FSBL
loads an unauthenticated application on the target
device, thereby bypassing RSA authentication.

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled,
If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

NVM
(SD Card)

Figure 2: Authentication of the PHT by the FSBL

3.3 Proof of Concept (PoC) Attack Im-
plementation

We started with a Proof of Concept (PoC) attack to
demonstrate the presence of the double fetch vulnerabil-
ity during PHT authentication. This was done not with
an NVM emulator, but by performing manual modifica-
tions to the FSBL, to replicate the behavior of the emu-
lator. We manually modified the PHT data in the GVAR
variable after fetching PHT1, and the data is tampered
with to load an unauthenticated PS partition (software
application) from the boot image. This is the only modi-
fication done in the FSBL and does not aid the attack
in any other manner. Within the boot image, the au-
thenticated application is replaced with a malicious and
unauthenticated application in the boot image. We ran
repeated experiments using the tampered FSBL as well
as the tampered boot image, and we were able to suc-
cessfully load and execute the unauthenticated software
application on the target device, which demonstrates the
presence of the RSA bypass vulnerability.

However, this does not qualify as a real attack, since
we made manual modifications to the FSBL that is en-
crypted within the boot image. Since the attacker does

not know the encryption key, it is not possible in a
real-attack scenario. In the following, we thus attempt
to perform a practical real-world attack by building a
low-cost NVM emulator, that does not require making
modifications to the FSBL in the boot image.

4 Practical Attack using SD Card
Switcher Board

One approach to carry out a practical attack would be
to implement the NVM emulator on an FPGA/ASIC.
However, designing the it requires significant engineer-
ing effort, and hence adopted a simpler approach. The
basic requirement for our NVM emulator is to present a
tampered PHT during the first fetch, and a valid PHT
during the second fetch. To achieve this, we built an SD
card switcher that can switch between two SD cards (SD
Card 1 and SD Card 2) during the secure boot procedure.

The SD card switcher has two SD card slots, and we
can choose the SD card to connect to the target, based on
the logic level of a GPIO pin. The board also facilitates
keeping the SD cards powered on from an external power
source. This ensures that the SD card once initialized by
the target device is powered on, even if the target device
is powered off. In the following, we explain the proposed
attack methodology using our SD card switcher board.

4.1 Attack Methodology
The two SD cards (SD cards 1, and 2) are loaded with
two different attack boot images derived from the victim
boot images. SD card 1 contains a boot image with the
tampered PHT (i.e.) PHT1 (mapping to an unauthen-
ticated attack application), while all the other contents
match that of the victim SD card. SD card 2 contains
a boot image with a valid PHT (PHT2) but with the
authenticated software application replaced with the
unauthenticated attack application. Refer to Figure 3
for a pictorial illustration of the boot images on both
SD cards. We load both the SD cards onto the SD card
switcher board and connect the SD card switcher to the
Zynq-7000 SoC. The attack is carried out in the following
manner:

1. The Zynq-7000 SoC first boots with SD card 2
mounted on the SD card switcher board. This is
done to initialize SD card 2.

2. We now power off the Zynq-7000 SoC and switch
to SD card 1. This is done while maintaining the
power of both SD cards.

3. We now boot the Zynq-7000 SoC with SD card
1, which ensures that the tampered PHT (PHT1)
during the first PHT fetch. After the first PHT fetch,

4 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate
Certificate

FSBL Authenticate
Certificate

Bitstream Authenticate
Certificate

Attack Application

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate
Certificate

FSBL Authenticate
Certificate

Bitstream Authenticate
Certificate

Attack Application

Tampered PHT
(Corresponding to Attack

Application)

SD Card 1 SD Card 2

Original PHT

- Unencrypted

- Encrypted

- Tampered PHT

- Minor Modified FSBL (valid)

Figure 3: Boot Images of SD card 1 and SD card 2 within the SD switcher board

Save PHT1 in GVAR

FSBL
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2

Validate AC and PHT2

Checks if RSA is Enabled,
If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Initialize SD Card

Figure 4: Improved Attack on the Zynq-7000 SoC using
SD card switcher, with the modification done to the
FSBL denoted in red.

we switch from SD card 1 to SD card 2. For our
experiments, we added a manual delay between the
first and second PHT fetches. However, this can be
automated as the timing of the switch is constant
for the Zynq device upon power up.

4. After the switch, we expect that the Zynq-7000 SoC
will retrieve the valid PHT from SD card 2 (which
was already initialized), which should be authenti-
cated successfully by the FSBL. This should also
ensure that PHT1 is used for secure boot, and will
therefore execute the unauthenticated on the Zynq-
7000 SoC.

4.1.1 Experimental Observations of Attack us-
ing SD Card Switcher Board

Our experiments reveal that the Zynq-7000 SoC halts
operation after switching from SD card 1 to SD card
2, after the first PHT fetch. The FSBL is unable to
connect to SD card 2, even though it is initialized. We
hypothesize that the SD card peripheral on the target

device, which is oblivious to the switch tries to commu-
nicate with commands for SD card 1, while the switcher
connects the device to SD card 2. To overcome this, we
perform a minor modification to the FSBL, by adding
to the InitSD function, to initialize SD card 2 after the
switch. After this modification, we can successfully per-
form a bypass of the PHT authentication and load the
unauthenticated application, demonstrating a successful
RSA bypass. Refer to Figure 4 for a pictorial illustration
of our improved attack using the SD card switcher.

Since our current setup still requires a modification to
the FSBL, it does not qualify as a practical attack. We
believe this limitation can be overcome using specialized
hardware (FPGA/ASIC) to tamper the SD card inter-
face at precise time instances. Nevertheless, our attack
concretely exposes the flaw in the FSBL software to
bypass RSA authentication.

4.2 Fixing the Flaw in PHT Authentica-
tion within FSBL

The vulnerability mainly arises from the retrieval of the
same PHT data twice from the NVM and only using the
data from the first fetch. This flaw can be patched by
ensuring that PHT is only retrieved once from the NVM
and authenticated immediately. This fix is implemented
as part of the patched FSBL (dated March 25th, 2022) [6],
and our manual analysis of the patched FSBL source code
confirmed the removal of the double fetch vulnerability.
AMD-Xilinx referred to our attack as a physical attack [6]
and that the device "was not designed to be resistant to
physical attacks". However, the identified vulnerability
still exposes a critical flaw in the RSA authentication
process, which enables a practical attack that enables it
to completely bypass it. While we verified the BootROM
of Zynq-7000 SoC for the same vulnerability, we have

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 5

not analysed other devices from AMD-Xilinx, and we
leave this analysis for future work. This is not the first
time that such double fetches have been detected in
secure software [1]. In the following section, we show
that an attacker can use the unauthenticated application
to perform a novel bitstream recovery attack.

5 Starbleed for Bitstream Recovery

Ender et al. [3] in 2020 exposed a critical security flaw in
the bitstream decryption protocol of standalone Virtex-6
and 7-series Xilinx FPGAs, which enables recovery of
bitstream data, now well-known as the Starbleed attack.
The only requirement is that the attacker requires access
to the configuration interface of the FPGA (PL). In this
work, we adapt the Starbleed attack to the Zynq-7000
device for bitstream recovery.

5.1 Attack Methodology
The attacker makes malicious changes to the encrypted
bitstream, such that upon decryption, a targeted de-
crypted bitstream word is written into the Warm Boot
Status Address (WBSTAR) register of the configura-
tion interface. The WBSTAR register retains its value
even upon FPGA reset and thus an adversary can ac-
cess the decrypted word from the WBSTAR register.
Similarly, full bitstream recovery can be performed one
word at a time. Since the attacker now has control of
the PS (through the attack application), we designed an
attack application to carry out the attack by accessing
the PL through the PCAP (Processor Configuration Ac-
cess Port) interface. The application programs the PL
with the tampered bitstream, but it results in failure of
HMAC integrity check, triggering a HMAC error. The
reference manual claims that readback of any register
(including WBSTAR) is not possible unless the PL is
configured with a valid bitstream. Thus, it was evident
that the Starbleed attack could not be performed as on
the Zynq-7000 SoC.

5.1.1 Attack Execution using Workaround

We identified a workaround to ensure that register read-
back is possible, even after programming the PL with a
tampered bitstream.

1. Program PL with a valid encrypted bitstream.

2. Without initializing the PL again, we push the tam-
pered attack bitstream through the PCAP interface.
We observe that FPGA stays programmed (DONE
signal is high) even though the tampered bitstream
trigger an HMAC error.

3. We then issue read command to successfully read
the WBSTAR register containing the decrypted bit-
stream word.

This technique of programming bitstreams without ini-
tializing is not recommended practice. We typically expect
that PL is not configured properly without initialization.
We observe that the tampered bitstreams were able to
write the decrypted bitstream word to the WBSTAR
register while ensuring that readback is also possible.
However, after readback, the PCAP interface becomes
unresponsive, and only a Power-on Reset (PoR) of the
device could bring it back to normal working condition.
Thus, we can only recover one bitstream word per secure
boot, and the attacker needs to power cycle the device
to recover every bitstream word. We can recover the bit-
stream at a speed of 32 bits per second, and an estimated
recovery time of 46 days for our experimental bitstream
of size 3.85 MB. We observe that the secure boot time af-
ter every POR reset serves as a bottleneck for our attack.
While reducing the attack time is possible, we consider
performance acceleration out of the scope of our work.
This attack would not be possible without bypassing
RSA authentication, and thus using the patched version
of the FSBL (dated March 25, 2022) [6] can serve as a
strong mitigation against the bitstream recovery attack.

6 Conclusion

In this work, we have identified a critical double fetch
security flaw in the FSBL software of AMD-Xilinx’s
Zynq-7000 SoC, which enables bypassing the RSA au-
thentication procedure, to execute an unauthenticated
application on the target device. We experimentally val-
idated a potential exploit using a custom-built SD card
switcher board. We also analyzed the BootROM code for
a similar vulnerability, and confirm that the same bug is
not present (Refer to Appendix A). We then proceeded
to demonstrate the first successful bitstream recovery
attack on the Zynq-7000 SoC using the Starbleed at-
tack technique. In essence, our work uncovers a simple
double fetch vulnerability in the secure boot software
of Zynq-7000 SoC, but such vulnerabilities are not new.
Our work demonstrates a serious need for automated
tools for identifying such trivial bugs. While there have
been proposals for such techniques [8], the applicability
of these tools to embedded devices is to be studied and
forms an interesting direction for future research.

Acknowledgement

This work was supported in part by the “National Inte-
grated Centre of Evaluation” (NICE), and in part by a
facility of the Cyber Security Agency (CSA), Singapore

6 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

References

[1] Atri Bhattacharyya, Uros Tesic, and Mathias Payer.
Midas: Systematic kernel {TOCTTOU} protection.
In 31st USENIX Security Symposium (USENIX
Security 22), pages 107–124, 2022.

[2] Peter Bosch and Trammell Hudson. Warpattack:
bypassing cfi through compiler-introduced double-
fetches. In Hack in the Box Amsterdam, 2019.

[3] Maik Ender, Amir Moradi, and Christof Paar. The
unpatchable silicon: A full break of the bitstream
encryption of xilinx 7-series fpgas. In 29th USENIX
Security Symposium, 2020.

[4] Xilinx Inc. Ar 73541-design advisory for 7
series/virtex-6 fpgas: Defeating bitstream encryp-
tion dated 04/27/2020.

[5] Xilinx Inc. Design advisory for zynq-7000:
Fsbl authentication attack dated 04/28/2022.
https://support.xilinx.com/s/article/
76974?language=en_US.

[6] Xilinx Inc. Software patch of the
fsbl software for zynq-7000 soc against
fsbl authentication attack. https:
//github.com/Xilinx/embeddedsw/commit/
28111bd377ec77e8cbb5492e5a0a4f4d37b6c5e3.

[7] Fermin J Serna. Ms08-061: The case of the kernel
mode double-fetch, 2008.

[8] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and
Steve Dodier-Lazaro. How {Double-Fetch} situa-
tions turn into {Double-Fetch} vulnerabilities: A
study of double fetches in the linux kernel. In 26th
USENIX Security Symposium (USENIX Security
17), pages 1–16, 2017.

[9] Xilinx. Fsbl software for zynq-7000 soc (im-
age_mover.c). https://github.com/Xilinx/
embeddedsw/blob/master/lib/sw_apps/zynq_
fsbl/src/image_mover.c.

[10] Xilinx. Zynq-7000 all programmable soc technical
ref-erence manual-ug585 (vl. 13).

[11] Jianhao Xu, Luca Di Bartolomeo, Flavio Toffalini,
Bing Mao, and Mathias Payer. Warpattack: bypass-
ing cfi through compiler-introduced double-fetches.
In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1271–1288. IEEE, 2023.

SD Card Switcher
PYNQ Platform (Target)

External Power Supply
(STM32F4 Board)

Figure 5: Attack Setup with SD Card Switcher

Logic
Analyzer

SD Card Switcher Board

Zynq-7000 Device

Power for SD Card
Switcher

Figure 6: Experimental Setup: Logic Analyzer probing
the SD Card interface to the Zynq-7000 device

A Assessing the RSA Authentication
Procedure in BootROM

While we identified a flaw in the RSA authentication
procedure in FSBL, we asked ourselves whether the same
flaw is also present in other operations during the se-
cure boot. We thus conducted a security analysis of the
BootROM software, which also performs authentication
of the FSBL itself, before FSBL starts execution. But,
analysing the BootROM software is particularly challeng-
ing compared to the FSBL, since neither the BootROM
source-code nor the binary is available. It is also hard-
coded within the on-chip memory of the Zynq device, and
hence cannot be modified. Thus, a code-analysis similar
to that of FSBL is not possible. However, we observe
that the BootROM loads data from the Non-Volatile
Memory (NVM) (i.e.) SD card and thus monitoring the
SD card interface during BootROM execution could pro-
vide critical information about its operation. In this
respect, we utilize a logic analyzer to monitor the SD
card communication during BootROM execution.

A.1 BootROM Analysis using SD Card
Communication

In order to understand the data transfer between the SD
Card (NVM) and the Zynq-7000 SoC during BootROM

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 7

https://support.xilinx.com/s/article/76974?language=en_US
https://support.xilinx.com/s/article/76974?language=en_US
https://github.com/Xilinx/embeddedsw/commit/28111bd377ec77e8cbb5492e5a0a4f4d37b6c5e3
https://github.com/Xilinx/embeddedsw/commit/28111bd377ec77e8cbb5492e5a0a4f4d37b6c5e3
https://github.com/Xilinx/embeddedsw/commit/28111bd377ec77e8cbb5492e5a0a4f4d37b6c5e3
https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_apps/zynq_fsbl/src/image_mover.c
https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_apps/zynq_fsbl/src/image_mover.c
https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_apps/zynq_fsbl/src/image_mover.c

CMD

CLK

DAT3

Figure 7: Data Transfer over SD interface covering the full boot-up of the Zynq device

CMD
CLK
DAT3

CMD18 from Zynq Device (Host)
(Read Multiple Blocks at Address: 0x54e56)

Response from SD Card
(Acknowledgement)

Figure 8: Visualization of packets transferred over the CMD line of the SD card interface

execution, we utilized a logic analyzer to analyze the
communication between the SD card and the Zynq de-
vice, during FSBL execution. The reading/writing of
data from/to the SD card occurs in blocks of 512 bytes,
in a serial fashion, and in particular we monitored the
commands CMD17 and CMD18, which can be used to
read a single block and multiple blocks respectively.

We utilized the DSLogic Plus logic analyzer from
DreamSourceLab to probe the SD card communication
interface. Refer to Fig.6 for the picture of our experi-
mental setup. We used to logic analyzer to probe the
CMD, CLK and DAT3 lines (as a representative data
line among DAT0-DAT3), and the captured signals can
be viewed on the DSView software IDE. Please refer to
Fig.7 for the data transfer over the SD interface during
the entire boot-up phase of an authenticated and en-
crypted boot image. This captures the entire execution
time of BootROM and FSBL. Channel 0 corresponds
the CMD line, channel 1 corresponds to the CLK line
and channel 3 corresponds to the DAT3 line. We only
chose DAT3 as a reference for a data line, but any of the
other data lines among DAT0-DAT2 can also be probed.
Moroever, zooming into the data transfer allows us to vi-
sualize the packets within the DSView IDE, and refer to
Fig.8 for the visualization of a command to read multiple
blocks from the host (i.e.) CMD18 and the subsequent
acknowledgement from the SD card.

A.2 Experimental Observations of
BootROM Execution

We recall that the buggy software implementation of
FSBL performs two PHT transfers (PHT1 and PHT2),
when RSA authentication is enabled. While PHT1 only
corresponds to retrieval of the PHT table, transfer of
PHT2 corresponds to retrieval of the PHT along with
the AC. If we identify such a redundant PHT transfer
during BootROM execution, we can confirm that the
vulnerability in the FSBL also exists in the BootROM.
For our analysis, we considered three different types of
boot images: (1) Non-secure (NSec), (2) Secure with
only encryption (Sec_Encrypt) and (3) Secure with both
encryption and authentication (Sec_Auth_Encrypt).

1. Non-secure Image (NSec): In this case, the
BootROM is expected to only fetch the unencrypted
FSBL. The size of the unencrypted FSBL in our
boot image is ≈ 114.5 KB, which is equivalent to
225 blocks. Refer to Fig.9 for the data transfer corre-
sponding to the retrieval of FSBL by the BootROM.
We observe a total of 225 blocks being read from
the SD card, using single block read commands
(CMD17).

2. Secure with only encryption (Sec_Encrypt):
When only encryption is enabled, the BootROM
is expected to fetch the encrypted FSBL, whose

8 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

BootROM Execution FSBL Execution

Retrieval of Unencrypted FSBL
(225 Blocks)

CMD
CLK
DAT3

Figure 9: Retrieval of FSBL by BootROM in NSec image

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL
(227 Blocks)

CMD
CLK
DAT3

Figure 10: Retrieval of FSBL by BootROM in Sec_Encrypt image

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL + AC
(230 Blocks)

CMD
CLK
DAT3

Figure 11: Retrieval of FSBL by BootROM in Sec_Auth_Encrypt image

size is roughly 115.5KB which is equivalent to 227
blocks. Refer to Fig.10 for the data transfer corre-
sponding to the retrieval of the encrypted FSBL
by the BootROM. We observe a total of 227 blocks
being read from the SD card, using single block read
commands (CMD17).

3. Secure with both encryption and authentica-
tion (Sec_Auth_Encrypt): When both authenti-
cation and encryption are enabled, the BootROM
is expected to fetch the encrypted FSBL along with
its Authentication Certificate (AC), whose size is
roughly 116.8KB which is equivalent to 230 blocks.

Refer to Fig.11 for the data transfer corresponding
to the retrieval of the encrypted FSBL along with
its AC by the BootROM. We observe a total of 230
blocks being read from the SD card, using single
block read commands (CMD17).

If there were a duplicate transfer of the FSBL, simi-
lar to that of the PHT, then we should have observed
roughly 455 blocks being transferred. However, the num-
ber of blocks transferred from the SD card tallies with the
expected number of blocks to be read. From this obser-
vation, we can positively confirm that the flaw identified
in the FSBL is not present in the BootROM software.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 9

However, this does not rule out the possibility of other
vulnerabilities within the BootROM, that could be ex-
ploited for RSA authentication bypass.

10 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

WhatsApp with privacy? Privacy issues with IM E2EE in the Multi-device setting

Tal A. Be’ery, Zengo

Abstract
We recently discovered a privacy issue with Meta’s
WhatsApp, the world’s most popular Instant Messaging
(IM) application. Meta’s WhatsApp suffers from a privacy
issue that leaks the victims’ device setup information
(mobile device + up to 4 linked devices) to any user, even if
blocked and not in contacts. Monitoring this information
over time allows potential attackers to gather actionable
intelligence about victims and their device changes (device
replaced/ added /removed). Additionally, message recipients
can associate the message with the specific sender device
that sent it. The root cause for these issues stems from
Signal’s multi device protocol architecture, the Sesame
protocol, and as a result these issues are not limited to Meta’s
WhatsApp only but probably relevant to most IM solutions,
including the privacy-oriented Signal Messenger.

1. Introduction
End-to-End Encryption (E2EE) is a type of messaging that
keeps messages private from everyone, including the
messaging service. When E2EE is used, a message only
appears in decrypted form for the person sending the
message and the person receiving the message. The sender
is one "end" of the conversation, and the recipient is the other
"end"; hence the name "end-to-end.".
Originally, most Instant Messaging (IM) apps did not
support E2EE. However, as the importance and criticality of
IM security had raised, E2EE became the security standard
for modern communication and supported by modern IM
apps.

Another aspect of IM communications that evolved over
time is its multi-device support. Traditionally, Instant
Messaging (IM) apps were bounded to a single device.
However, as IM have gained popularity and became an
important and even critical medium for communications,
users wanted to have access to their IM conversations from
every computing device they own. As a result, modern IM
providers support the multi-device setting.

While each of these individual features (E2EE and multi-
device) is critical for modern IM apps, supporting both
simultaneously can lead to some security and privacy
tradeoffs, as current E2EE solution expose some public
cryptographic information about each of the devices, by thus
compromising their users’ privacy.

Contributions: Our main contributions are the following:
• We show the privacy and integrity implications of

current popular multi-device solutions in IM apps.

• We demonstrate how attackers can easily subvert the
WhatsApp client to obtain the victims’ multi-device
setup information.

• We suggest some practical measures to limit the
exposure of such privacy leaks.

Overview: This paper is organized as follows: Section 2
provides a brick-and-mortar analogy to IM E2EE, Section 3
presents the Signal protocol and highlights the privacy issues
in the multi-device setting, Section 4 shows how such
privacy leaking attacks can be easily mounted by attackers
against WhatsApp currently the world’s most popular IM
service, section 5 considers possible solutions. We conclude
in Section 6.

2. Background

To better understand E2EE and its threat model we can use
the postal service analogy:
Prior to E2EE, senders sent their letter in an envelope, but
the envelope was not sealed. As part of its service, the post
office opens the envelope and then puts it in another
envelope and delivers it to the intended recipient.

This scheme has many advantages:
• Thanks to envelopes, eavesdroppers cannot see the
contents of the letters.
• Thanks to the post office buffering, users do not
need to meet to converse, but rather do so indirectly. This
not only allows asynchronous conversations but also can
protect user anonymity. Receivers can disclose only their
nicknames to senders, and have the post service resolve from
nicknames to true names and addresses. In fact, there is a
privacy tradeoff between service and the conversation
counterparty: If the conversing parties are directly
connected, then the service is not exposed to the contents of
the conversation, however the parties may uncover more
metadata about each other and be able to break the “rules”
of the protocol as the service is not there to enforce them.
Generally speaking, it makes sense to assume that the service
provider is more trustworthy than some counterparties that
might be malicious.
• The post office can scan the contents of envelopes
to make sure they do not contain bad content: Bombs, terror
group messaging or pedophile photos.
• If letters are intended for multiple addresses
(groups or a user with multiple houses) the post office can
simply copy the message and send it to all addresses.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 11

However, this scheme has a major drawback: Postal service
employees are exposed to the contents of the letters and can
leak them. The practical reasons for such leakage can vary:
The service may act in negligence and mishandle user data,
sell the data to advertisers for financial gain, be hacked by
attackers, fail to restrict rogue employee access to private
customer data, or even be served with a subpoena by the
government.

To address this issue, E2EE was introduced. With E2EE,
users send their message in locked boxes within the
envelopes. Users provide their locks to the service when they
join, but keep the keys themselves. When senders want to
send a letter to a recipient they get the relevant padlock from
the service and send their letter in a locked box within the
envelope. As before, the post office opens the envelope and
then puts it in another envelope and delivers it to the intended
recipient. However, due to the locked box, the postal service
personnel can no longer see the contents of the letter.

While E2EE indeed protects message content from the
prying eyes of the service operator, it should be noted that:

• Even with E2EE, users must place some trust in the
service provider, as the storing and forwarding messages,
even encrypted, exposes metadata. Whether it’s
conversation related (counterparties, number of messages,
length of messages, timing) or operational (online status,
devices used, IP addresses which may have geo-location
information).
• The newly added E2EE lock creates a new
identifier for the user. When users lose their key, they must
issue a new lock for the service. Aware attackers might
leverage this information to deduce something changed on
the user side.
• To make sure the E2EE lock is indeed of the
intended user and not maliciously replaced by the service or
a “Monster-in-the-Middle” (MITM) attacker, the sender
must verify the lock’s genuinity with the receiver using
another independent channel. This requirement not only
hinders the user experience but also jeopardizes the privacy
of the users as they need to connect via additional service
with additional identifiers.

But even with E2EE, users were still concerned: What
happens if attackers break into their homes? Surely the
system cannot prevent attackers from unlocking boxes and
reading letters while they are still there and can use the keys,
but we want to make sure that this privacy breach is limited
to the exact period of the breach. Namely:
• Perfect Forward Secrecy (PFS): Attackers cannot
open locked boxes that were locked before they broke into
their victims’ homes.

• Post Compromise Security (PCS): Attackers cannot
open locked boxes that were locked after they left their
victims’ homes.

To achieve these properties, keys must be updated for every
message, such that in case of compromise, the compromised
keys are only useful for that message only. To do so, the two
parties within the conversation are sending information to
update the next locks and keys within their conversation.

It should be noted that while the first scenario of the pre-
E2EE postal service privacy leak might be relevant at a large
scale, for example to read the conversation of many users for
serving ads or for mass surveillance, the case of post E2EE
breaking into victims’ homes does not scale well and mostly
relevant to a small portion of the population consisting of
highly targeted individuals. Since the contents of the
messages themselves cannot be protected during the time of
the attackers breaking in, the scenario for which PCS and
PFS are relevant is only when attackers break into the
victims’ homes along with compromise of the service to get
some of the victims’ locked message boxes. Having such
two successful independent attacks is a much less likely
scenario than each of these attacks on their own.

3. The Signal protocol: From postal service
analogy to real world crypto

3.1. The basic Signal protocol
WhatsApp is using the Signal protocol to implement E2EE’s
“postal service locked boxes” with public key cryptography.
Users create their private and public key pair on their device
when they join the IM service, and provide their public keys
(possibly along with additional auxiliary data) to the IM
service, which maintains the directory of the user’s public
keys. When parties wish to converse, the IM server provides
them with their counterparty’s public keys. It should be
noted, as discussed above, that the newly added E2EE public
key creates a new identifier for the user. When users lose
their device, they must issue a new pair of keys for the
service. Aware attackers might leverage this information to
infer changes on the user side and leverage them to facilitate
attacks.

Leveraging both parties’ public keys, the parties can securely
create a shared secret using the X3DH protocol, an extended
version of the Diffie-Hellman protocol. This shared secret is
then used to derive keys to encrypt the messages between the
parties. While this in of itself might be sufficient to fulfill
E2EE’s promise, in order to fulfill the advanced properties
of E2EE, namely the aforementioned Perfect Forward
Secrecy (PFS) and Post Compromise Security (PCS), more
is needed.

12 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

• Perfect Forward Secrecy (PFS): Attackers cannot read
messages that were encrypted before they took over the
victims’ device and app.

• Post Compromise Security (PCS): Attackers cannot
read messages that were encrypted after they were
removed from the victims’ device and app.

As discussed above, to limit breached key exposure and
achieve PCS and PFS, a new key for each message needs to

be created. To do so the Signal protocol introduced the
“Double Ratchet” algorithm. As its name suggests, the
solution consists of two “ratchets” preventing attackers
compromising a key to “move it forward” to read future

encrypted messages, or “backwards” to read past encrypted
messages:

Figure 1 The Symmetric ratchet (source: signal.org)

The Symmetric ratchet (Fig 1): Ensures PFS, as it uses a one-
way Key Derivation Function (KDF) to prevent attackers
from calculating past keys from current keys.

Figure 2 The Asymmetric ratchet (source: signal.org)

The Asymmetric ratchet (fig 2): This ratchet (sometimes
called the “Diffie-Hellman/DH ratchet”) ensures PCS as it
utilizes the entropy coming from the uncompromised other
party to generate new keys.

Combining the symmetric and asymmetric ratchets together
gives the Double Ratchet: When a message is sent or
received, a symmetric-key ratchet step is applied to the
sending or receiving chain to derive the message key.

When a new ratchet public key is updated via a received
message, a DH ratchet step is performed prior to the
symmetric-key ratchet to replace the chain keys.

3.2. Extending E2EE to the Multi Device setting: Existing
solutions
As discussed above, in the pre E2EE era, the multi-device
support requirements were trivial to solve. Since the IM
server had access to the contents of the message, senders
could just send their message once to the server, totally
unaware of the receiver's device setup and the IM server
would handle its distribution to all of the receiver’s devices
and sender’s other devices (so that their history would be up
to date). However once E2EE is applied, the IM server
cannot read the contents of the message and thus can no
longer distribute them to all of the devices.

IM providers needed to address E2EE in the multi-device
setting while still maintaining PCS and PFS requirements.
Extending PFS and PCS definitions for the multi-device
setting is quite natural:

• Perfect Forward Secrecy (PFS): Attackers cannot read
messages that were encrypted before they took over the
victim’s app on one device.

• Post Compromise Security (PCS): Attackers cannot
read messages that were encrypted after they took over
the victim’s app on one device and were removed from
it.

There are two simple solutions to do so:

The “Leader” based solution: One of the user’s devices
serves as the leader and the E2EE conversation happens
between the parties leaders, in the same manner as if both
users had a single device. The leaders then distribute the
messages to their other devices, using E2EE between Leader
and Devices. In the WhatsApp mobile based IM case, it
would be natural to appoint the mobile device which was
associated with the phone number that created the account
as “leader” (or “primary device” in WhatsApp lingo).

This solution was applied by WhatsApp until mid-2021.
However, the solution suffers from an obvious centralization
drawback: When the leader device is offline, none of the
other devices can communicate.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 13

The Multiplication solution: In this solution, all user device
public keys become public, compared to a single public key
per user in the single device setting. The sender’s sending
device creates an E2EE channel with each of the receiver
devices, as if they were different users and uses these
channels to send E2EE messages in the same manner of the
single device setting. The sender device also creates such
channels with all other sender’s devices and uses them to
securely E2EE update other senders devices with the sent
messages.

This Multiplication solution was selected by Signal’s
Sesame protocol to support the multi-device setting, and
later adopted by WhatsApp, where it serves as its current
solution for the multi-device setting.

WhatsApp’s white-paper states: “In order for WhatsApp
users to communicate with each other securely and privately,
the sender client establishes a pairwise encrypted session
with each of the recipient’s devices. Additionally, the sender
client establishes a pairwise encrypted session with all other
devices associated with the sender account. Once these
pairwise encrypted sessions have been established, clients do
not need to rebuild new sessions with these devices unless
the session state is lost, which can be caused by an event such
as an app reinstall or device change. WhatsApp uses this
“client-fanout” approach for transmitting messages to
multiple devices, where the WhatsApp client transmits a
single message N number of times to N number of different
devices. Each message is individually encrypted using the
established pairwise encryption session with each device.”

It should be noted that WhatsApp still uses the leader
concept for managing the life cycle of additional devices (or
“companion device” in WhatsApp lingo). i.e. adding and
removing other devices is done via the “leader” device.

While this Multiplication solution solves its predecessor’s
centralization problem, it also multiplies the E2EE privacy
issue. The multiplication solution exposes all of the user’s
device setups and allows aware attackers to leverage this
information to infer changes in the user’s devices and use it
to facilitate their attacks. For example, attackers can learn
without interacting with their targets, that they added a
device to their setup and thus represent an opportunity to
attack it. Additionally, the receiver knows which of the
sender devices’ sent to it and can infer on the sender’s real-
world information, such as the physical location of the user
(e.g. “my spouse is near their desktop right now”).

Besides device information leakage issues, the
Multiplication solution potentially allows attackers to
pinpoint their attack to a specific device. Since the sender
creates independent channels with the receiver devices, it
can send a malicious message to a single receiver’s device
to exploit a vulnerability specific to it, e.g. mobile vs.
desktop exploit, with no impact and thus detection
opportunities for defenders on other devices.

Additionally, a rogue sender can create an incoherent world
view between the victim’s different devices, by sending a
different message to each of them. This incoherent world
view can give way to all kinds of social engineering attacks
and generally undermine the credibility of the IM app
messages history as a source of truth.

The threat of device hostile takeover is very much within the
IM’s E2EE threat model, as shown by the existence of the
PFS and PCS requirements. Since device takeover is within
the threat model, the privacy of users’ devices exposed by
the Multiplication solution which allows attackers to gather
information for such takeover should be addressed too.

4. Attacking WhatsApp E2EE Solution
Meta’s WhatsApp is the most popular messaging app in the
world, with over five billion downloads and 2.4 billion
active users.

One way for attackers to obtain WhatsApp users’ device
information is by leveraging WhatsApp web client. (It
should be noted that this issue is not specific to the web
version and is relevant for all WhatsApp client’s platforms.
However, the Web environment is the easiest way to
demonstrate this issue as it does not require jail breaking or
other additional hacking method to access the app’s internal
databases.) This client is using the browser’s local storage to
store the devices’ identity key.

The browser’s developer tools provide an easy way to view
the contents of this table (“Signal-storage.identity-store”) as
depicted in Figure 3.

Figure 3 The identity store table: contacts’ devices and Keys.

This table is storing all of the user’s contacts and their
corresponding identity keys. Primary devices are identified
by the phone number and the ‘.0’ suffix, while companion
devices have a ‘:<n>.0’ suffix (e.g. “:16.0”).

By sampling a few instances, we had verified that this table’s
data indeed corresponds to the actual user devices.

For example, user X (in figure 4) has 1 primary device and
3 companion devices:

14 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 4 WhatsApp’s linked devices screen of user X

User X’s corresponding entries in the table matched this
information as shown in Figure 5.

Figure 5 User X’s corresponding entries in the identity store table

We had verified that such information is present even when
the sender is not part of the receiver contact list and without
actually sending messages to the receiver. Blocking the
sender on the receiver side does not prevent it from getting
device identity information.
We had responsibly disclosed our findings to Meta’s bug-bounty
program on January 9th 2024 but got politely rejected two days
later, mainly because this is not an implementation bug but the way
the protocol works by design.
Summing up, in order to obtain its victims’ WhatsApp
devices information, attackers need to:

• Know their victims’ phone number.
• Add victims as contacts, no need to actually send a

message to them.
• Use whatsApp web client and monitor the identity-store

table for information and changes.

5. Possible solutions
5.1. “Lockdown mode” to limit non-contacts access

This optional Lockdown mode will enable users to limit
messages’ reception to ones sent by their contacts only.
Consequently, only the users’ contacts will need and be able
to view their device information.

While it does not fully prevent the privacy issue it presents a
dramatic improvement compared to the current situation in
which any user, including blocked users, can view that
information.

Figure 6 WhatsApp’s privacy settings

This Lockdown mode can be beneficial to security and
privacy aware users across the board and not just for this
multi-device privacy issue, as it would protect them from
receiving all kinds of malicious messages from non-contacts,
which may include 0-days exploits, social engineering and
phishing or even just spammy messages. The notion of
limiting certain types of information to contacts only is

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 15

https://www.facebook.com/whitehat
https://www.facebook.com/whitehat

already present in WhatsApp as shown in Figure 6 and
therefore already understood by its users.

5.2. Cryptographic solutions
To completely solve this issue a design change must be done,
and the burden of distributing the messages needs to be
removed from senders and placed on the receivers’ instead.

As a result, the senders are only aware of a single recipient
key, regardless of the number of the recipient’s devices and
are not aware of all recipients’ devices and keys and cannot
monitor changes to this setup.

A few researchers tried to suggest such solutions in the past,
including a 2019 paper named “Multi-Device for Signal”
that considers the multi-device scenario for the Signal
protocol, which is used by WhatsApp (and others) and
explicitly addresses and solves its privacy issues. It will be
worthy to try and actually implement it or similar solution in
popular IM E2EE solutions.

6. Conclusions
In this paper, we present the security and privacy tradeoffs
of IM apps supporting both E2EE and multi-device. We
demonstrate how attackers can easily subvert the WhatsApp
client to obtain the victims’ multi-device setup information
and suggest some practical measures to limit the exposure of
such privacy leaks.

16 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Introduction to Procedural Debugging through Binary Libification

Jonathan Brossard
Conservatoire National des Arts et Métiers, Paris

Abstract
Assessing the existence, exact impact and exploitability of
a known (or theoretical) memory corruption vulnerability
in an arbitrary piece of compiled software has arguably not
become simpler. The current methodology essentially boils
down to writing an exploit - or at least a trigger - for each
potential vulnerability. Writing an exploit for a weird machine
involves several undecidable steps, starting with overcoming
the reachability problem. In this article, we introduce the no-
tions of “libification” and “procedural debugging” to facilitate
partial debugging of binaries at the procedural level. These
techniques allow the transformation of arbitrary dynamically
linked ELF binaries into shared libraries, and the study of
memory corruption bugs by directly calling the vulnerable
functions, hence separating the memory corruption intrapro-
cedural analysis from the reachability problem. Finally, we
publish a framework [3] to implement such a libification un-
der a permissive open-source license to facilitate its adoption
within the security community.

1 Introduction

Triaging bugs has become an essential part of security. The
Product Security function as a whole is becoming ever
more critical for software manufacturers as legal frameworks
around the globe mandate more clarity, speed, and trans-
parency in dealing with existing and new vulnerabilities. The
Cyber Resilience Act being implemented in Europe and the
Executive Order on Improving the Nation’s Cybersecurity
published in the US, for instance, both mandate the use of
Software Bill of Materials (sBOMs) and their communication
to clients and third parties, effectively rendering the super-
ficial - software version based - vulnerability assessment of
potential new CVEs affecting their software, seemingly more
apparent.

However, assessing the actual existence, exact impact, and
exploitability of a given memory corruption bug, as required
by the above laws, has not become significantly more man-
ageable over time. The current methodology to assess the

presence and impact of a given CVE in a piece of software es-
sentially requires writing an exploit for each potential vulnera-
bility. As such, this situation creates a seemingly unreasonable
burden on Product Security teams, where triaging bugs re-
quires performing operations like overcoming the reachability
problem multiple times.

Writing exploits for a weird machine involves three steps:
reaching, triggering, and exploiting. Much work has been
done in automating the first step. Arguably, all of the fuzzing
and dynamic testing performed hitherto follows this top-
bottom approach, where execution starts from an application’s
entry point, toward the leaves of the application, across the
application’s call graph.

In this article, we aim to focus on the second step alone -
without requiring solving the first one, which is undecidable
in general.

Our methodology starts with modifying the ELF headers
and dynamic section of an arbitrary dynamically linked ELF
executable to turn it into a more workable shared library. The
benefit of this technique is that any public function within the
binary becomes callable without crafting an input to reach
the attractive, potentially vulnerable function. Subsequently,
we can render an arbitrary function within an ELF callable,
even turn the entire ELF application into a callable API, and
finally manually produce more limited, partial vulnerability
triggers under the form of simple text files.

In the rest of this article, we will focus on memory corrup-
tion vulnerabilities unless stated otherwise and limit ourselves
to C/C++ applications compiled as ELF binaries, as used un-
der GNU/Linux and Unix-like operating systems, when imple-
menting our framework. We will assume that the application’s
source code is unavailable to the auditor.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 17

Our first contribution is a methodology to transform an arbi-
trary ET_EXEC or ET_DYN dynamically linked ELF binary
into a shared library. We provide a tool named the Witchcraft
Linker to perform this operation on ELF32 and ELF64 exe-
cutables alike, regardless of their architectures. Our second
contribution is a methodology to invoke arbitrary C or C++
functions within ELF shared libraries without prior knowl-
edge of their exact prototypes. We implement an original type
of debugger, procedural-based, allowing the invocation of ar-
bitrary C/C++ functions. This debugger, the Witchcraft Shell,
noticeably does not use ptrace(), breakpoints, or single step-
ping. We name this new form of debugging procedural since
analysis is performed at the granularity of function calls.

2 Previous Work

2.1 Exploitability of a Vulnerability
As noted by Wang et al. [49], in general, the only definitive
way to prove the exploitability of a vulnerability is to write
an exploit for that vulnerability. This constitutes proof by
construction since the expert exhibits an exploit that demon-
strates the exploitability of the vulnerability. On the other
hand, proving that a vulnerability is not exploitable is a diffi-
cult problem, according to Suciu et al. [44]. Demonstrating the
non-exploitability of a vulnerability via formal proof based on
a crash analysis is sometimes possible despite the explosive
nature of proofs based on symbolic execution [9] [49].

Green et al. [24] consider that when it comes to vulner-
abilities such as memory corruptions, the fact that attacker
controls the next instruction to be executed (the “Program
Counter”) is a strong indicator of a function’s exploitability.
However, the presence of countermeasures may not make this
condition entirely sufficient [20].

2.2 Automatic Exploitation of Vulnerabilities
Detected via Static Analysis

Several research projects focus on exploiting (or at least trig-
gering) vulnerabilities detected using a preliminary static anal-
ysis to demonstrate that they are true positives. ExpRace [31],
for example, focuses on a single class of vulnerabilities: race
conditions in the Linux kernel. After having distinguished
race conditions involving several variables (qualified as diffi-
cult) and race conditions involving a single variable in the ker-
nel (qualified as easy), the authors propose a generic method-
ology for exploiting reusable single-variable race conditions
on several cores, running under Intel processors, making it
possible to trigger the previously identified vulnerability, tak-
ing advantage of the fact that an unprivileged process (or
secondary thread) in user mode can significantly increase
the race window using common system calls (mmap() and
mprotect()) to trigger the synchronization of memory tables
(“Lookaside Buffers translation”) between the cores of the

same Intel microprocessor. The tool is very specialized since
it only addresses the problem of mono-variable race condi-
tions in kernel mode under Linux.

The FUZE tool [51] aims at dynamically triggering, to
prove their existence, “Use After Free” vulnerabilities in ker-
nel mode under Linux. By combining open-source frame-
works such as syzcaller (fuzzer), angr [46] (for binary analysis,
function call graph generation, decompilation, and symbolic
execution), and kernel mode debugging techniques (parsing
the list of kernel modules, “LKM linked list”), it dramati-
cally reduces the complexity of UAF vulnerability analysis
by determining the few paths and system calls that can poten-
tially modify a variable in kernel mode, then using combined
fuzzing and symbolic execution techniques to generate user
inputs capable of automatically triggering the vulnerability,
and thus proving its existence.

The article “A Hybrid Interface Recovery Method for An-
droid Kernel Fuzzing” [32] is also specialized. The problem
raised by the authors is the addition of undocumented inter-
faces (system calls or ioctls) between user and kernel modes
by mobile phone equipment manufacturers. These new inter-
faces are typically additions via proprietary kernel modules
(the source code of which is unavailable, implying an analysis
partially to be made in black box mode) to the Android ker-
nel (which is based on Linux and is, therefore, open-source,
auditable in white box mode). However, these interfaces are
prime targets for privilege escalation attacks, where a program
in unprivileged user mode will purposely call these extra in-
terfaces to the privileged mode of the kernel to trigger vulner-
abilities. Therefore, the analysis is gray, combining a white
box analysis of the open-source Android part of the kernel
and a black box analysis of the non-open-source, proprietary
part added by the equipment manufacturer. The methodology
followed is a taint analysis of proprietary modules, includ-
ing type propagation, to find the prototypes of the interfaces
introduced (whether they are new system calls in their own
right or, more commonly, new valid ioctl calls on arbitrary
device drivers). Once the prototypes of these interfaces have
been determined, it becomes possible to use classic whitebox
fuzzing tools, such as Syzcaller, by measuring the impact of
calling these new system calls dynamically on the rest of the
kernel (id est: by instrumenting only the open-source part of
the kernel).

The PhD thesis “Finding race conditions in kernels: from
fuzzing to symbolic execution” [52] proposes an original ap-
proach to the detection and exploitation of “time of check,
time of use” (or TOCTOU) vulnerabilities, which are a sub-
class of race conditions, where a kernel resource is validated
at time t, then read back and used at time t+1. The underlying
fundamental issue is that this resource may have changed
in the meantime, the Linux kernel being multi-tasking and
concurrent, leading to false assumptions on the said resource
core properties. It should be noted that several vulnerabili-
ties of this type have been discovered on the Linux kernel

18 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

in recent years, hence the renewed interest in an automatic
approach to the discovery and practical validation of this pe-
culiar vulnerability subclass. The methodology followed is to
modify the Linux kernel (using source patches) to instrument
regions likely to contain TOCTOU vulnerabilities, selected
by a preliminary static analysis, then use a fuzzer guided by
symbolic execution toward these regions to be more purpose-
fully scrutinized. This methodology is limited to TOCTOU
vulnerabilities and does not apply to kernels whose code is
unavailable.

Furthermore, the article “From source code to crash test
cases through software testing automation” [16] offers a
methodology for creating proof of exploits (id est: the au-
tomatic generation of user input triggering a vulnerability,
previously identified in source code), by combining a pre-
liminary static analysis (generation of the call graph of the
application) of the application, a fuzzing engine to traverse
this graph, and the use of a symbolic execution engine (named
Triton) to guide the fuzzer toward the vulnerable function. Al-
though the source code is essential to this methodology, it
applies to several classes of vulnerabilities, giving it notable
genericity.

2.3 Defense in Depth: Hardened Compilation
Techniques

Countermeasures have been developed to prevent or limit the
exploitability of vulnerabilities in compiled applications, par-
ticularly those developed in C or C++. Detecting and taking
into account, where applicable, the presence of these counter-
measures is critical when writing an exploit taking advantage
of memory corruption.

Khalsan et al. [28] identify in particular the DEP (“Data Ex-
ecution Prevention”) technique introduced in Microsoft Win-
dows XP SP2, which makes the stack, dynamic memory, and
variables in the data sections of an application non-executable.
According to the authors, the non-execution of the stack is
made possible thanks to hardware extensions (“NX” bit on
AMD processors or “XD” equivalent on Intel processors).
These countermeasures primarily aim to prevent the introduc-
tion and execution of shellcode [13] in all writable sections
of the application. We also find the term W^X to name the
segregation of variables (writable, non-executable) and code
(executable, non-writable) in the literature [34] [10].

Khalsan et al. also describe the use of ASCII armoring,
which ensures that all virtual addresses used by an applica-
tion contain at least one 0x00 ASCII byte (in hexadecimal
code). Given that the functions manipulating character strings
end with a 0x00 (named ASCIIZ format), exploitating a stack
buffer overflow vulnerability via the functions from libc mak-
ing a copy of strings of characters is made impossible. Intro-
ducing ASCII armoring requires modifying the kernel and
dynamic linker to provide armoring on the main binary and
all its dynamic libraries.

Khasan et al. detail the use of Address Space Layout Ran-
domization (ASLR) [43], which consists of making the base
address of a binary and each dynamic library in memory
non-predictable. An attacker can no longer hardcode return
addresses when writing an exploit. The introduction of ASLR
typically requires modifying the kernel and the file format
of executables to allow arbitrary relocation of protected bina-
ries [34].

Khasan et al. also describe binary protection techniques
using canaries. These techniques have known several names,
such as Propolice [21], StackGuard [15], and Stack Smashing
Protection (SSP) [39]. This involves modifying the compiler
in such a way as to introduce a canary (or “stack cookie”)
before the return address in the stack, the integrity of which
will be checked in the prologue of each instrumented function.
If the canary has been modified, the stack is corrupted, and
the program will be immediately terminated rather than risk
arbitrary code execution by an attacker. These techniques
have undergone several successive improvements until they
no longer have any significant cost during the execution of
the protected application [53].

Khasan et al. finally detail FORTIFY (standardized in the
ISO/IEC TR 247315 standard). This compilation option au-
tomatically replaces specific C library functions vulnerable
to buffer overflows with functions including an additional
argument, the maximum size of the destination buffer (which
can often be inferred by the compiler). In the event of a stack
buffer overflow during the program execution, the applica-
tion is terminated rather than allowing the attacker to execute
arbitrary code [30] [23].

These techniques have been extended to other architectures
and operating systems, such as Linux [39], Android [33],
OSX [39] or iOS [28].

Finally, there are protections against memory corruption
at the hardware level of specific microprocessors, such as In-
tel Control Flow Integrity (CFI) [7] [29], which allows, by
instrumenting the start of each block of code (an endbr64
instruction is added at compile time under Intel x86-64) [29]
to ensure that the control flow of the application has not been
altered via memory corruption exploitation techniques such
as ret2libc [10] or Return Oriented Programming (ROP) [40]
[34] [1] [12] at any point in time. During a transfer of execu-
tion via branching or when returning to a calling function, the
microprocessor can ensure whether the destination address is
an endbr64 instruction under x86-64 (respectively endbr32
under x86) and terminate the application if this is not the case.

These countermeasures to exploiting memory corruption
vulnerabilities are effective against their respective vulnera-
bility subclasses but require activation (often at compile time)
to operate correctly [50].

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 19

2.4 Binary Loaders and Binary Post-
Compilation Instrumentation

The idea of statically or dynamically loading and instrument-
ing binaries is fundamental in analyzing compiled applica-
tions.

The most basic form of dynamic instrumentation is simply
using the trap instructions to force an application to divert its
execution flow, as seen in DTrace [14].

A more complex tool like Valgrind and its popular mem-
check [42] memory sanitizer can perform a Just in Time (JIT)
dynamic recompilation of executables. It is a complex frame-
work that starts by transforming the original basic blocks of
the application into an intermediate representation, then ap-
plies instrumentation and code optimization before translating
the intermediate representation back to machine code [36].
Such an instrumentation is heavy and incurs an execution
penalty of 10x or higher.

Some of the techniques available include dynamically
rewriting a single basic block of code at a time, while the appli-
cation is running, using a shadow memory mechanism. This is
the foundation of tools like DynamoRIO [4] [6] [5], a frame-
work reused in popular security tools such as WinAFL [55].

Dinesh et al., on the other hand, opt for a pure static rewrit-
ing of binaries to retrofit into binaries instrumentation that is
usually introduced at compile time, such as AFL [54] and Ad-
dress Sanitizer [41]. Their framework, named RETROWRITE
[17], works by diverting the flow of execution through the in-
sertion of trampolines. A preliminary static analysis involves
building the control flow graph, which is a difficult problem
in general [35] and undecidable [22].

This mechanism, where a preliminary disassembly and
control flow recovery precedes a static rewriting of portions
of the binary to introduce instrumentation code, is a popu-
lar design [2] [48] [37] [47], subject essentially to the same
limitations: recovery of the control flow is undecidable in
general [22].

To avoid this pitfall, Duck et al. [19] developed a suite of
binary rewriting techniques, implemented under the E9Patch
framework, that can insert jump trampolines without requir-
ing an understanding of the binary’s control flow. As such,
their instrumentation is more robust and scales to large appli-
cations such as web browsers. They leverage techniques such
as instruction punning [11], which may safely replace branch-
ing conditions and introduce trampoline code by overwriting
exactly one assembly instruction.

Furthermore, it is worth mentioning the idea of recovering
individual object files from a compiled binary [8] thanks
to a control flow and data flow analysis. When individual
compilation units can be unlinked, they may be subsequently
relinked and instrumented.

Finally, custom loaders may allow the loading of Windows
dynamic libraries under Linux [38] or rewriting Windows
Executables so they may be loaded as DLLs [18].

In light of this state of the art, it seems relevant to intro-
duce a more lightweight form of binary rewriting focused
solely on modifying an application’s metadata. As such, it
shall not suffer from the limitations of the techniques based
on control flow recovery or the runtime penalty of dynamic
instrumentation.

3 Overview of the Libification Process

3.1 Libification: Methodology

In this section, we describe the production of a libifier, that
is to say, a tool able to reliably and automatically transform
an arbitrary ELF binary into a shared library. We detail this
methodology, so it may be extended in the future, if necessary,
to compensate for breaking changes in the GNU dynamic
linker, or adapted to other toolchains.

The POSIX 2001 standard specifies the API of the dynamic
linker, and in particular the dlopen() function, which allows
loading an arbitrary shared library in memory:

i n c l u d e < d l f c n . h>
vo id * d l op en (c o n s t c h a r * f i l e n a m e , i n t f l a g s) ;

The filename parameter must point to the path to the library
to be loaded on the file system.

The flags parameter controls the locality (local or global) of
the symbols loaded in the address space, as well as the behav-
ior of the dynamic linker. In particular, if the RTLD_LAZY
bit is set, the dynamic linker performs lazy binding of symbols
when necessary, as opposed to an immediate binding at load
time if the RTLD_NOW bit is set, in which case the Global
Offset Table may be safely remapped read-only.

In the remainder of this chapter, we will define a shared
library as an ELF file that can be loaded in memory via
dlopen().

A minimal oracle to determine whether the dynamic linker
can load an ELF file can be summarized with the following
code:

i n t main (vo id) {
vo id * h a n d l e = 0 ;

h a n d l e = d l op en (" . / t e s t . so " , RTLD_NOW) ;

i f (h a n d l e <= 0) {
p r i n t f (" ! ! ERROR: %s \ n " , d l e r r o r ()) ;
e x i t (EXIT_FAILURE) ;

}

p r i n t f (" Loading s u c c e s s f u l \ n ") ;
r e t u r n 0 ;

}

20 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

If successful, the return code from this oracle will be 0. It
will be non-zero otherwise, and an error message stemming
from the dynamic linker will indicate the cause of the memory
loading error. Empirically, the work of the libifier will, there-
fore, be to modify the binary in a way that prevents the error
returned by dlerror() from occurring. The developer of the
libifier will then read the code of the dynamic linker, identify
the cause of the error, and modify the libifier to patch the
input binary to prevent this last error from occurring.

The goal - and hope - of the developer of the libifier is that
through this iterative and empirical process, the shared library
produced by the libifier will be able to pass all of the dlopen()
parsing checks, and eventually be loaded in memory. There is
no guarantee that such a libification will be or remain possible
in the future or across an arbitrary corpus of executables since
this libification is a reverse engineering technique and not a
standardized feature of a dynamic linker guaranteed in any
form or fashion.

3.2 Practical Libification

The operations performed by the Witchcraft Linker to libify
an arbitrary ELF binary modify the ELF header, the dynamic
section, and the GNU-specific symbols versioning section of
an input executable.

First, within the ELF header, the libifier must ensure that
the e_type field is set to ET_DYN since all shared libraries
are of type ET_DYN.

Then, the dynamic section of the ELF must be parsed and
possibly modified:

The DT_BIND_NOW shall be changed to DT_NULL if
present in the .dynamic section.

The DT_FLAGS_1 flags present in the .dynamic section
may need to be modified: the DF_1_PIE and DF_1_NOOPEN
bits must be removed if set. This last flag prevents an object
from being loaded via dlopen().

If the binary features constructors or destructors, those
may not expect to be called from dlopen(). The Witchcraft
Linker, therefore, features an optional command line argu-
ment to prevent constructors and destructors from being
called. Within the .dynamic section, setting the values of
DT_INIT_ARRAYSZ and DT_INIT_ARRAY to zero inhibits
the instantiation of constructors, and setting the values of
DT_FINI_ARRAYSZ and DT_FINI_ARRAY to zero inhibits
the calls to destructors.

Finally, because the dynamic linker may refuse to load
multiple versions of symbols if symbols versioning is in use
within the libified binary, the Witchcraft Linker will simply
zero out the entire section of type SHT_GNU_versym.

Currently, the Witchcraft Linker (wld) version v0.0.6 can
libify all of the binaries of a standard GNU/Linux distribution
such as Ubuntu 22.04 LTS, so that they may be loaded via the
dlopen() function of the GNU dynamic linker version 2.35.

3.3 Toward Procedural Debugging
Once the principle of libifying an ELF has been acquired,
writing a debugger capable of loading a libified executable
in its own address space is straightforward: simply load the
libified binary via the dlopen() function of the dynamic linker.
It appears appealing to integrate an interpreter into our de-
bugger to allow a developer to interact with the functions
exposed by the libified binary. Due to its tiny size, the choice
of interpreter fell on the Lua language [25] since a Lua inter-
preter, including all its dependencies, occupies less than 500
kilobytes of memory footprint.

We wish to make the entire API available in the address
space available to the Lua interpreter once the libified binary
is loaded in memory. This API is made up, on the one hand,
of the functions exported directly by the libified binary but
also of the APIs exported by all the dynamic libraries loaded
in memory by the dynamic linker when loading the libified
binary in memory via dlopen(). The case of functions declared
static and hence not exported at compile time is left aside for
now1. Obtaining these APIs can be done via the use of the
dlinfo() function of the dynamic linker [27] [45].

By making the entire API available in memory exposed to
the Lua interpreter, we simply make these APIs available to
the developer. One of the advantages of this methodology is
that a developer or security analyst may invoke any function
loaded in the address space without worrying too much about
the actual calling conventions or prototypes (number and type
of arguments) of these functions. Additionally, they may do so
without compilation from a Lua interpreter, which facilitates
manual exploration of said APIs.

We name this technique, which allows invoking a single
function at a time, “procedural debugging”.

3.4 An Empirical Assessment of the Side Ef-
fects of Libification

In this section, we address the question of the side effects
introduced by the libification of a binary over its main security
hardening properties.

We successively consider the following properties: the base
address of the executable mapping (ASLR), the presence of
stack cookies aimed at preventing buffer overflows, the stack’s
executability, the presence of static relocations (RELRO), and
the presence of Control Flow Integrity type protections (Intel
FCF).

Libification of an ET_DYN binary does not modify its
ASLR properties: the binary being initially mappable to an
arbitrary address remains so. In the case of the libification of
an ET_EXEC binary, which was initially only mappable to
a fixed address, the ASLR is not modified either: the library

1Static functions whose addresses relative to the base address of libraries
or executables are known thanks to a preliminary control flow analysis may
be named and called within the debugger.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 21

thus generated is only mappable at the same address. Loading
happens as if the binary had been transformed into a library
by prelinking to the same base address [26].

The stack executability of a library loaded via dlopen() is
determined by the stack executability of our debugger since
the latter loads the library in its own address space. This de-
bugger property can be arbitrarily changed via the execstack2

application.
Libification does not modify the presence of static reloca-

tions (binary or library with the BIND_NOW flag in their
dynamic sections).

The presence of stack cookies protecting the stack is intrin-
sic to each function since it is implemented by instrumenting
the prologue and epilogue of each function. Libification, there-
fore, does not modify this property of the functions present in
the libified binary.

The presence of Intel Integrity Protection (Intel FCF) type
protections is characterized by the presence of endbr64 in-
structions at the start of each basic block in each protected
function. Libification does not modify this intrinsic property
either.

Finally, this empirical study overall suggests that libify-
ing an ELF binary into a shared library does not modify its
fundamental security properties, particularly the countermea-
sures possibly introduced into the binary at compile time. In a
nutshell, libification does not introduce notable security side
effects from an exploitability standpoint.

3.5 Limits to Binary Libification
Libifying an ET_EXEC binary as a shared library generates a
somewhat special shared library since it cannot be remapped
to an arbitrary address. This induces a limit to our libifier. On
the one hand, a libified library can generate a collision with
the address space of a program trying to load it, as noted by
beta testers3. On the other hand, it is not possible to load two
libified ET_EXEC binaries initially provided with the same
base address in our debugger.

3.6 Validation
The libification process and the WSH debugger were validated
under GNU/Linux Ubuntu 22.04 equipped with an Intel 64-bit
processor using the following binaries:

Software Version Status Time
Google Chrome 114.0.5735.198 OK < 0.01s
OpenSSH Server 8.9p1 OK < 0.01s
Apache2 2.4.52 OK < 0.01s
Nginx 1.18.0 OK < 0.01s
GCC 11.4.0 OK < 0.01s

2https://linux.die.net/man/8/execstack
3Thanks to Dan Kaminsky https://github.com/endrazine/wcc/issues/26

Furthermore, copying, libifing, and loading via dlopen()
the 435 binaries in the default path of a default Ubuntu 22.04
AMD64 install took less than 3 seconds (in total) on a laptop
featuring a core i-7 11850H CPU and 32Gb of RAM.

4 Conclusion and Future Work

In this article, we presented a methodology to transform a dy-
namically linked ELF binary into a shared library. We called
this methodology “libification”.

We then introduced a very simple debugger able to load
such a libified executable within its own address space, hence
rendering nonstatic functions within the binary callable. We
named this technique facilitating the invocation of arbitrary
functions in isolation and out of context “procedural debug-
ging”.

Thus, a security analyst seeking to experiment with a pos-
sible vulnerability within an executable manually may now
directly invoke the function featuring the vulnerability via
procedural debugging without needing to produce user in-
puts traversing the application’s call graph before reaching
the vulnerable function. This is notable since the reachability
problem is undecidable in general.

We verified the reproducibility of the libification process on
some of the most complex user-mode binaries available under
GNU/Linux, as well as across an entire widespread Linux
distribution, which validates the generality of the approach.

In the future, we hope to be able to automatically generate
scripts to trigger a vulnerability within a compiled binary,
which would save significant time for Product Security teams.

Availability

The Witchcraft Compiler Collection [3], including the
Witchcraft Linker described in this article, is published under
a permissive dual MIT/BSD open-source license. The frame-
work is available from https://github.com/endrazine/wcc and
via the package managers of several GNU/Linux distributions,
including at least Debian, Ubuntu, and Arch Linux.

References

[1] Salman Ahmed, Long Cheng, Hans Liljestrand,
N Asokan, and Danfeng Daphne Yao. Tutorial:
Investigating advanced exploits for system security as-
surance. In 2021 IEEE Secure Development Conference
(SecDev), pages 3–4. IEEE, 2021.

[2] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In NDSS, 2018.

22 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

[3] Jonathan Brossard. The witchcraft compiler collec-
tion. https://zenodo.org/doi/10.5281/zenodo.
11298208, May 2024.

[4] Derek Bruening and Saman Amarasinghe. Efficient,
transparent, and comprehensive runtime code manipula-
tion. 2004.

[5] Derek Bruening and Timothy Garnett. Building dy-
namic instrumentation tools with dynamorio. In Proc.
Int. Conf. IEEE/ACM Code Generation and Optimi za-
tion (CGO), Shen Zhen, China, 2013.

[6] Derek Bruening and Qin Zhao. Building dynamic in-
strumentation tools with dynamorio.

[7] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen,
Michael Franz, Stefan Brunthaler, and Mathias Payer.
Control-flow integrity: Precision, security, and perfor-
mance. ACM Computing Surveys (CSUR), 50(1):1–33,
2017.

[8] Mauro Capeletti. Unlinker: an approach to identify
original compilation units in stripped binaries. 2016.

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394. IEEE, 2012.

[10] S Sibi Chakkaravarthy, Dhamodara Sangeetha, and
V Vaidehi. A survey on malware analysis and miti-
gation techniques. Computer Science Review, 32:1–23,
2019.

[11] Buddhika Chamith, Bo Joel Svensson, Luke Dalessan-
dro, and Ryan R Newton. Instruction punning:
Lightweight instrumentation for x86-64. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 320–332,
2017.

[12] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas
Nyman, Haipeng Cai, Trent Jaeger, N Asokan, and Dan-
feng Yao. Exploitation techniques for data-oriented
attacks with existing and potential defense approaches.
ACM Transactions on Privacy and Security (TOPS),
24(4):1–36, 2021.

[13] Tsung-Huan Cheng, Ying-Dar Lin, Yuan-Cheng Lai, and
Po-Ching Lin. Evasion techniques: Sneaking through
your intrusion detection/prevention systems. IEEE
Communications Surveys & Tutorials, 14(4):1011–1020,
2011.

[14] Greg Cooper. Dtrace: dynamic tracing in oracle so-
laris, mac os x, and free bsd by brendan gregg and jim
mauro. ACM SIGSOFT Software Engineering Notes,
37:34, 2012.

[15] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton
Pu, Perry Wagle, and Erik Walthinsen. Protecting sys-
tems from stack smashing attacks with stackguard. In
Linux Expo, 1999.

[16] Robin David, Jonathan Salwan, and Justin Bourroux.
From source code to crash test-cases through software
testing automation. Proceedings of the 28th C&ESAR,
page 27, 2021.

[17] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting cots bi-
naries for fuzzing and sanitization. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 1497–1511.
IEEE, 2020.

[18] Aleksandra Doniec. Converts a exe into dll. https:
//github.com/hasherezade/exe_to_dll, 2020.

[19] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury.
Binary rewriting without control flow recovery. In Pro-
ceedings of the 41st ACM SIGPLAN conference on pro-
gramming language design and implementation, pages
151–163, 2020.

[20] Thomas Dullien. Weird machines, exploitability, and
provable unexploitability. IEEE Transactions on Emerg-
ing Topics in Computing, 8(2):391–403, 2017.

[21] Hiroaki Etoh and Kunikazu Yoda. Propolice: Protecting
from stack-smashing attacks. Technical Report, IBM
Research Division, Tokyo Research Laboratory, 2000.

[22] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios
Sidiroglou-Douskos. Control jujutsu: On the weak-
nesses of fine-grained control flow integrity. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 901–913, 2015.

[23] Jeff Gennari, Shaun Hedrick, Frederick W Long, Justin
Pincar, and Robert C Seacord. Ranged integers for the
c programming language. 2007.

[24] Matthew Green, Mathias Hall-Andersen, Eric Hen-
nenfent, Gabriel Kaptchuk, Benjamin Perez, and Gijs
Van Laer. Efficient proofs of software exploitability for
real-world processors. Proceedings on Privacy Enhanc-
ing Technologies, 2023.

[25] Roberto Ierusalimschy. Programming in lua. Roberto
Ierusalimschy, 2006.

[26] Changhee Jung, Duk-Kyun Woo, Kanghee Kim, and
Sung-Soo Lim. Performance characterization of prelink-
ing and preloadingfor embedded systems. In Proceed-
ings of the 7th ACM & IEEE international conference
on Embedded software, pages 213–220, 2007.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 23

https://zenodo.org/doi/10.5281/zenodo.11298208
https://zenodo.org/doi/10.5281/zenodo.11298208
https://github.com/hasherezade/exe_to_dll
https://github.com/hasherezade/exe_to_dll

[27] David Keller, Timothy Roscoe, Reto Achermann, and
Simon Gerber. Bachelor’s thesis nr. 137b.

[28] Mahmood Jasim Khalsan and Michael Opoku Agyeman.
An overview of prevention/mitigation against memory
corruption attack. In Proceedings of the 2nd Interna-
tional Symposium on Computer Science and Intelligent
Control, pages 1–6, 2018.

[29] Sandeep Kumar, Diksha Moolchandani, and Smruti R
Sarangi. Hardware-assisted mechanisms to enforce con-
trol flow integrity: A comprehensive survey. Journal of
Systems Architecture, 130:102644, 2022.

[30] Marc-André Laverdière, Serguei A Mokhov, and Djamel
Benredjem. On implementation of a safer c library,
iso/iec tr 24731. arXiv preprint arXiv:0906.2512, 2009.

[31] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
{ExpRace}: Exploiting kernel races through raising in-
terrupts. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2363–2380, 2021.

[32] Shuaibing Lu, Xiaohui Kuang, Yuanping Nie, and
Zhechao Lin. A hybrid interface recovery method for
android kernels fuzzing. In 2020 IEEE 20th Interna-
tional Conference on Software Quality, Reliability and
Security (QRS), pages 335–346. IEEE, 2020.

[33] Héctor Marco-Gisbert and Ismael Ripoll-Ripoll. Sspfa:
effective stack smashing protection for android os. In-
ternational Journal of Information Security, 18(4):519–
532, 2019.

[34] Jonathan AP Marpaung, Mangal Sain, and Hoon-Jae
Lee. Survey on malware evasion techniques: State of the
art and challenges. In 2012 14th International Confer-
ence on Advanced Communication Technology (ICACT),
pages 744–749. IEEE, 2012.

[35] Xiaozhu Meng and Barton P Miller. Binary code is not
easy. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, pages 24–35,
2016.

[36] Nicholas Nethercote. Dynamic binary analysis and in-
strumentation. Technical report, University of Cam-
bridge, Computer Laboratory, 2004.

[37] Trail of Bits. Mcsema. https://github.com/
lifting-bits/mcsema, 2020.

[38] Tavis Ormandy. Porting windows dynamic link
libraries to linux. https://github.com/taviso/
loadlibrary, 2017.

[39] Conor Pirry, Hector Marco-Gisbert, and Carolyn Begg.
A review of memory errors exploitation in x86-64. Com-
puters, 9(2):48, 2020.

[40] Yefeng Ruan, Sivapriya Kalyanasundaram, and Xukai
Zou. Survey of return-oriented programming defense
mechanisms. Security and Communication Networks,
9(10):1247–1265, 2016.

[41] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. {AddressSanitizer}:
A fast address sanity checker. In 2012 USENIX annual
technical conference (USENIX ATC 12), pages 309–318,
2012.

[42] Julian Seward and Nicholas Nethercote. Using valgrind
to detect undefined value errors with bit-precision. In
USENIX Annual Technical Conference, General Track,
pages 17–30, 2005.

[43] Zhidong Shen and Weiying Chen. A survey of research
on runtime rerandomization under memory disclosure.
IEEE Access, 7:105432–105440, 2019.

[44] Octavian Suciu, Connor Nelson, Zhuoer Lyu, Tiffany
Bao, and Tudor Dumitras, . Expected exploitability: Pre-
dicting the development of functional vulnerability ex-
ploits. In 31st USENIX Security Symposium (USENIX
Security 22), pages 377–394, 2022.

[45] Justin Tracey. Building a better tor experimentation
platform from the magic of dynamic elfs. Master’s
thesis, University of Waterloo, 2017.

[46] Fish Wang and Yan Shoshitaishvili. Angr-the next gen-
eration of binary analysis. In 2017 IEEE Cybersecurity
Development (SecDev), pages 8–9. IEEE, 2017.

[47] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Ar-
avind Machiry, John Grosen, Paul Grosen, Christopher
Kruegel, and Giovanni Vigna. Ramblr: Making reassem-
bly great again. In NDSS, 2017.

[48] Shuai Wang, Pei Wang, and Dinghao Wu. Reassem-
bleable disassembling. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 627–642, 2015.

[49] Yan Wang, Wei Wu, Chao Zhang, Xinyu Xing, Xiaorui
Gong, and Wei Zou. From proof-of-concept to ex-
ploitable. Cybersecurity, 2(1):1–25, 2019.

[50] Ye Wang, Qingbao Li, Zhifeng Chen, Ping Zhang, and
Guimin Zhang. A survey of exploitation techniques and
defenses for program data attacks. Journal of Network
and Computer Applications, 154:102534, 2020.

[51] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. {FUZE}: Towards facilitating
exploit generation for kernel {Use-After-Free} vulnera-
bilities. In 27th USENIX Security Symposium (USENIX
Security 18), pages 781–797, 2018.

24 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema
https://github.com/taviso/loadlibrary
https://github.com/taviso/loadlibrary

[52] Meng Xu. Finding race conditions in kernels: The sym-
bolic way and the fuzzy way. 2020.

[53] Yves Younan, Davide Pozza, Frank Piessens, and
Wouter Joosen. Extended protection against stack
smashing attacks without performance loss. In 2006
22nd Annual Computer Security Applications Confer-

ence (ACSAC’06), pages 429–438. IEEE, 2006.

[54] Michal Zalewski. Afl: American fuzzy lop. https:
//lcamtuf.coredump.cx/afl/, 2016.

[55] Google Project Zero. Winafl. https://github.com/
googleprojectzero/winafl, 2016.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 25

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl

The Power of Words: Generating PowerShell Attacks from Natural Language

Pietro Liguori*, Christian Marescalco**, Roberto Natella*, Vittorio Orbinato*, Luciano Pianese*
DIETI, Università degli Studi di Napoli Federico II, Naples, Italy

*{pietro.liguori, roberto.natella, vittorio.orbinato, luciano.pianese}@unina.it
**c.marescalco@studenti.unina.it

Abstract
As the Windows OS stands out as one of the most targeted
systems, the PowerShell language has become a key tool for
malicious actors and cybersecurity professionals (e.g., for
penetration testing). This work explores an uncharted domain
in AI code generation by automatically generating offensive
PowerShell code from natural language descriptions using
Neural Machine Translation (NMT). For training and evalua-
tion purposes, we propose two novel datasets with PowerShell
code samples, one with manually curated descriptions in nat-
ural language and another code-only dataset for reinforcing
the training. We present an extensive evaluation of state-of-
the-art NMT models and analyze the generated code both
statically and dynamically. Results indicate that tuning NMT
using our dataset is effective at generating offensive Power-
Shell code. Comparative analysis against the most widely
used LLM service ChatGPT reveals the specialized strengths
of our fine-tuned models.

1 Introduction

Offensive security practices, such as red teaming and adver-
sary emulation, play a crucial role by helping us to understand
how attackers take advantage of vulnerabilities and how to
mitigate attacks [1, 2]. In these attacks, cybersecurity pro-
fessionals emulate malicious post-exploitation actions, such
as credential stealing, lateral movement across accounts and
machines, data obfuscation and exfiltration, and more [3].

As Windows stands out as one of the most targeted OS [4],
the PowerShell language has become a key tool for both mali-
cious actors and cybersecurity professionals. This language is
widely used to perform attacks since it can perform complex
actions, such as establishing connections and accessing OS
services and APIs without the need to deliver a malicious
binary executable or payload on the target machine (e.g., “file-
less” malware), making them harder to detect [5–8].

Unfortunately, writing offensive code demands a high de-
gree of expertise and effort, restricting the adoption of offen-
sive security practices. Therefore, the rise of automatic AI

code generators represents an appealing solution to unlock
these practices to a broader spectrum of users [9].

AI code generators leverage ML models for Neural Ma-
chine Translation (NMT) to produce (offensive) code starting
from inputs in Natural Language (NL), e.g., in the English
language. The usage of NMT models is widespread across
diverse software engineering tasks [10], yet their application
in security-related scenarios is infrequent and not widely ex-
plored. This gap stems primarily from the lack of suitable
corpora for training and evaluating code generators. The short-
age of corpora for offensive code generation is an evident
limitation: existing benchmarks [11–13] are derived from
programming competitions and software interview questions
(e.g., about algorithms and mathematics), or they focus on pro-
grams and languages that are not related to security (e.g., web
applications in Python). Only a few security-oriented datasets
are publicly available, targeting shellcodes in low-level pro-
gramming languages [14]. As a result, there is a significant
gap in the literature on offensive PowerShell code generation.

This work presents an assessment of AI code generators
for PowerShell offensive code, a novel application of NMT.
Given that generative models are predominantly trained on
mainstream programming languages like Python and Java,
we investigate strategies to repurpose these models for the
PowerShell domain. To this aim, we adopt a combination of
unlabeled and labeled datasets to train and evaluate models.
Specifically, we first use a large collection of unlabeled (i.e.,
code only) samples of general-purpose PowerShell from var-
ious online repositories to pre-train ML models and refine
their capabilities to comprehend and generate PowerShell
code. Then, we build from scratch a manually annotated la-
beled dataset consisting of PowerShell code samples specif-
ically crafted for security applications, which we pair with
curated NL descriptions in English. We use this dataset to
fine-tune three state-of-the-art NMT models (CodeT5+ [15],
CodeGPT [16], and CodeGen [17]) to generate offensive Pow-
erShell code. The dataset also serves as a ground truth for

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 27

the evaluation. We publicly share code, models 1 and datasets
as open data2 to encourage further experimentation on this
topic.

To perform our experiments, we formulate four key re-
search questions (RQs) aimed at evaluating the models’ capa-
bilities and the impact of the training strategies, performing
static and execution analysis to assess the generated code, and
comparing privately fine-tuned models with ChatGPT, the
most widely used LLM service from OpenAI [18]. Table 1
summarizes the key findings of our analysis. To the best of our
knowledge, this is the first work on the automatic generation
of offensive PowerShell code from NL descriptions.

In the following, Section 2 discusses related work; Sec-
tion 3 describes the research study; Section 4 shows the ex-
perimental results; Section 5 discusses the threats to validity;
Section 6 discusses the ethical considerations; Section 7 con-
cludes the paper.

2 Related Work

This work focuses on offensive code generation, involving
machine translation techniques applied to the security domain
for PowerShell code generation. Thus, we reviewed related
literature in these areas.

ML for security-related PowerShell. Li et al. [19] designed
a subtree-based de-obfuscation method and a semantic-aware
PowerShell attack detection system. This work also demon-
strates how the presented de-obfuscation method improves the
performance of detection systems such as Windows Defender
and Virus-Total. PowerDP [20] is a solution that aims to auto-
matically identify malicious PowerShell commands through
character distribution features and obfuscation multi-label
classification also proposing a de-obfuscator method for re-
covering obfuscated commands. Even ML-based methodolo-
gies have arisen for detection purposes, as shown by Hendler
et al. [21], who proposed several ML-based detectors demon-
strating their effectiveness on malicious scripts. The authors
also devised another solution [22] to achieve the same objec-
tive by retrieving information from Microsoft’s AMSI inter-
face. Mimura and Tajiri [23] presented a lighter methodology,
restricting detection only to word embeddings. Mezawa et
al. [24] proposed an evaluation methodology for ML-based de-
tectors based on a word-level machine learning model. Given
the effectiveness of Abstract Syntax Trees (ASTs) in detect-
ing obfuscated PowerShell scripts, Rusak et al. [25] proposed
a hybrid approach that combines ASTs and deep learning to
enhance detection methods for high-level obfuscation Pow-
erShell malicious programs. We remark that research of ML
for PowerShell focuses on defensive uses (i.e., detecting and
de-obfuscating attacks), but none of these studies analyzed the
offensive uses of ML (i.e., generating attacks), which are also

1HuggingFace repo
2GitHub repo

Analysis Main Findings

Capability
Assessment

• Models without fine-tuning (zero-shot learn-
ing) showed a limited ability to generate Pow-
erShell code, often defaulting to Python syntax
or incorrect PowerShell code.

• The fine-tuning phase significantly enhanced
the models’ ability to generate syntactically
correct and semantically relevant PowerShell
code. Among the models, CodeT5+ and
CodeGPT demonstrated notable improvements
in generating offensive PowerShell code.

• Pre-training on a large PowerShell corpus had
a varying impact on different models. While
pre-training generally improved CodeT5+ and
CodeGPT, especially with a limited number of
epochs for fine-tuning, CodeGen did not con-
sistently benefit from pre-training.

Static and
Execution
Analysis

• All models achieved high syntax accuracy, in-
dicating their strong capability to generate syn-
tactically correct code. However, a significant
number of warnings were identified, suggesting
potential issues or suboptimal coding practices.

• The execution analysis showed that, despite
textual differences between the ground truth
and the generated code, the models are still able
to generate offensive PowerShell code closely
aligned with the intended malicious activities,
in terms of events occurring in the system (e.g.,
on the filesystem, network, registry).

Comparison
with public
AI model

• Our fine-tuned models outperform ChatGPT
across all the metrics, showing that specializing
the models on our fine-tuning dataset provides
an advantage in the offensive PowerShell code
generation task.

Table 1: Main findings.

relevant for red teaming and adversary emulation purposes,
and which are in the scope of this paper.

Offensive Code Generation. Research on AI code genera-
tors for offensive security is still at an early stage. Gupta et
al. [26] presented an outlook of the possibilities opened by
ChatGPT for generating various types of cyber attacks, such
as social engineering, phishing attacks, and malware creation.
For each attack scenario, the paper shows qualitative examples
of prompts submitted to ChatGPT, and the attack payloads
generated as a result, including some snippets of PowerShell
code. Similarly, Charan et al. [27] presented qualitative exam-
ples with ChatGPT and Google BARD to generate malicious

28 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://huggingface.co/collections/dessertlab/the-power-of-words-generating-powershell-attacks-from-natur-66223c3e6cd34bb31ce38a69
https://github.com/dessertlab/powershell-offensive-code-generation/

scripts (mainly in Python, Bash, and PowerShell) for the top
10 prevalent MITRE Techniques of 2022, showing the poten-
tial of these AI models for security applications. However,
none of these studies systematically analyzed AI code genera-
tors, lacking in several aspects: (i) the evaluation was limited
to a few examples, while systematic evaluation requires much
larger datasets; (ii) the study lacked a ground truth for evalu-
ating the correctness of generated code; (iii) they did not yet
explore the potential of fine-tuning ML models for security-
related code generation. The few studies in this direction
focused on generating exploits in low-level languages (e.g.,
to attack memory management vulnerabilities). However, ex-
ploitation is only a limited part of the cyber kill chain, over-
looking several more types of malicious code. Among these
studies, Liguori et al. [28] proposed a dataset and approach for
training and evaluating AI code generators for code security,
by generating shellcodes in Assembly language. EVIL [29]
automatically generates exploits for conducting code injec-
tion attacks via NMT by targeting both the generation of
shellcodes in Assembly language and related Python code
for encoding and obfuscating the shellcodes. DualSC [30]
formalizes the automatic generation and summarization of
shellcodes via a "Shallow" Transformer inspired by the T5
model and dual learning using the corpus provided by Liguori
et al. [28]. ExploitGen [31] is an approach for generating
exploit code in Python and Assembly based on the Code-
BERT model. Differently from these studies, we presented a
dedicated model for generating offensive PowerShell code,
covering the entire cyber kill chain (e.g., including credential
stealing, lateral movement, data exfiltration, and more tactics
from the MITRE ATT&CK taxonomy). Moreover, we system-
atically analyzed the quality of generated PowerShell code by
introducing a manually curated dataset to serve as a ground
truth and evaluating the code statically and dynamically.

3 Research Study

The main objective of our research study is to understand
whether NMT models can translate NL descriptions into code
that accurately replicates the complexities of cyber attacks in
PowerShell. This aspect is crucial as it explores the models’
understanding of the unique syntax and semantics of this
programming language.

Figure 1 provides an overview of this research study. We
analyze various deep learning strategies to accurately gener-
ate code and introduce datasets to train and evaluate them.
We study several state-of-the-art NMT models and introduce
various approaches to evaluating the generated code, includ-
ing the similarity of the generated code to ground truth and
static and dynamic analysis of the code.

To help NMT models in the novel and ambitious task of
generating PowerShell code from NL, we adopt a two-step
process consisting of pre-training and fine-tuning. The pre-
training phase aims to tailor NMT models (already pre-trained

on other programming languages) in the generation of Pow-
erShell code. Armed with the pre-trained models, we pro-
ceed to the fine-tuning phase. This iterative process refines
the models’ capabilities, enabling them to generate offensive
PowerShell code from NL descriptions.

The main problem in using NMT models is to have a suffi-
cient set of data and to use them effectively to train the models
themselves. Recognizing the lack of suitable datasets for of-
fensive PowerShell code generation, in this study, we collect a
large set of PowerShell programs used for penetration testing
and adversary emulation. In addition to the code, we create
descriptions of these programs in English to allow the model
to translate English into PowerShell code. This dataset was
created manually to verify that the programs were related to
security and to ensure that the English language descriptions
were complete and consistent with the code. The dataset is
labeled since each sample includes both the text to translate
into code and the code expected to be produced by the model
(ground truth).

The creation of labeled datasets is inevitably limited by the
availability of PowerShell security programs and the need to
manually create English language descriptions for each pro-
gram. To increase the amount of training data, in this study, we
investigate an additional strategy, fully automated, to build an
extended dataset of PowerShell programs, collecting Power-
Shell programs and the related text from the web (for example,
comments in the code or description accompanying the code).
As the collection is fully automated, this second dataset is
non-labeled. The dataset includes programs not strictly re-
lated to security but includes, in general, PowerShell code
used for various purposes. This dataset still contributes to the
ability to generate security code since it allows the model
to learn from further examples how to generate syntactically
valid PowerShell code and to correlate the PowerShell code
with the English language. We use this dataset to pre-train the
NMT models, carrying out additional unsupervised training
rounds.

Table 2 reports the statistics of both datasets, in terms of
size, unique number of tokens, and average number of tokens
for NL descriptions (only for fine-tuning data) and code.

Finally, we evaluate the models as follows:

• Capability Assessment: We compare the textual similar-
ity of the code generated by the models with a ground-
truth reference through automatic metrics. These met-
rics are an appealing solution to estimate the generated
code since they are easy to tune and time-saving, hence
overcoming the limit of human evaluation, which poses
practical challenges for large-scale assessments.

• Static analysis: We assess the generated code to ensure
that it adheres to PowerShell programming conventions
and does not contain syntax errors.

• Execution analysis: We evaluate the capability of the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 29

Data Collection Pre-training

Fine-tuning

Stockpile

Data Collection

Atomic
Red Team

OnlineEmpire

GitHub
Pre-training

Dataset

Fine-tuning
Dataset

Pre-trained
Models

PowerShell
Code

Capability
Assessment

NL Intents

Output
Similarity

AI-based Code Generation

Syntactic
Evaluation

Execution
Evaluation

Static
Analysis

Execution
Analysis

Legend

Code Generation Task – ∮ 4.1, 4.2

Fine-tuning data – ∮ 3.2

Pre-training data – ∮ 3.1

Static Analysis – ∮ 4.3

Execution Analysis– ∮ 4.4

CodeT5+ CodeGPT CodeGen

Figure 1: Overview of our research study.

generated offensive PowerShell code in executing ma-
licious actions, replicating the behavior of the ground
truth commands.

In the following of this section, we detail the pre-training
(§ 3.1) and the fine-tuning data (§ 3.2), and the code genera-
tion task (§ 3.3).

3.1 Pre-training data (unlabeled)
Pre-training involves training the model on a large corpus
of text data to learn general language representations before
fine-tuning it for specific downstream tasks [32]. In other
words, the parameters obtained from this step serve as a start-
ing point for the later supervised training. Unsupervised or
self-supervised pre-training is particularly attractive in the
NMT context since large unlabeled data is available on the In-
ternet. In this work, we leverage domain-adaptive pre-training
(DAPT) [33]: given an NMT model pre-trained on massive,
heterogeneous corpora, we perform additional rounds of unsu-
pervised training with domain-specific data. Specifically, we
leverage general-purpose PowerShell code for pre-training.
The pre-training dataset aims to provide a valuable resource
to enable the models’ understanding of general-purpose Pow-
erShell code. This dataset encompasses ∼ 90k samples ex-
tracted through the GitHub API. Specifically, we queried all

the repositories containing PowerShell code from the last
decade (2013-2023) to encompass a broad spectrum of Pow-
erShell code, then parsed the extracted data to remove un-
necessary information, such as duplicates (inside the same
repository), and logging and echo commands. In addition, we
filtered out all the PowerShell commands with sizes greater
than 1024, ensuring the dataset maintains a balanced repre-
sentation of code complexities. This collection encompasses
a diverse array of PowerShell scripts, spanning various appli-
cation domains such as system administration, automation,
and network management. Including a wide range of scripts
reflects the versatility of PowerShell as a scripting language
and provides models with exposure to the diverse ways Pow-
erShell is used across different use cases.

The pre-training process depends on the model architecture.
For decoder-only models, i.e., CodeGPT and CodeGen, we
chose Causal Language Modeling (CLM), also referred to as
Language Modeling, as the pre-training objective. CLM has
been extensively used as a pre-training task for transformer-
based decoder-only models [34], such as in the GPT se-
ries [35–37]. CLM refers to language models that predict
the next token or sequence of tokens in a sentence in a causal
or autoregressive manner, where the prediction for each to-
ken depends only on the preceding tokens. By using mask-
ing, the model only attends to the left context in a unidirec-

30 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Statistic Pre-training
Dataset

Fine-tuning
Dataset

Dataset size 89,814 1,127
Unique Intents - 1,077

Unique Commands 79,410 1,121
Unique tokens (Intents) - 2,273

Unique tokens (Commands) 85,342 17,463
Avg. tokens per Intent - 15.97

Avg. tokens per Command 12.71 15.49

Table 2: Statistics of the pre-training and fine-tuning datasets.
The pre-training dataset does not contain NL descriptions
(intents).

tional manner, ensuring that it cannot see "into the future". In
the probabilistic framework, starting from the text sequence
x = (x1,x2,x3, . . . ,xT), where x is the original sentence and
xt (t = 1,2, . . . ,T) is the t-th token, and T is the sequence
length, an autoregressive model factorizes the likelihood of
the input text sequence as p(x) = ∏

T
t=1 p(xt | x<t), where p is

the likelihood of the input text sequence [38]. Finally, mod-
els are evaluated by token-level accuracy. For CodeT5+, the
pre-training objective is Masked Language Modeling (MLM),
as recent works show its effectiveness in code understanding
tasks [39]. MLM refers to the prediction of missing tokens in
a sentence based on the context provided by the surrounding
tokens. Unlike the left-to-right language model pre-training,
MLM considers both the left and right context. The approach
is inspired by BERT [40], where 15% of the tokens in the
encoder inputs are randomly replaced with sentinel token
[MASK], and the decoder is tasked with recovering these
tokens to reconstruct the complete snippet. The model is eval-
uated by token level accuracy only on the masked-out tokens.

3.2 Fine-tuning data (labeled)

The overarching purpose of this dataset is to serve as a com-
prehensive resource for training models in the translation
of NL intents, i.e., descriptions of code snippets, into exe-
cutable security-oriented PowerShell commands. Specifically,
we focus on offensive PowerShell code, a key resource for cy-
bersecurity exercises since Microsoft Windows represents the
most targeted OS. By encompassing a wide array of sources,
the dataset aims to expose models to the intricacies of real-
world cybersecurity scenarios, enabling them to understand
and generate PowerShell commands that align with those typ-
ical of cybersecurity operations. This holistic approach strives
to ensure that models trained on this dataset are well-equipped
to handle the complexities of real-world tasks and contribute
meaningfully to offensive code generation, specifically Pow-
erShell commands.

The dataset, consisting of 1,127 samples of PowerShell
commands, is meticulously curated from the following

sources:

• Atomic Red Team [41]: renowned for its library of tests
mapped to the MITRE ATT&CK framework3 [42],
serves the purpose of replicating real-world adversarial
tactics, techniques, and procedures (TTPs). This inclu-
sion provides the dataset with a foundation rooted in a
standardized and widely accepted framework, ensuring
that the PowerShell commands align with recognized
cybersecurity methodologies.

• Stockpile [43]: is a plugin for the CALDERA cyberse-
curity framework [1, 44] developed by MITRE and in-
troduces a layer of sophistication by incorporating struc-
tured data integral for adversary emulation. Therefore,
the dataset does not encompass raw PowerShell com-
mands only but also captures the contextual information
and relationships between commands within the broader
context of adversarial scenarios.

• Empire [45]: a post-exploitation and adversary emula-
tion framework integrated with MITRE ATT&CK, pro-
vides PowerShell commands representative of advanced
malicious techniques, further enriching the dataset with
nuanced and intricate scenarios.

• Online sources: we manually verified and selected ad-
ditional offensive samples from several security-related
online sources. We gathered samples from HackTricks
[46], Red Team Recipe [47], and Infosec Matter [48],
community-driven cybersecurity wikis about ethical
hacking, penetration testing, and information security.
By including diverse examples specific to the offen-
sive PowerShell dataset, the model acquires a more pro-
found understanding of the conventions and best prac-
tices unique to PowerShell security commands.

We manually curated the dataset to cover the highest num-
ber of tactics in the MITRE ATT&CK framework. In particu-
lar, the dataset covers 12 out of 14 tactics from the MITRE
ATT&CK framework, the de facto standard for adversar-
ial techniques representation, with varying numbers of tech-
niques and sub-techniques per tactic. Figure 2 illustrates the
number of entries for each ATT&CK tactic. Each entry in the
dataset is annotated with an NL description extracted from
the respective source. We manually annotated every sample
that did not come with a predefined description. Moreover,
we enriched all those descriptions that did not provide enough
information about the specific PowerShell command. For
instance, in the case of Atomic Red Team, the PowerShell
commands represent implementations of the techniques in
the ATT&CK framework. Consequently, these commands are

3The ATT&CK framework is a comprehensive knowledge base of the
tactics, techniques, and procedures (TTPs) that adversaries leverage during
cyberattacks, developed by MITRE.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 31

32
38

163
430

205
54

10
12
4

96
42
37

5

0 100 200 300 400 500
Collection

Command and Control
Credential Access
Defense Evasion

Discovery
Execution
Exfiltration

Impact
Initial Access

Lateral Movement
Persistence

Privilege Escalation
Reconnaissance

Number of dataset entries

M
IT

RE
 A

TT
&C

K
Ta

ct
ic

s

Figure 2: Mapping of fine-tuning dataset samples on the
MITRE ATT&CK tactics.

often labeled with the technique name, which provides infor-
mative content about the technique itself rather than what the
command does. To better understand how programmers and
security experts describe PowerShell scripts and how to deal
with ambiguities in natural language, we referred to popular
books and manuals [49–51].

Finally, we notice that the size of our dataset is in line with
other state-of-the-art corpora used to fine-tune ML models.
In fact, in state-of-the-art code generation, the datasets for
fine-tuning are relatively limited, in the order of one thousand
samples [52].

3.3 Code Generation Task
To ensure the robustness of our study, we adopt the following
state-of-the-art NMT models:

• CodeT5+ [15] is a new family of Transformer models
pre-trained with a diverse set of pretraining tasks to learn
rich representations from both unimodal code data and
bimodal code-text data. We utilize the variant with model
size 220M, trained from scratch following T5’s architec-
ture [53]. It has an encoder-decoder architecture with 12
decoder layers, each with 12 attention heads and hidden
layer dimension of 768, and 512 for the size of position
embeddings. We set the learning rate α= 0.00005, batch
size = 16, and beam size = 10.

• CodeGPT [16], a Transformer-based language model
pre-trained on millions of Python functions and Java
methods. The model architecture consists of 12 layers of
Transformer decoders. We followed previous work for
the implementation [54].

• CodeGen [17], an autoregressive language model for
program synthesis with an architecture that follows a
standard transformer decoder with left-to-right causal
masking. The family of CodeGen models is trained in
various sizes, including 350M, 2.7B, 6.1B, and 16.1B,
and utilizes various datasets. Specifically, we leverage

CodeGen-Multi, initialized from CodeGen-NL and fur-
ther pre-trained on BigQuery [17], a large-scale dataset
of multiple programming languages from GitHub repos-
itories, which consists of 119.2B tokens and includes C,
C++, Go, Java, JavaScript, and Python.

In our experiments, we randomly split the fine-tuning
dataset into training (the set of examples used to fit the param-
eters), validation (the set used to tune the hyperparameters of
the models), and test (the set used for the evaluation of the
models) sets using a typical 80%/10%/10% ratio.

To assess the performance of the models in generating
offensive PowerShell code from NL descriptions, we used
output similarity metrics, which compare the generated code
with the code from the ground truth. This type of metrics is
widely used to assess the performance of AI generators in
many code generation tasks [55], including the generation of
code for security contexts [28–31, 56]. The metrics are:

• Bilingual Evaluation Understudy (BLEU) score [57].
It measures the degree of n-gram overlapping between
the string of each code snippet produced by the model
and the reference, for values of n usually ranging be-
tween 1 and 4 [58, 59]. We implemented BLEU-4
score (i.e., with n = 4) computation employing the
bleu_score module contained in the open-source Natu-
ral Language Toolkit (NLTK) Python suite [60].

• Edit Distance (ED). It measures the edit distance be-
tween two strings, i.e., the minimum number of opera-
tions on single characters required to make each code
snippet produced by the model equal to the reference.
For the edit distance, we adopted the Python library
pylcs [61].

• METEOR [62]. It measures the alignment between each
code snippet produced by the model and the reference.
The alignment is defined as a mapping between unigrams
(i.e., 1-gram), such that every unigram in each string
maps to zero or one unigram in the other string and no
unigrams in the same string. To calculate the METEOR
metric, we relied on the Python library evaluate by
HuggingFace [63].

• ROUGE-L. It is a metric based on the longest common
subsequence (LCS) between the model output and the
reference, i.e., the longest sequence of words (not neces-
sarily consecutive, but still in order) shared between both.
We computed the ROUGE-L metric using the Python
package rouge [64].

All metrics range between 0 and 1, with higher scores corre-
sponding to a better quality of the generated code. To evaluate
the generated PowerShell code, we also introduce additional
evaluation metrics based on static and dynamic analysis that
are specific to our context. These metrics will be introduced
in the following sections.

32 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

3.4 Research Questions

We designed this research study to answer the following re-
search questions (RQs):
▷ RQ1: To what extent can NMT models effectively generate
offensive PowerShell code for security applications from NL
descriptions?
RQ1 aims to establish a preliminary assessment of NMT
models in generating PowerShell code for offensive security
applications. This investigation seeks to shed light on the
models’ efficacy in translating NL descriptions into offensive
code.
▷ RQ2: What is the influence of the training strategies on
NMT models’ performance in offensive PowerShell code gen-
eration?
RQ2 focuses on the impact of pre-training and fine-tuning
on the quality of generated code. We analyze the influence
of these training strategies by considering different configu-
rations of the NMT models and their impact on their perfor-
mance.
▷ RQ3: How good is the generated code in terms of code
quality and dynamic behavior?
RQ3 aims to evaluate the generated PowerShell code in a
deeper way than output similarity metrics, in terms of syntac-
tic correctness and capability of executing malicious actions
realistically, through behavioral comparison with the ground
truth.
▷ RQ4: How do fine-tuned NMT models, leveraging security-
oriented training data, compared to a publicly available,
closed-source model?
RQ4 introduces a comparative analysis, evaluating the perfor-
mance of the fine-tuned models against a publicly available
general-purpose language model, specifically ChatGPT 3.5.
This investigation strives to evaluate whether specialization on
security-focused data provides an advantage in the offensive
PowerShell code generation domain.

4 Experimental Results

This section presents an extensive evaluation of NMT models
(CodeT5+, CodeGPT, and CodeGen) on the generation of
offensive PowerShell code. First, we assess the models’ capa-
bility of generating PowerShell code in their original configu-
ration (§ 4.1) without further training. Then, we evaluate the
impact of different training strategies, i.e., domain-adaptive
pre-training and fine-tuning, on the performance of such mod-
els (§ 4.2). To provide further insight into the PowerShell
code generation, we analyze the quality of the generated code
in terms of syntactic correctness (§ 4.3) and dynamic behavior
(§ 4.4), i.e., its ability to replicate the behavior of the ground
truth code. Finally, we compare the fine-tuned models with
a public AI model (ChatGPT) for all the previous analyses
(§ 4.5) to benchmark their performance against a publicly
available, closed-source model.

Model Pre-
training

BLEU-4
(%) ED (%) METEOR

(%)
ROUGE-
L (%)

CodeT5+ ✗ 0.04 8.87 4.69 1.08
✓ 0.01 6.96 1.86 2.68

CodeGPT ✗ 0.23 12.31 4.08 1.19
✓ 0.28 15.67 2.55 3.41

CodeGen ✗ 0.06 7.58 2.88 0.21
✓ 0.00 0.43 0.09 0.00

Table 3: Performance of models with and without pre-training
on zero-shot.

4.1 Zero-shot Learning

To establish a baseline for the evaluation, we initially used
the NMT models in their original configuration, asking them
to generate PowerShell code. This is a zero-shot learning
task, where an NMT model is applied for a different sce-
nario than the one for which it was trained. In this way, we
evaluate the current gap of existing models in generating Pow-
erShell code. Table 3 shows the results of this analysis. In
this task, the models are tested without any gradient updates,
relying only on the intent provided by the test set for infer-
ence [36,37]. The non-pre-trained versions of the models tend
to generate Python code, but their performance is generally
low for the downstream task of generating offensive Pow-
erShell code. Pre-training the models with general-purpose
PowerShell code slightly improves the accuracy but is still not
high. Among the pre-trained versions, CodeGPT is the only
one that provides output close to valid PowerShell code, al-
though it does not align well with the expected code indicated
by the intent in natural language. In summary, regardless of
pre-training, all models demonstrate the need for fine-tuning
on a tailored dataset for optimal performance in generating
offensive PowerShell code.

4.2 Impact of Training Strategies

The evaluation of CodeT5+, CodeGPT, and CodeGen in-
volved a meticulously designed test plan. More precisely,
the models underwent three distinct fine-tuning scenarios: 3
Epochs, 10 Epochs, and 30 Epochs. This deliberate choice
allowed us to assess the impact of prolonged fine-tuning on
the models’ ability to generate PowerShell code for offensive
security tasks. In each scenario, we considered two training
configurations: one with pre-training and the other without.
This test plan allowed us to systematically explore the models’
capabilities under varying conditions, providing a comprehen-
sive understanding of their strengths and limitations. Table 4
shows the results.

In the 3 epochs setting, CodeT5+ exhibits low perfor-
mance, regardless of pre-training, with a BLEU-4 score lower
than 10%. In contrast, CodeGPT and CodeGen demonstrate
notable performance even after a short fine-tuning period,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 33

Model Epochs
Pre-
train.
(%)

BLEU-4
(%) ED (%) METEOR

(%)
ROUGE-
L (%)

CodeT5+

3
✗ 4.22 35.11 28.83 22.26
✓ 4.57 35.96 30.57 23.99

10
✗ 12.64 46.72 44.76 37.65
✓ 11.88 49.10 46.11 37.17

30
✗ 17.40 50.92 47.61 39.05
✓ 18.50 50.23 47.87 38.86

CodeGPT

3
✗ 10.28 40.71 31.21 25.60
✓ 12.80 42.54 35.14 30.35

10
✗ 16.22 46.39 40.50 33.52
✓ 17.93 49.88 45.12 37.12

30
✗ 21.71 50.17 45.34 38.63
✓ 19.94 49.20 45.45 38.06

CodeGen

3
✗ 16.20 47.68 42.27 35.97
✓ 14.75 45.88 39.86 34.69

10
✗ 19.15 50.52 46.76 37.63
✓ 19.04 48.45 43.25 35.25

30
✗ 18.23 47.53 44.10 35.48
✓ 18.53 48.67 44.14 35.45

Table 4: Performance of models with and without pre-training
and different number of epochs. Best results for each metric
are blue/bold.

achieving a BLEU-4 score higher than 10% and an ED over
40%. Notably, after 3 epochs, CodeGen demonstrates supe-
rior performance compared to the other two models. In the 10
epochs experiment, CodeT5+ shows significant improvement,
with BLEU-4 tripling to 12%. Moreover, ED, METEOR,
and ROUGE-L experience a rise of 12-16%. CodeGPT also
enhances its performance, surpassing CodeT5+ in terms of
BLEU-4 score, although it faces challenges in achieving the
same level of overall improvement. CodeGen remains ahead
of the other models, even reaching an ED over 50%. For a
more in-depth assessment of the models’ adaptability, the
training duration is extended to 30 epochs. CodeT5+ demon-
strates superior performance over CodeGPT in ED, METEOR,
and ROUGE-L metrics, while CodeGPT exhibits a higher
BLEU-4 score surpassing 20%. Notably, both models achieve
a high ED value of around 50%. CodeGen establishes its per-
formance without further improvement compared to the 10
epochs versions.

To provide an estimate of the goodness of the results, we
compared the results of the models with the performance of
the state-of-the-art (SOTA). Since the task of generating Pow-
erShell using NMT models is a task never addressed before,
we compared the results with recent work investigating the
effectiveness of existing models in the generation of differ-
ent languages from NL, specifically, Python code [65] and in
shell language [66]. We found that the best performance is
21% for BLEU-4 and 38% for METEOR in the case of the

Python language, and 25% for BLEU-4 and 44% for ED in
the case of shell language. We notice that our results are in
line with the ones of the SOTA. Even better, our best perfor-
mance, represented by CodeT5+ without pre-training and 30
fine-tuning epochs, overcomes the SOTA over all the metrics.

We also assessed the impact of varying the number of
epochs on fine-tuning time, with distinct differences observed
between 3, 10, and 30 epochs for each model. For both
CodeT5+ and CodeGPT, fine-tuning over 3 epochs takes ap-
proximately 20 minutes, whereas CodeGen requires double
that time (40 minutes). Extending to 10 epochs, CodeT5+ and
CodeGPT need around 35 and 39 minutes, respectively, while
CodeGen’s training time increases to 90 minutes. For the 30-
epoch extension, CodeT5+ takes about 80 minutes, CodeGPT
requires 110 minutes, and CodeGen extends its training time
to 270 minutes. Finally, the comparison between the fine-
tuning times of pre-trained and non-pre-trained models did
not reveal evident differences, suggesting that the pre-training
process does not introduce a significant computational over-
head during the subsequent fine-tuning phase.

RQ1: To what extent can state-of-the-art NMT models
effectively generate offensive PowerShell code for security
applications from NL descriptions?

The evaluation of CodeT5+, CodeGPT, and CodeGen
underscores their remarkable effectiveness in generat-
ing offensive PowerShell code for security applications
from NL descriptions. CodeGen surpasses the other
models in the 3 and 10 epochs settings according to all
metrics. CodeT5+, designed with a specialized architec-
ture for code generation tasks, consistently outperforms
CodeGPT and CodeGen across various metrics in the 30
epochs setting. Particularly noteworthy is the compar-
ison with SOTA performance in code generation tasks
for different languages, such as Python and shell lan-
guages. Our best-performing model, CodeT5+ without
pre-training and 30 fine-tuning epochs, surpasses the
SOTA results, exhibiting superior performance across
all metrics.

Considering the impact of pre-training further enriched
our evaluation. Focusing on the 3-epoch experiments,
CodeT5+ exhibits a slight improvement across all metrics, and
CodeGPT extends the improvement to 2%-4% across all met-
rics. Conversely, CodeGen appears to have better performance
without pre-training. Training the models for 10 epochs re-
veals a more pronounced distinction between the two versions.
CodeT5+ pre-training results in a 2% increase in both Edit
Distance (ED) and METEOR metrics. CodeGPT, on the other
hand, shows a substantial displacement of 1.7%, 3.5%, 4.6%,
and 3.6% for BLEU-4, ED, METEOR, and ROUGE-L, respec-
tively. CodeGen maintains a negative displacement between
the versions even with the extended training duration. When
extending the fine-tuning duration to 30 epochs, pre-training

34 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Natural Language Intent Ground Truth Model Output

Start a process with DirLister,
wait for 4 seconds, and stop the

DirLister process.

Start-Process ${WebBrowserPassViewPath}
; Start-Sleep -Second 4 ; Stop-Process

-Name "WebBrowserPassView"

Start-Process ${WebBrowserPassViewPath}
; Start-Sleep -Second 4 ; Stop-Process

-Name "WebBrowserPassView"

Invoke-Mimikatz cmdlet with
bypassed execution policy.

powershell.exe -exec bypass -c “
Invoke-Mimikatz ”

powershell.exe -ExecutionPolicy Bypass
-Command “ Invoke-Mimikatz ”

Invoke compiled HTML Help
(CHM) file with specific storage
handler, HH file path, and CHM

file path.

Invoke-ATHCompiledHelp
-InfoTechStorageHandler $ {

infotech_storage_handler } -HHFilePath
$ { hh_file_path } -CHMFilePath $ {

chm_file_path }

Invoke-ATHCompiledHTMLHelp

((((((((((((((
-InfoTechStorageHandler

(((((((((((((((((

$ { infotech_storage_handler }
-HHFilePath $ { hh_file_path }

-CHMFilePath $ { chm_file_path }

Get the wininit process and
perform token manipulation to

create a new process for
’cmd.exe’.

Get-Process wininit |
Invoke-TokenManipulation
-CreateProcess ’cmd.exe’

$wininit = Get-Process wininit |
Invoke-TokenManipulation
-CreateProcess ’cmd.exe’

Table 5: Illustrative examples of model output. The prediction errors are red/bold.����Slashed text refers to omitted predictions.

did not consistently yield superior results. In this case, the
performance of pre-trained models is comparable to non-pre-
trained counterparts.

RQ2: What is the influence of the training strategies on
NMT models’ performance in offensive PowerShell code
generation?

As the fine-tuning period extends, such as with 10 and 30
epochs, the benefits of pre-training diminish or even be-
come counterproductive. In these cases, the performance
of pre-trained models consistently falls below that of
their non-pre-trained counterparts. This highlights the
variable effectiveness of pre-training, dependent on the
duration of fine-tuning. These findings underscore the
interplay between the duration of training epochs and
the usage of pre-training, emphasizing the importance
of carefully considering these factors in model develop-
ment.

Table 5 illustrates four cases of model predictions. They
are examples from our test sets to highlight both success-
ful and failed prediction cases. Row # 1 demonstrates the
models’ ability to generate a PowerShell snippet composed
of multiple commands (separated by semicolons) without
errors. The model correctly predicts the correct variables,
e.g., WebBrowserPassViewPath, and command names, such
as Start-Process, Start-Sleep. Row # 2 is indicative
of the concept of implicit model knowledge. Indeed, the
model can generate a correct command by leveraging al-
ternative equivalent versions of PowerShell’s option flags
(e.g., -ExecutionPolicy instead of -exec). Row # 3 shows
a relevant example of a failure case. It is possible to no-
tice how the model correctly predicts the variable names
and values except for one not referenced in the intent

(-InfoTechStorageHandler). In addition, the model fails
to predict the correct command name, generating an addi-
tional word (HTML) based on the NL description. Finally, row
4 illustrates another incorrect example in which the model
is capable of generating the ground truth code, except for
introducing an additional variable to save the output of the
command ($wininit =).

Overall, we can conclude that these examples indicate the
model’s ability to generate complex PowerShell snippets, even
though there is still some error margin, specifically related to
omissions (e.g., variable names).

4.3 Static Analysis

We evaluated the generated code through static analysis to
ensure that the code adheres to PowerShell conventions and
does not contain syntax errors. The analysis was conducted
on the top-performing models identified in the previous eval-
uation, namely the 30-epoch versions of CodeT5+ with pre-
training, CodeGPT without pre-training, and CodeGen with
pre-training. The static analysis leverages PSScriptAnalyzer
[67], a static code checker for PowerShell modules and scripts.
The primary purpose of PSScriptAnalyzer is to assess the qual-
ity of PowerShell code by analyzing its syntax, structure, and
adherence to best practices. The rules are based on Power-
Shell best practices identified by the PowerShell Team and the
community, organized into categories such as Cmdlet Design,
Script Functions, Error Handling, Scripting Style, and Script
Security. The severity levels (ParseError, Error, Warning, In-
formation) associated with each rule indicate the importance
and impact of adhering to the specific guideline. In this work,
we focused on parse errors, which occur during the parsing
phase of a program’s execution, errors, occurring when code

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 35

Pre-trained
models

Static Analysis

Test Set

Reference
commands

PSScript
Analyzer

Syntactic
Evaluation

NL Intents Generated
commands

Figure 3: Static analysis workflow.

Model Single Accuracy
(%)

Comparative
Accuracy (%)

CodeT5+ 91.15 92.04
CodeGPT 98.23 98.23
CodeGen 98.23 98.23

Table 6: Syntactic evaluation for the best models.

does not meet specific high-severity rules (e.g., hardcoding
computer names, using plain text passwords), and warnings,
which typically highlight potential issues or coding practices
that might lead to errors or security concerns.

We developed a syntactic analysis tool to streamline the
process of detecting parse errors, errors, and warnings in
PowerShell scripts. This tool automatically feeds PSScriptAn-
alyzer with PowerShell commands generated by the models
during the testing phase. By doing so, our tool identifies er-
rors and warnings in the generated code, assessing the overall
syntactic quality of the models.

The syntactic analysis process begins with our test set,
which consists of NL intents paired with reference PowerShell
commands. These NL intents are fed into fine-tuned models to
produce the PowerShell code. Both the generated commands
and their corresponding references are then subjected to the
syntax analyzer.

To assess the syntactic quality of the generated commands,
we introduce two distinct metrics: Single Syntax Accuracy
and Comparative Syntax Accuracy. The metrics are defined
as follows:

• Single Syntax Accuracy: evaluates the percentage of
commands without parse errors. This evaluation is in-
dependent of the reference commands from the ground
truth.

• Comparative Syntax Accuracy: assesses the syntactic
correctness of the generated commands by considering
the results alongside the reference commands. When
both commands present common parse errors, these are
excluded from the counting process. Given that some ref-
erence commands include stub templates such as <code>

Test Set ParseError (%) Error (%) Warning (%)

CodeT5+ 8.85 1.94 35.92

CodeGPT 1.77 2.70 29.73

CodeGen 1.77 1.80 31.53

Ground Truth 2.65 0.00 39.09

Table 7: Summary of ParseError, Error, and Warning percent-
ages for models and ground truth on the test set.

14

22

3

4

14

14

5

2

17

7

5

4

16

10

5

6

0 5 10 15 20 25

AvoidUsingInvokeExpression

 AvoidUsingCmdletAliases

 AvoidUsingWMICmdlet

 UseDeclaredVarsMoreThanAssignments

Number of Warnings

W
ar

ni
ng

s

CodeT5+ CodeGPT CodeGen Ground Truth

Figure 4: Counts for different warning types in each test set.

or <command>, the analysis filters out parse errors asso-
ciated with these templates, specifically the Redirection-
NotSupported and MissingFileSpecification errors.

The workflow for the syntactic analysis is depicted in Fig-
ure 3. Looking at the results in Table 6, it is possible to notice
that all the models achieved a score greater than 90%, assess-
ing their strong capability to generate syntactically correct
code. CodeGPT and CodeGen, in general, demonstrate high
performance across both syntax metrics. Table 7 summarizes
the percentages for various severity types in the test set. Given
that warning frequencies are consistently above 30% for all
models, including the ground truth, Figure 4 enumerates the
various warning types within each set.

4.4 Execution Analysis

The execution analysis aims to evaluate the generated offen-
sive PowerShell code when running in an actual system. This
involves assessing the ability of the code to behave as intended
in terms of effects caused on the system. Therefore, we run
both code from the ground truth and generated code, monitor
their behavior at runtime, and compare the behavioral events

36 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Execution Analysis

Windows 10 VMPre-trained
models

Test Set

Reference
commands

NL Intents Generated
commands

Sysmon

Security
Tools

Event
Filtering

Execution
Evaluation

Figure 5: Execution analysis workflow.

Ground truth
events

Generated code
events

188 151145

powershell.exe -ExecutionPolicy Bypass -NoLogo -NonInteractive -NoProfile -WindowStyle
Hidden -Command "IEX (Invoke-WebxRequest –Uri 'https://raw.githubusercontent.com/Powershell-
Scripts-for-Hackers-and-Pentesters/main/scripts/all_in_one_enum.ps1').Content"Whitecat18

powershell.exe -NoP -NonI -W Hidden -Exec Bypass -Command "Invoke-WebRequest
https://raw.githubusercontent.com/Whitecat18/Powershell-Scripts-for-Hackers-and-Pentesters/main/
scripts/all_in_one_enum.ps1 -OutFile hello.ps1; .\hello.ps1"

pwsh.exe>C:\Windows\System32\ntdll.dll

pwsh.exe>C:\Windows\System32\gdi32full.dll

...
powershell.exe>C:\Windows\System32\sxs.dll

powershell.exe>C:\Windows\System32\umpdc.dll

pwsh.exe>C:\Windows\System32\ntdll.dll

pwsh.exe>C:\Windows\System32\gdi32full.dll

...
pwsh.exe>C:\Program
Files\PowerShell\7\System.Reflection.Metadata.dll
pwsh.exe>C:\Program
Files\PowerShell\7\System.Collections.Immutable.dll

Figure 6: Comparison between events.

that occurred during their execution. The entire workflow for
the execution analysis is shown in Figure 5.

We performed the experiments in a controlled and dedi-
cated testing environment. The controlled environment con-
sists of a virtualized Windows 10 system running in Virtual-
Box 7. The system is equipped with a set of security-related
tools, such as PowerSploit [68] and Mimikatz [69], that are
invoked by many samples of offensive code in our dataset.
We assume that these tools have been previously infiltrated
by the attacker in a previous stage, as typical of advanced
malicious campaigns. To monitor the execution of Power-
shell code, we integrated Sysmon [70], a popular Windows
service for gathering system events, including the filesystem,
the network, and the Windows Registry. To be able to run
the generated code on the system, we assume the scenario
in which an attacker already bypassed part of the security
mechanisms by deactivating the Microsoft Defender Firewall,
Windows Defender, and Microsoft Defender SmartScreen.

The evaluation involved executing each command from
both the generated ones and those from ground truth
multiple times as a single-line PowerShell script. This
generates a process through the standard Windows Sys-
tem.Diagnostics.Process. We filter the events recorded by
Sysmon by filtering out records related to previous irrelevant

Model Precision (%) Recall (%) F1-Score (%)

CodeT5+ 97.26 80.94 88.35

CodeGPT 91.86 85.23 88.42

CodeGen 96.94 80.97 88.24

Table 8: Execution analysis results.

events and selecting records based on the Process ID (PID),
focusing on both the parent process responsible for executing
the PowerShell command and its child processes. The com-
parison has been performed comparing the events triggered
by the generated command (called retrieved records) to those
from the execution profile of the ground truth (called rele-
vant records). The events that appear both when executing
the generated code and the ground truth are relevant records
retrieved. From these sets of events, we evaluate the precision,
recall and F1-score of the generated code, defined as follows:

precision =
1
N

N

∑
i

#(relevant records retrieved)i

#(retrieved records)i

recall =
1
N

N

∑
i

#(relevant records retrieved)i

#(relevant records)i

F1-Score = 2
precision∗ recall
precision+ recall

Figure 6 illustrates an example of event analysis: given
the ground truth and the generated PowerShell command,
we execute them and compare the set of events triggered by
each command to measure their overlap. To avoid noise in
the analysis due to events that only occur sporadically (e.g.,
because of non-determinism sources in the system), we iden-
tify such events by performing multiple repeated runs of the
code and discard non-reproducible events from the analysis.
After every command execution, the Windows environment
is restored to a clean state, by reloading the virtual machine
from a snapshot, to avoid interferences caused by the effect
of previous commands.

The results shown in Table 8 outline how all models share
an overall precision higher than 90% and an overall recall
higher than 80%, likewise, the Execution F1-Score is very
similar between the different models and higher than 88%.
Thus, although there were differences found in the textual
similarity analysis, the generated code closely matches the
ground truth in terms of dynamic events.

RQ3: How good is the generated code in terms of code
quality and dynamic behavior?

The syntactic analysis of the generated code showed that
the models are indeed capable of generating high-quality

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 37

Figure 7: Comparison with ChatGPT on output similarity
metrics.

PowerShell code. CodeGPT and CodeGen achieve the
best results in terms of Single and Comparative Accu-
racy, along with an amount of Warnings and ParseErrors
comparable to the ground truth. The execution analy-
sis revealed that the generated PowerShell code closely
replicates the behavior of the ground truth code, generat-
ing the same events in the target system. This is indica-
tive of the generated code’s capability of performing the
malicious actions described in the NL intents.

4.5 Comparison with Public AI Model
In this study, we conducted a comprehensive evaluation
by comparing the performance of our fine-tuned models,
CodeT5+, CodeGPT, and CodeGen, with ChatGPT, the Ope-
nAI LLM service widely used for a variety of tasks, including
code generation [71]. The purpose was to assess the special-
ized capabilities of our models in generating PowerShell code
for offensive security tasks and to benchmark their perfor-
mance against a publicly available, closed-source model. We
leveraged ChatGPT 3.5, which represents the most recent free
version at the time of this work.

To assess the capabilities of the OpenAI model, we first
provided a detailed description of the required task, i.e.,
the generation of PowerShell commands starting from NL
descriptions, including an example of input and the desired
output. Then, we provided a list of natural language code
descriptions and asked ChatGPT to automatically generate
the corresponding PowerShell code. Specifically, following
works and guidelines on prompt engineering [71, 72], we
leveraged the following prompt: I want you to act
as a code generator. Given a natural language
description of a PowerShell command, generate
the corresponding PowerShell code.

Figure 7 shows the results of this analysis. The figure shows
that our fine-tuned models consistently outperform ChatGPT

Figure 8: Comparison with ChatGPT on static and execution
analysis evaluation metrics.

across multiple evaluation metrics. Specifically, ChatGPT
exhibits a BLEU-4 score of 7.45%, an ED of 33.84%, a ME-
TEOR of 22.14%, and a ROUGE-L of 20.61%. In contrast,
our fine-tuned models showcase superior overall performance
across all output similarity metrics. The tailored training on
the specialized fine-tuning dataset, designed specifically for
offensive security code generation, results in more accurate
code generation, enabling our models to surpass the capabil-
ities of ChatGPT in this particular task. We also analyzed
the syntactical quality of the PowerShell code generated by
ChatGPT, obtaining a Syntax Single Accuracy of 95.58% and
a Syntax Comparative Accuracy of 96.46%. These results
underscore the commendable ability of ChatGPT to generate
accurate and syntactically correct PowerShell code.

Finally, we extended the execution analysis to ChatGPT,
following the same strategies described in Section 4.4, ob-
taining an overall Execution F1-Score of 82.92%. Despite
the strong syntactic performance, ChatGPT remains one step
below the fine-tuned models in the qualitative analysis of the
generated PowerShell code. The results of this analysis are
shown in Figure 8.

RQ4: How do fine-tuned NMT models, leveraging
security-oriented training data, compare to a publicly avail-
able, closed-source model?

The comparative analysis with ChatGPT, a publicly
available general-purpose language model, highlights
the specialized strengths of privately fine-tuned models,
CodeT5+, CodeGPT, and CodeGen, in offensive Pow-
erShell code generation. The fine-tuned models consis-
tently outperform ChatGPT across BLEU-4, Edit Dis-
tance, and METEOR scores. While showing notable
performance on syntactic accuracy, ChatGPT achieves
poorer results than the fine-tuned models for the exe-
cution analysis. This underscores the significance of

38 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

domain-specific fine-tuning and the benefits of training
on security-oriented datasets, providing an advantage
in generating offensive PowerShell code compared to
a general-purpose language model. The results affirm
the effectiveness of tailored training data for achieving
superior performance in domain-specific tasks.

5 Threats To Validity

Model selection. The external validity of the study might be
impacted by the choice of NMT models (CodeT5+, CodeGPT,
CodeGen). To mitigate this, we carefully selected models with
distinct architectures and capabilities, ensuring a representa-
tion of current advancements in the field [16,73,74]. This care-
ful selection aims to ensure that our findings reflect broader
trends in NMT model performance for code generation tasks.
Evaluation metrics. The reliance on output similarity met-
rics, although representing the most common solution in the
field, poses a potential threat to construct validity, as these
metrics may not fully encapsulate the correctness and func-
tional adequacy of the generated PowerShell commands. To
address this issue, our evaluation strategy encompasses a com-
prehensive suite of metrics, including similarity, syntactic, and
execution metrics, each offering unique insights into the mod-
els’ performance. By considering multiple variants of these
metrics and aligning with common practices in code genera-
tion evaluation, we aim to provide a well-rounded assessment.
No single metric is perfect, but analyzing them collectively
allows for a more comprehensive evaluation of the code.
Fine-tuning data. The construction of our dataset, meticu-
lously curated from several sources such as online repositories,
Atomic Red Team, Stockpile, and Empire, introduces poten-
tial limitations regarding the generalizability of our models’
performance across different offensive security contexts. To
minimize the impact of these limitations, we sourced data
from diverse origins and conducted manual verification of
each sample in the labeled dataset, ensuring the completeness
and coherence of descriptions with the intended programs.
The diversity in data sources and the thorough verification
process aim to diminish the influence of any singular source’s
peculiarities and errors in programs or descriptions, thereby
enhancing the dataset’s applicability and reliability for train-
ing and evaluating AI models in generating offensive Pow-
erShell code. Furthermore, our approach to crafting NL de-
scriptions, inspired by established styles found in PowerShell
literature, mirrors real-world scenarios where such descrip-
tions play a critical role in describing PowerShell commands.
Finally, regarding the size of our dataset, we notice that it is
in line with other state-of-the-art corpora used to fine-tune
models, which are in the order of one thousand samples [52].

6 Ethical Considerations

Recognizing that attackers use attacks as a weapon, it is im-
portant to specify that the goal of the proof-of-concept (POC)
is not to cause harm but to surface security weaknesses within
the software. Identifying security issues allows companies to
patch vulnerabilities and protect themselves against attacks.

Offensive security is a sub-field of security research that
tests security measures from an adversary or competitor’s
perspective, employing ethical hackers to probe a system for
vulnerabilities [75, 76]. Our work aims to automate attack
generation to explore critical vulnerabilities before they are
exploited by attackers [77]. Indeed, our work simplifies the
process of coding the attacks to surface security weaknesses
within the software and can provide valuable information
about the technical skills, degree of experience, and intent of
the attackers. With this information, it is possible to imple-
ment measures to detect and prevent attacks [78].

7 Conclusion

In this paper, we assessed the feasibility of using NMT models
to generate PowerShell code for security contexts. We aimed
to demonstrate that AI-based code generators are indeed fit to
generate PowerShell code, specifically, offensive PowerShell,
which spans several applications in the cybersecurity domain.
The evaluation of CodeT5+, CodeGPT, and CodeGen demon-
strated that these models achieve significant performance on
the code generation task, both with and without pre-training.
Moreover, the study showed that domain-specific fine-tuning
allows our models to outperform state-of-the-art privately fine-
tuned models, i.e., ChatGPT. We also introduced two novel
datasets for PowerShell code generation to use for pre-training
and fine-tuning AI-code generators.

Future work includes further analysis of the generated code,
such as sandbox execution of the offensive scripts, to under-
stand whether the code can evade detection measures, along
with more NMT models spanning several architectures and
capabilities.

Acknowledgments

This work has been partially supported by MUR PRIN 2022,
project FLEGREA, CUP E53D23007950001 (https://fl
egrea.github.io) and by an Industrial Ph.D. grant (PNRR
- DM 117/2023) from MUR and DigitalPlatforms S.p.A, CUP
E66E23000580003.

References

[1] A. Applebaum, D. Miller, B. E. Strom, C. Korban, and
R. Wolf, “Intelligent, automated red team emulation,”

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 39

https://flegrea.github.io
https://flegrea.github.io

Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, 2016.

[2] A. B. Ajmal, M. A. Shah, C. Maple, M. N. Asghar,
and S. U. Islam, “Offensive security: Towards proactive
threat hunting via adversary emulation,” IEEE Access,
vol. 9, pp. 126 023–126 033, 2021.

[3] E. M. Hutchins, M. J. Cloppert, R. M. Amin et al.,
“Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill
chains,” Leading Issues in Information Warfare & Secu-
rity Research, vol. 1, no. 1, p. 80, 2011.

[4] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels,
A. G. Pennington, and C. B. Thomas, “Mitre att&ck:
Design and philosophy,” in Technical report. The
MITRE Corporation, 2018.

[5] Sudhakar and S. Kumar, “An emerging threat fileless
malware: a survey and research challenges,” Cybersecu-
rity, vol. 3, no. 1, p. 1, 2020.

[6] I. Kara, “Fileless malware threats: Recent advances,
analysis approach through memory forensics and re-
search challenges,” Expert Systems with Applications,
vol. 214, p. 119133, 2023.

[7] Varonis, “What is Fileless Malware? PowerShell Ex-
ploited,” https://www.varonis.com/blog/fileless-malwa
re.

[8] Cybersecurity & Infrastructure Security Agency, “Iden-
tifying and Mitigating Living Off the Land Techniques,”
https://www.cisa.gov/sites/default/files/2024-02/Join
t-Guidance-Identifying-and-Mitigating-LOTL_V350
8c.pdf.

[9] R. Natella, P. Liguori, C. Improta, B. Cukic, and
D. Cotroneo, “Ai code generators for security: Friend or
foe?” IEEE Security & Privacy, 2024.

[10] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sen-
gupta, S. Yoo, and J. M. Zhang, “Large language models
for software engineering: Survey and open problems,”
arXiv preprint arXiv:2310.03533, 2023.

[11] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cum-
mings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati,

K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. Mc-
Candlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” arXiv
preprint arXiv: 2107.03374, 2021.

[12] H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma,
G. Liang, Y. Li, Q. Wang, and T. Xie, “Codereval: A
benchmark of pragmatic code generation with gener-
ative pre-trained models,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engi-
neering, 2024, pp. 1–12.

[13] X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen,
J. Feng, C. Sha, X. Peng, and Y. Lou, “ClassEval: A
Manually-Crafted Benchmark for Evaluating LLMs on
Class-level Code Generation,” arXiv preprint arXiv:
2308.01861, 2023.

[14] P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella,
B. Cukic, and S. Shaikh, “Shellcode_IA32: A dataset
for automatic shellcode generation,” in Proceedings
of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), R. Lachmy,
Z. Yao, G. Durrett, M. Gligoric, J. J. Li, R. Mooney,
G. Neubig, Y. Su, H. Sun, and R. Tsarfaty, Eds.
Online: Association for Computational Linguistics,
Aug. 2021, pp. 58–64. [Online]. Available: https:
//aclanthology.org/2021.nlp4prog-1.7

[15] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and
S. C. Hoi, “Codet5+: Open code large language models
for code understanding and generation,” arXiv preprint
arXiv:2305.07922, 2023.

[16] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang,
G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,
M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K.
Deng, S. Fu, and S. Liu, “Codexglue: A machine
learning benchmark dataset for code understanding and
generation,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021.
[Online]. Available: https://datasets-benchmarks-proce
edings.neurips.cc/paper/2021/hash/c16a5320fa475530
d9583c34fd356ef5-Abstract-round1.html

[17] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open
large language model for code with multi-turn program
synthesis,” 2023.

[18] OpenAI, “ChatGPT,” https://openai.com/chatgpt.

[19] Z. Li, Q. A. Chen, C. Xiong, Y. Chen, T. Zhu, and
H. Yang, “Effective and light-weight deobfuscation and

40 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf
https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf
https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf
https://aclanthology.org/2021.nlp4prog-1.7
https://aclanthology.org/2021.nlp4prog-1.7
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://openai.com/chatgpt

semantic-aware attack detection for powershell scripts,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp.
1831–1847.

[20] M.-H. Tsai, C.-C. Lin, Z.-G. He, W.-C. Yang, and C.-
L. Lei, “Powerdp: De-obfuscating and profiling mali-
cious powershell commands with multi-label classifiers,”
IEEE Access, vol. 11, pp. 256–270, 2023.

[21] D. Hendler, S. Kels, and A. Rubin, “Detecting malicious
powershell commands using deep neural networks,” in
Proceedings of the 2018 on Asia conference on computer
and communications security, 2018, pp. 187–197.

[22] A. Rubin, S. Kels, and D. Hendler, “Amsi-based detec-
tion of malicious powershell code using contextual em-
beddings,” arXiv preprint arXiv:1905.09538, 2019.

[23] M. Mimura and Y. Tajiri, “Static detection of malicious
powershell based on word embeddings,” Internet of
Things, vol. 15, p. 100404, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2
542660521000482

[24] Y. Mezawa and M. Mimura, “Evaluating the possibility
of evasion attacks to machine learning-based models
for malicious powershell detection,” in International
Conference on Information Security Practice and Expe-
rience. Springer, 2022, pp. 252–267.

[25] G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “Ast-based
deep learning for detecting malicious powershell,” in
Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp.
2276–2278.

[26] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj,
“From chatgpt to threatgpt: Impact of generative ai in
cybersecurity and privacy,” IEEE Access, vol. 11, pp.
80 218–80 245, 2023.

[27] P. Charan, H. Chunduri, P. M. Anand, and S. K. Shukla,
“From text to mitre techniques: Exploring the malicious
use of large language models for generating cyber attack
payloads,” arXiv preprint arXiv:2305.15336, 2023.

[28] P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella,
B. Cukic, and S. Shaikh, “Can we generate shellcodes
via natural language? an empirical study,” Automated
Software Engineering, vol. 29, no. 1, pp. 1–34, 2022.

[29] P. Liguori, E. Al-Hossami, V. Orbinato, R. Natella,
S. Shaikh, D. Cotroneo, and B. Cukic, “Evil: exploit-
ing software via natural language,” in 2021 IEEE 32nd
International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 2021, pp. 321–332.

[30] G. Yang, X. Chen, Y. Zhou, and C. Yu, “Dualsc: Auto-
matic generation and summarization of shellcode via
transformer and dual learning,” in IEEE International
Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2022, Honolulu, HI, USA, March 15-18,
2022. IEEE, 2022, pp. 361–372.

[31] G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and
T. Chen, “Exploitgen: Template-augmented exploit code
generation based on codebert,” Journal of Systems and
Software, vol. 197, p. 111577, 2023.

[32] A. M. Dai and Q. V. Le, “Semi-supervised sequence
learning,” Advances in neural information processing
systems, vol. 28, 2015.

[33] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo,
I. Beltagy, D. Downey, and N. A. Smith, “Don’t stop
pretraining: Adapt language models to domains and
tasks,” arXiv preprint arXiv:2004.10964, 2020.

[34] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of trans-
formers,” AI Open, 2022.

[35] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever
et al., “Improving language understanding by generative
pre-training,” 2018.

[36] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever et al., “Language models are unsupervised
multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell et al., “Language models are few-shot learn-
ers,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[38] H. Wang, J. Li, H. Wu, E. Hovy, and Y. Sun, “Pre-trained
language models and their applications,” Engineering,
2022.

[39] R. Tufano, L. Pascarella, and G. Bavota, “Automating
code-related tasks through transformers: The impact of
pre-training,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE,
2023, pp. 2425–2437.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[41] Red Canary, “Atomic Red Team,” https://atomicredtea
m.io/.

[42] M. Corporation, “MITRE ATT&CK,” https://attack.mit
re.org/.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 41

https://www.sciencedirect.com/science/article/pii/S2542660521000482
https://www.sciencedirect.com/science/article/pii/S2542660521000482
https://atomicredteam.io/
https://atomicredteam.io/
https://attack.mitre.org/
https://attack.mitre.org/

[43] MITRE, “CALDERA plugin: Stockpile,” https://github
.com/mitre/stockpile.

[44] MITRE, “CALDERA,” https://github.com/mitre/calde
ra.

[45] Empire Project, “Empire,” https://github.com/EmpireP
roject/Empire.

[46] Hacktricks, “Hacktricks,” https://book.hacktricks.xyz/.

[47] R. T. Recipe, “PowerShell tips & tricks,” https://redtea
mrecipe.com/powershell-tips-tricks/.

[48] I. Matter, “PowerShell commands for pentesters,” https:
//www.infosecmatter.com/powershell-commands-for
-pentesters/.

[49] Tutorial’s Point, “Learn PowerShell,” https://www.tuto
rialspoint.com/powershell/index.htm.

[50] T. Lee, K. Mitschke, M. E. Schill, and T. Tanasovski,
Windows PowerShell 2.0 Bible. John Wiley & Sons,
2011.

[51] L. Holmes, Windows PowerShell Cookbook: The Com-
plete Guide to Scripting Microsoft’s Command Shell.
O’Reilly Media, 2012.

[52] C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma,
A. Efrat, P. Yu, L. Yu, S. Zhang, G. Ghosh, M. Lewis,
L. Zettlemoyer, and O. Levy, “LIMA: less is more for
alignment,” CoRR, vol. abs/2305.11206, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2305.11206

[53] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
the limits of transfer learning with a unified text-
to-text transformer,” J. Mach. Learn. Res., vol. 21,
pp. 140:1–140:67, 2020. [Online]. Available: http:
//jmlr.org/papers/v21/20-074.html

[54] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang,
G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,
M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K.
Deng, S. Fu, and S. Liu, “Codexglue: A machine
learning benchmark dataset for code understanding and
generation,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021.
[Online]. Available: https://datasets-benchmarks-proce
edings.neurips.cc/paper/2021/hash/c16a5320fa475530
d9583c34fd356ef5-Abstract-round1.html

[55] P. Liguori, C. Improta, R. Natella, B. Cukic, and
D. Cotroneo, “Who evaluates the evaluators? on

automatic metrics for assessing ai-based offensive code
generators,” Expert Systems with Applications, vol. 225,
p. 120073, 2023. [Online]. Available: https://www.scie
ncedirect.com/science/article/pii/S0957417423005754

[56] X. Ruan, Y. Yu, W. Ma, and B. Cai, “Prompt learning
for developing software exploits,” in Proceedings of the
14th Asia-Pacific Symposium on Internetware, 2023, pp.
154–164.

[57] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a
method for automatic evaluation of machine translation,”
in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.
[Online]. Available: https://aclanthology.org/P02-1040/

[58] L. Han, “Machine translation evaluation resources and
methods: A survey,” arXiv preprint arXiv:1605.04515,
2016.

[59] D. Munkova, P. Hajek, M. Munk, and J. Skalka, “Evalu-
ation of machine translation quality through the metrics
of error rate and accuracy,” Procedia Computer Science,
vol. 171, pp. 1327–1336, 2020.

[60] NLTK, “Natural Language Toolkit (NLTK), bleu_score
module,” 2023. [Online]. Available: https://www.nltk.o
rg/api/nltk.translate.bleu_score.html

[61] pylcs, “Python library pylcs,” 2023. [Online]. Available:
https://pypi.org/project/pylcs/

[62] A. Lavie and A. Agarwal, “Meteor: An automatic metric
for mt evaluation with high levels of correlation with
human judgments,” in Proceedings of the Second Work-
shop on Statistical Machine Translation, ser. StatMT
’07. USA: Association for Computational Linguistics,
2007, p. 228–231.

[63] evaluate, “Python library evaluate,” 2022. [Online].
Available: https://pypi.org/project/evaluate/

[64] rouge, “Python ROUGE Score Implementation,” 2021.
[Online]. Available: https://pypi.org/project/rouge/

[65] J. Shin, M. Wei, J. Wang, L. Shi, and S. Wang, “The
good, the bad, and the missing: Neural code gen-
eration for machine learning tasks,” arXiv preprint
arXiv:2305.09082, 2023.

[66] J. Shi, S. Jiang, B. Xu, J. Liang, Y. Xiao, and W. Wang,
“Shellgpt: Generative pre-trained transformer model for
shell language understanding,” in 2023 IEEE 34th Inter-
national Symposium on Software Reliability Engineer-
ing (ISSRE). IEEE, 2023, pp. 671–682.

[67] Microsoft, “PSScriptAnalyzer,” https://github.com/Pow
erShell/PSScriptAnalyzer.

42 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/mitre/stockpile
https://github.com/mitre/stockpile
https://github.com/mitre/caldera
https://github.com/mitre/caldera
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://book.hacktricks.xyz/
https://redteamrecipe.com/powershell-tips-tricks/
https://redteamrecipe.com/powershell-tips-tricks/
https://www.infosecmatter.com/powershell-commands-for-pentesters/
https://www.infosecmatter.com/powershell-commands-for-pentesters/
https://www.infosecmatter.com/powershell-commands-for-pentesters/
https://www.tutorialspoint.com/powershell/index.htm
https://www.tutorialspoint.com/powershell/index.htm
https://doi.org/10.48550/arXiv.2305.11206
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://www.sciencedirect.com/science/article/pii/S0957417423005754
https://www.sciencedirect.com/science/article/pii/S0957417423005754
https://aclanthology.org/P02-1040/
https://www.nltk.org/api/nltk.translate.bleu_score.html
https://www.nltk.org/api/nltk.translate.bleu_score.html
https://pypi.org/project/pylcs/
https://pypi.org/project/evaluate/
https://pypi.org/project/rouge/
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer

[68] Will Schroeder, “PowerSploit,” https://github.com/Pow
erShellMafia/PowerSploit.

[69] Benjamin Delpy, “Mimikatz,” https://github.com/genti
lkiwi/mimikatz.

[70] Mark Russinovich,Thomas Garnier, “System Monitor,”
https://learn.microsoft.com/en-us/sysinternals/downl
oads/sysmon.

[71] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration
code generation via chatgpt,” arXiv preprint
arXiv:2304.07590, 2023.

[72] Microsoft, “Prompt Engineering - Learn how to use AI
models with prompt engineering,” https://microsoft.gith
ub.io/prompt-engineering/.

[73] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots:
Fusing large language models with completion engines
for automated program repair,” in Proceedings of the
31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, 2023, pp. 172–184.

[74] S. Tipirneni, M. Zhu, and C. K. Reddy, “Structcoder:
Structure-aware transformer for code generation,” arXiv
preprint arXiv:2206.05239, 2022.

[75] S. Bratus, I. Arce, M. E. Locasto, and S. Zanero, “Why
offensive security needs engineering textbooks,” Yale
Law & Policy Review, p. 2, 2013.

[76] J. G. Oakley, “The state of modern offensive security,” in
Professional Red Teaming. Springer, 2019, pp. 29–41.

[77] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley,
“Aeg: Automatic exploit generation,” in NDSS, 2011.

[78] I. Arce, “The shellcode generation,” IEEE security &
privacy, vol. 2, no. 5, pp. 72–76, 2004.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 43

https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://microsoft.github.io/prompt-engineering/
https://microsoft.github.io/prompt-engineering/

Attacking with Something That Does Not Exist:
‘Proof of Non-Existence’ Can Exhaust DNS Resolver CPU

Olivia Gruza*†, Elias Heftrig*†, Oliver Jacobsen*†, Haya Schulmann*†, Niklas Vogel*†,
Michael Waidner*‡§

*National Research Center for Applied Cybersecurity ATHENE
†Goethe-Universität Frankfurt

‡Technische Universität Darmstadt
§Fraunhofer Institute for Secure Information Technology SIT

Abstract

NSEC3 is a proof of non-existence in DNSSEC, which pro-
vides an authenticated assertion that a queried resource does
not exist in the target domain. NSEC3 consists of alphabeti-
cally sorted hashed names before and after the queried host-
name. To make dictionary attacks harder, the hash function
can be applied in multiple iterations, which however also
increases the load on the DNS resolver during the computa-
tion of the SHA-1 hashes in NSEC3 records. Concerns about
the load created by the computation of NSEC3 records on
the DNS resolvers were already considered in the NSEC3
specifications RFC5155 and RFC9276. In February 2024, the
potential of NSEC3 to exhaust DNS resolvers’ resources was
assigned a CVE-2023-50868, confirming that extra iterations
of NSEC3 created substantial load. However, there is no pub-
lished evaluation of the attack and the impact of the attack on
the resolvers was not clarified.

In this work we perform the first evaluation of the NSEC3-
encloser attack against DNS resolver implementations and
find that the NSEC3-encloser attack can still create a 72x
increase in CPU instruction count, despite the victim resolver
following RFC5155 recommendations in limiting hash itera-
tion counts. The impact of the attack varies across the different
DNS resolvers, but we show that with a sufficient volume of
DNS packets the attack can increase CPU load and cause
packet loss. We find that at a rate of 150 malicious NSEC3
records per second, depending on the DNS implementation,
the loss rate of benign DNS requests varies between 2.7% and
30%. We provide a detailed description and implementation
of the NSEC3-encloser attack. We also develop the first anal-
ysis how each NSEC3 parameter impacts the load inflicted on
the victim resolver during NSEC3-encloser attack.

We make the code of our NSEC3-encloser at-
tack implementation along with the zonefile and
the evaluation data available for public use: https:
//github.com/Goethe-Universitat-Cybersecurity/
NSEC3-Encloser-Attack.

1 Introduction

On 13 February 2024 a vulnerability,1 termed Preparing an
NSEC3 closest encloser proof can exhaust CPU resources,
was registered as CVE-2023-50868 (short for Common Vul-
nerabilities and Exposures) in a list of publicly disclosed
information security flaws. The description of the CVE
says that the processing of responses sent by nameservers
authoritative for DNSSEC signed zones can exploit mali-
ciously crafted NSEC3 records to cause CPU exhaustion on a
DNSSEC-validating resolver. By flooding the target resolver
with queries, an adversary can trigger responses to the target
resolver with specially crafted NSEC3 records exploiting this
flaw. Computation of those NSEC3 records can significantly
impair the resolvers’ performance. In this work, we provide
the first analysis of the vulnerability and an evaluation of the
attack against popular DNS resolvers. We explain the impact
on the resolvers’ implementations using code analysis as well
as monitoring of the CPU instruction count and measurements
of the latency incurred on requests from benign clients.

Vulnerabilities in proof of non-existence. Domain Name
System Security (DNSSEC) RFC4033 – RFC4035 was de-
signed to protect the Domain Name System (DNS) against
manipulation attacks by attaching digital signatures to DNS
records. The DNS resolvers can use the public keys of the cor-
responding domains to authenticate the DNS records that they
receive in responses. To provide an authenticated proof for
resources that do not exist, RFC3845 defined NSEC records,
which list the hostname before and the hostname after the re-
quested hostname. The listing of hostnames in NSEC records
exposed the domains to zone enumeration attacks, discussed
in RFC4470. To mitigate zone enumeration attacks, the IETF
standardized NSEC version 3 (NSEC3) in RFC5155. NSEC3
computes hashes over the hostnames and the resulting NSEC3
record lists the hashed names instead of plaintext names. Nev-
ertheless, NSEC3 too was found vulnerable to zone enumera-
tion attacks [3,5,10]. Although the privacy aspects of NSEC3
records were substantially explored, there was no evaluation

1https://kb.isc.org/docs/cve-2023-50868

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 45

https://github.com/Goethe-Universitat-Cybersecurity/NSEC3-Encloser-Attack
https://github.com/Goethe-Universitat-Cybersecurity/NSEC3-Encloser-Attack
https://github.com/Goethe-Universitat-Cybersecurity/NSEC3-Encloser-Attack
https://kb.isc.org/docs/cve-2023-50868

of the performance impact of NSEC3 records on DNS re-
solvers. In this work, we provide the first evaluation of the
performance load induced on the resolvers by attacks with
specially crafted NSEC3 records, which we dub the NSEC3-
encloser attack. Although the potential degradation of perfor-
mance by NSEC3 records was considered in RFC5155#§8.3,
there was no evaluation of the impact on performance by
attackers and the role of the NSEC3 parameters on the effec-
tiveness of the attack. A recently registered CVE-2023-50868
does not explain the impact of the attack on the resolvers nor
provides the evaluation of the attack.

NSEC3-encloser can exhaust CPU and lead to loss. We
implement and evaluate an NSEC3-encloser attack that leads
to increased CPU instruction counts on the affected resolvers,
and also to loss of packets from legitimate clients. In our
implementation of the attack, the NSEC3 records use the
maximum number of iterations supported by the DNS
resolver implementations, which follow the recommendation
counts listed in RFC5155. We experimentally observe that
using salt in the calculation of hashes in NSEC3 results in a
more effective attack than attacks without the salt. The reason
is that the salt value creates an additional input block which
leads to an increased calculation time since the blocks are
processed sequentially. At the same time, the salt value does
not substantially increase the resilience to zone enumeration
attacks since, in contrast to the traditional uses of the salt
in hash computations like for passwords, the hashes are im-
plicitly salted per zone by including the domain name in the
computation process. This is also stated in RFC9276, and
limits the benefit of using a salt in the first place.

Our contributions can be summarized as follows:
• We develop a tool for automated evaluation of the CVE-

2023-50868 attack, expanding on the proof-of-concept in the
CVE, and providing an automated setup to generate zones
and queries. Our implementation creates multiple NSEC3
configurations setting different values for NSEC3 parame-
ters, including a novel method for maximizing the number of
NSEC3 records in DNS responses and varying salt length, all
of which allow for testing different aspects of the resolvers’
behavior. We make our tool open-source to facilitate repro-
duction of our work [6].

• We provide the first evaluation of an attack that exploits
NSEC3 records for creating a load on DNS resolvers. In our
evaluation, we also analyze the resolvers’ behavior and limits
introduced in RFC5155 and explain how the resolvers react to
different values of NSEC3 parameters. We find that the salt in-
creases the load on the resolvers by 30%, an aspect which was
previously overlooked and not included in either CVE-2023-
50868 or the PoC that the CVE made public. Our full fledged
and automated attack evaluation allowed to identify the role of
salt in increasing the CPU instruction counts on the resolvers.
We also explore the limitations of the NSEC3-encloser attack,
i.e., the high query rate required to load resolvers and the
relatively low impact on traffic loss.

• We perform the first comparison of the NSEC3-encloser
attack to other attacks on DNS, and explain the differences
in performance and load, as well as in the vulnerabilities in
resolvers’ behavior that are exploited.

• We perform measurements of NSEC and NSEC3 configu-
rations on DNSSEC-signed domains and find that 56% of the
domains use NSEC which is vulnerable to zone enumeration,
while 41% use NSEC3. 77% of those NSEC3 domains use a
high number of hash iterations which exposes those domains
for abuse to create load on victim resolvers.

Organization. This paper is organized as follows. In Sec-
tion 2, we provide an overview of DNSSEC and the proof of
non-existence with NSEC and NSEC3. We provide the details
of the NSEC3 attack in Section 3. We evaluate the NSEC3
attack in Section 4, demonstrating the role of the parameters
in the NSEC3 record on the impact of the attack. We measure
real-world DNSSEC and NSEC/3 in Section 5. Finally, we
review Related Work in Section 6 and conclude in Section 7.

2 Overview of DNSSEC and NSEC3

The IETF standardized DNSSEC RFC4033 – RFC4035 to
enable DNS resolvers to detect if DNS records in responses
are manipulated. The DNSSEC specification requires that
the records in a zonefile are digitally signed. The zonefile
contains DNS records as well as DNSSEC material, most
notably DNSKEY, RRSIG, and DS records.

DNSSEC signatures are stored in RRSIG-type DNS
records. The public keys used to validate the signatures are
sent in DNSKEY-type records. DS records from a parent
zone are used to authenticate individual Key Signing Key
(KSK) type DNSKEY records in a child zone. This is done to
delegate trust from a parent zone public key to a child zone
public key. DS records use the same triple (owner name, algo-
rithm, key tag) to identify a subset of candidate DNSKEYs
as RRSIGs.

In additional to cryptographically attesting the validity of
DNS records, DNSSEC also enables proofs for non-existing
records, enabling authenticated denial of existence.

For this, RFC4035 defines Next Secure (NSEC) records for
a precomputed denial of existence, that prove that a requested
hostname does not exist. Each NSEC record contains a signed
pair of consecutive hostnames, sorted canonically. Each query
for a hostname not in the zonefile is answered by the name-
server with a suitable NSEC record. For instance, a query
for a non-existing hostname b.x.org is responded with a
signed NSEC record for a pair of existing hostnames sorted
canonically before and after the queried hostname: a.x.org
and c.x.org. The resolver can then confirm the requested
hostname does not exist as the NSEC record attests no do-
main name exists between a.x.org and c.x.org, proving
non-existence of b.x.org. An example of a NSEC record is
given below.

46 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

\\ Domain | TTL | RR type | Next hostname
x.org 700 NSEC a.x.org

\\ Resource record sets
NS SOA RRSIG NSEC DNSKEY

Research showed that NSEC was vulnerable to zone enu-
meration attacks [3, 5, 10]. By enumerating a target zone, an
adversary learns the IP addresses of all resources in the target
zone. An enumerated list of resources can be exploited for
other attacks, such as spam. To mitigate the threat introduced
by NSEC records, RFC5155 designed NSEC3: a precomputed
denial of existence. The idea of NSEC3 is replacing clear-text
hostnames with hashes, which makes zone enumeration from
the names significantly harder. The knowledge of the hashed
hostname cannot be directly used for zone enumeration since
cryptographic hash functions do not allow for the reconstruc-
tion of the plaintext hostname through preimage resistance.
NSEC3 uses an additional record NSEC3PARAM which con-
tains parameters for the NSEC3 validation, including the hash
algorithm, the amount of iterations, and salt parameters. A
single NSEC3PARAM record dictates the parameters for the
entire set of NSEC3 records. This is needed to ensure that any
query for a non-existent hostname maps to an NSEC3 record.
The ‘salt’ contains hexadecimal digits and is appended to
the domain name to make offline dictionary attacks harder.
‘Iterations’ indicates the number of times the hash function
was computed.

The NSEC3 record contains a pair of ordered hashes. Ac-
cording to RFC5155, to create the NSEC3 records, the canon-
ical hostname is hashed once and the resulting hash is re-
hashed a number of times according to the iteration parame-
ters in the NSEC3PARAM. Upon a query for a non-existent
resource, the nameservers should return to the requesting re-
solvers a signed NSEC3 record that contains two hashes, one
before the requested hostname and one after. The resolver can
then hash the hostname to ensure the hashed hostname lies be-
tween the returned hashes, thereby proving the non-existence.
An example of an NSEC3 record is given below.

\\ Hashed domain | TTL | RR type | Algorithm
ej23jdn4jnd... 700 NSEC3 1 (SHA1)

\\ Flags | Iterations | Salt
0 150 64ccab74...

\\ Next hostname | Resource record sets
kev723jd... NS SOA RRSIG NSEC DNSKEY

RFC9276 defines the best current practice for setting and
dealing with NSEC3 parameters, including considerations of
Denial of Service (DoS) by Central Processing Unit (CPU)
resource exhaustion through NSEC3 hashing. The only hash
function standardized for use in NSEC3 records is SHA-1.2

2https://www.iana.org/assignments/
dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml

According to RFC5155#§7.2, the resolvers require a proof
of the closest encloser, which proves that a subdomain of the
requested hostname is the closest encloser of that name. The
proof consists of up to two NSEC3 records: An NSEC3 record
that matches the closest (provable) encloser and an NSEC3
record that covers the “next closer” name to the closest en-
closer. The first NSEC3 record proves that the encloser exists.
The second NSEC3 record proves that the possible closest en-
closer is the closest, and proves that the queried hostname (and
any subdomains between the queried hostname and the closest
encloser) does not exist. These NSEC3 RRs are collectively
referred to as the “closest encloser proof” RFC5155. An ex-
ample in RFC5155 describes the closest encloser proof for the
nonexistent hostname alpha.beta.gamma.example.: The
owner might prove that gamma.example. is the closest en-
closer. The response contains the NSEC3 record that matches
gamma.example., and also contains the NSEC3 record that
covers beta.gamma.example. (which is the “next closer”
name).

According to the specification in RFC5155 to prove the
nonexistence of a hostname in a query, a closest encloser
proof and an NSEC3 record covering the (nonexistent) wild-
card record at the closest encloser MUST be included in the
response. This collection of (up to) three NSEC3 records
proves both that the queried hostname does not exist and that
a wildcard that could have matched the queried hostname also
does not exist; if gamma.example. is the closest provable
encloser to the queried hostname, then an NSEC3 record cov-
ering *.gamma.example. is included in the authority section
of the response.

3 NSEC3-Encloser Attack

The NSEC3-encloser attack exploits computational complex-
ity in hash calculation for closest encloser proofs. The idea
behind the attack is to set up a malicious zonefile in a valid
DNSSEC signed domain, then to cause the victim DNS re-
solvers to issue DNS queries for a non-existent resource in
the domain of the adversary. We design our attack to be fully
RFC compliant; both the client requesting resolution from
the victim resolver as well as the nameserver containing the
malicious zonefile fully conform to all RFC requirements.
The goal is to create a zonefile that maximizes both the num-
ber of hash calculations and the computation effort per single
hash calculation. We construct an attack on NSEC3 instead of
NSEC as the former requires hash calculations for the closest
encloser proof, which significantly increases computational
load compared to NSEC. The core aspect of the NSEC3 at-
tack lies in the construction of the proof of non-existence with
NSEC3 records, which should lead to many hash calculations
in the victim resolver. The adversary requests a resource that
inflicts large complexity for the resolver to prove the closest
encloser. In the following, we illustrate the attack concept
with exemplary adversarial zonefiles.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 47

https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml
https://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml

3.1 Zonefile Construction

In the configuration of the zone, we follow DNSSEC and
NSEC3 standard specifications. This ensures that the zonefiles
are accepted by all standard compliant resolvers.

To maximize the attack impact, the attacker needs to trig-
ger the maximum number of hash validations in a victim
resolver. Since each NSEC3 record obtained from a DNS
request results in a single hash calculation, this corresponds
to maximizing the number of NSEC3 records for a given re-
quest. Following RFC5155, this number is limited to up to
three NSEC3 records per DNS request, leading to a maxi-
mum of three hash calculations per request. Achieving this
maximum number of NSEC3 records in each resolver request
requires a specific zonefile configuration, which we illustrate
in Figure 1. For a configured zone origin, the generated zone-
file consists of the following non-NSEC3 (and non-RRSIG)
records:

▷ The SOA, NS and DS records of the zone, present at the
zone apex.

▷ Two DNSKEY records, one for the KSK and one for the
ZSK.

▷ One NSEC3PARAM record at the zone apex, signaling
NSEC3 usage to the authoritative nameserver.

▷ The A record for the nameserver domain.

The zone has two unique name entries, ATTACK.ER and
NS1.ATTACK.ER. Following specification, both of these
names require an NSEC3 record, proving the existence of
the Resource Record sets (RRsets) listed for the names. How-
ever, to achieve three NSEC3 records in the response for an
arbitrary resolver request, this is insufficient, as any domain
existence or non-existence proof would require between one
and two of these NSEC3 records. To validate an NSEC3 re-
ply, resolvers need three different values from the nameserver:
The closest encloser, proof that the “next closer” domain does
not exist, and proof that no wildcard record exists covering
the requested domain.

The closest encloser proves that a domain exists in the zone
that is the nearest ancestor of the queried name. It establishes a
context within which the non-existence of the queried domain
can be asserted. In our example, the NSEC3 record with the
hash of ATTACK.ER proves the existence of this hostname,
and all subdomains will receive this record as their closest-
encloser.

The next domain hash of an NSEC3 record provides evi-
dence of the numerically subsequent domain name hash in the
zone, confirming that no records exist between the domain
name hash of an NSEC3 record and this next domain. For ex-
ample, consider a nameserver has to proof the non-existence
of a domain with a hash of 0x123. In the zone, the next smaller
NSEC3 record has a hash of 0x111, with a next hash value of
0x222. Since the requested domain hash (0x123) is larger than
0x111 but not equal to 0x222, the requested domain provably
does not exist in the zone. The nameserver must provide the

;; ZONE ‘ATTACK.ER’

ATTACK.ER. 0 IN SOA NS1.ATTACK.ER. NS1.ATTACK.ER. 0 0 0
10 0

ATTACK.ER. 0 IN NS NS1.ATTACK.ER.

ATTACK.ER. 0 IN DS 35650 7 1 e8316...

ATTACK.ER. 0 IN DNSKEY 257 3 7 AwEA...
ATTACK.ER. 0 IN DNSKEY 256 3 7 AwEA...

ATTACK.ER. 0 IN NSEC3PARAM 1 0 150 -

HKHV...38AU.ATTACK.ER. 0 IN NSEC3 1 1 150 -
HKHV...38B0 1

HKHV...38B0.ATTACK.ER. 0 IN NSEC3 1 1 150 -
QCQC...7U45 2

NS1.ATTACK.ER 0 IN A 6.6.6.6

QCQC...7U45.ATTACK.ER. 0 IN NSEC3 1 1 150 - SN5U...89IT A
RRSIG 3

SN5U...89IT.ATTACK.ER. 0 IN NSEC3 1 1 150 - SN5U...89IU NS
SOA DS RRSIG DNSKEY NSEC3PARAM 4

SN5U...89IU.ATTACK.ER. 0 IN NSEC3 1 1 150 -
HKHV...38AU 5

[...] ;; RRSIG records

Figure 1: Generated attack zonefile example.

NSEC3 record proving that the “next closer” domain (the
ancestor of the queried name just below the closest encloser)
does not exist. The resolver can confirm that this domain
name does not exist by validating that the next hash in the
returned NSEC3 record is not the hash of the “next closer”
domain. By inference, the queried name cannot exist, too,
since the zone does provably not include one of its ancestors.

Finally, the resolver needs to ensure that no wildcard record
covers the requested domain. The nameserver thus includes
the NSEC3 record next-smaller of where the hash of the wild-
card record corresponding to the level of the enclosed domain
would be. These proofs may, however, overlap. For example,
if the next domain corresponds with the NSEC3 entry for the
closest encloser, the nameserver will only send the overlap-
ping entry once, reducing the resulting computational effort
in the resolver, thereby weakening the attack.

To force the authoritative nameserver to serve exactly three
NSEC3 records to every request for a non-existing domain
name and thereby maximize the impact of the attack, we
develop a new scheme for NSEC3 records in the zone. The
required records are described in the following. Note that H
is the NSEC3 hash function used, generally SHA-1.

(1) H(ATTACK.ER).ATTACK.ER with next hash (3)

(2) H(NS1.ATTACK.ER).ATTACK.ER

(3) (H(ATTACK.ER)+1).ATTACK.ER

(4) (H(*.ATTACK.ER)−1).ATTACK.ER with next hash (5)

(5) (H(*.ATTACK.ER)+1).ATTACK.ER

48 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

NSEC3 records (1) and (2) are mandatory records and thus
must be included in the domain. Further, in the attack setup,
the adversary will trigger resolution of a non-existent sub-
domain of the ATTACK.ER domain, resulting in (1) always
contained in the reply as it is the closest encloser to all re-
quests. Note that this closest encloser NSEC3 record also
includes a next-hash value. If the resolver requests a domain
which is, by chance, hashed to a value directly “after” the
ATTACK.ER domain hash, the authoritative server would de-
tect the overlap and only send a single NSEC3 record (1) to
cover closest encloser and the next hash. To prevent this and
force an additional NSEC3 record in the answer, we include
an additional NSEC3 record (3) which covers the hash one
larger than (1). Thus, (1) always has (3) as next hash and
therefore never covers any other non-existent domain in the
zone. It will therefore never overlap with the required “next
closer” domain record.

Similarly, the attacker needs to ensure that none of the
above mentioned records, by chance, covers the wildcard
domain name, as the resolver would then, e.g., only need to
send a single record for “next closer” and wildcard proof. To
prevent this, a new record (4) is added, with a hash value just
below the hash of the wildcard domain name, as this record
will now always be included to proof non-existence of the
wildcard domain. Conversely, this new record now also has
a next hash value, which might by chance cover the “next
closer” domain of the requested domain, again leading to
overlap. Therefore, a new record (5) is added that ensures that
the record (4) only covers two hashes. Thus, for every request
to a non-existent domain, the nameserver must include three
NSEC3 records: (1) for closest encloser, then (2), (3) or (5)
for the “next closer” proof, and finally (4) for wildcard proof.

3.2 Maximizing the Impact

Using the above described zonefile as-is only results in three
hash computations. However, the impact can be increased,
both by adapting the DNS request from client to resolver, and
by adapting the malicious zone.

3.2.1 Adapting the request

When a client requests a non-existent domain from the re-
solver, the resolver needs to conduct the above described
checks to attest non-existence of the domain, including
the check for the closest encloser. Crucially, the resolver
cannot necessarily directly infer the closest encloser from
the NSEC3 records. For instance, consider a nested sub-
domain A.B.ATTACK.ER. The resolver receives a hash for
the closest encloser, but does not directly know if the hash is
for A.B.ATTACK.ER, B.ATTACK.ER, or ATTACK.ER. Instead,
the resolver has to attempt for each candidate individually
whether any of the NSEC3 records in the response proves the
existence for the encloser. The algorithm for this is listed in

RFC5155. The resolver hashes the query name and matches
the resulting hash against each NSEC3 record. If none of the
records fit, it has to slice away the next label and try again,
repeatedly hashing and matching. Therefore, the workload of
the closest encloser proof depends on the number of labels
below the closest encloser in the query name and, to a lesser
degree, on the number of NSEC3 records in the nameserver
response. Maximizing these numbers can incur a significant
workload of calculating hashes on the resolver. Note that the
maximum number of labels in the request is limited by the
maximum request size of 255 bytes in RFC1035.

3.2.2 Adapting the zone

Using NSEC3 parameters in a malicious zonefile, the per-
hash overhead can be greatly increased. In the following, we
highlight the two NSEC3 parameters that can be manipulated
to maximize impact.

3.2.3 Hash iteration count

NSEC3 supports hash iterations to increase computational ef-
fort for brute-forcing hash values. Hash iterations require that
the hash of a domain name is re-iterated through the respective
hash function for a set number of iterations. This mechanism,
while improving security through hardening brute-force pro-
tection, can be exploited to increase computational load per
calculation on the resolver, resulting in a stark increase in the
number of hash calculations in the attack. For example, if the
resolver needs to calculate three hashes for the three NSEC3
records in the zone, choosing an iteration count of 100 will
result in a total of 300 hash calculations.

3.2.4 Adding a salt

Additionally to iterations, NSEC3 also supports protection
against rainbow-table attacks [9] through the addition of a salt
value to the hash. The salt is added to the plaintext domain
name before hashing, which prevents pre-calculation of tables
of potential domain names. The salt additionally increases the
computational load for hash calculations, as SHA-1 (the only
currently supported hash algorithm) exhibits an increase in
computation time over longer plaintext inputs. The increase
in computation time stems from the underlying blocks that
are used as input to the hash functions; with more blocks of
plaintext, the hash function takes linearly more time. Notably,
when using iterations, the salt is not only added to the first
iteration of the hash function but to all subsequent inputs to
the function, increasing load for each of the iterations.

Our code-review yields that all investigated resolvers sup-
port both the hash iterations and the salting, following RFC
specification. An exemplary implementation of the hash func-
tion in Unbound DNS resolver is given in code Listing 1.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 49

Resolver Iteration Limits
Patched version 50 150

Unbound 1.19.1 — 1.13.2
Bind9 9.18.24, 9.19.19 9.18.24, 9.19.19 9.17.13

9.16.48 9.16.16
PowerDNS 5.0.0 5.0.0 4.5.2
Knot Resolver 5.7.1 5.7.1 5.3.1
Table 1: The limits introduced across resolvers over time.

1 nsec3_calc_hash(struct regional* region,
2 sldns_buffer* buf, struct nsec3_cached_hash* c) {
3 // [...] Init buffers and do sanity checks
4

5 // Write dname and salt to buffer
6 sldns_buffer_write(buf, c->dname, c->dname_len);
7 sldns_buffer_write(buf, salt, saltlen);
8

9 // Calculate first hash from buffer content
10 (void)secalgo_nsec3_hash(algo,
11 (unsigned char*)sldns_buffer_begin(buf),
12 sldns_buffer_limit(buf),
13 (unsigned char*)c->hash);
14

15 for(i=0; i<iter; i++) { // Iterate through number
16 // Insert previous hash and salt into buffer
17 sldns_buffer_clear(buf);
18 sldns_buffer_write(buf, c->hash, c->hash_len);
19 sldns_buffer_write(buf, salt, saltlen);
20

21 // Calculate hash from buffer content
22 (void)secalgo_nsec3_hash(algo,
23 (unsigned char*)sldns_buffer_begin(buf),
24 sldns_buffer_limit(buf),
25 (unsigned char*)c->hash);
26 }
27 }

Listing 1: Source code for NSEC3 iterations in Unbound.

The code snippet shows how the NSEC3 iterations are
performed. The hash is calculated and written into the result.
Then, a for-loop is entered which continuously writes the
result of the previous hash calculation into a clear buffer,
adds the salt and calculates the hash again, as long as the
iteration count is below the limit. The code-example shows
that Unbound, like all investigated resolvers, conforms to the
specification in iterating the hash and adding the salt in each
iteration.

Practical limits to iterations. The standard provides rec-
ommendations to the number of iterations a resolver may
allow on a given NSEC3 record. We find from code review
that these values are observed only in some resolvers; a subset
of resolvers do not enforce these limits, while other resolvers
set stricter limits in their standard configuration. This is not
surprising, as RFC9276 encourages resolvers to choose their
own limits to a value they seem adequate for current deploy-
ments. A detailed overview of enforced iteration limits in
different resolver versions is presented in Table 1.

Practical limits to salt length. Generally, a longer salt
value allows for longer calculation time of a given hash. How-
ever, the maximum length of the salt is limited by the available
space of the salt field in the NSEC3PARAM record, only al-
lowing up to 255 bytes of data for the salt. We find from code
review that all resolvers allow this maximum salt length, with
no resolver enforcing stricter length limits.

Resolver Version Iteration Limit
Bind9 9.16.1 RFC5155
Bind9 9.18.12 150

Unbound 1.17.1 150
PowerDNS 4.8.2 150

Knot 5.6.0 150
Table 2: Resolver versions and iterations limits in the test setup.

Thus the maximum attack impact can be achieved by query-
ing the resolver with a deeply nested sub-domain, configure
the nameserver to always deliver all three NSEC3 records,
and using both the maximum number of iterations allowed by
the resolver, and the longest possible salt length of 255 byte.

3.2.5 Generating the zonefile

To test different zone configurations with differing values for
the NSEC3 parameters, we develop a script that automatically
generates zonefiles from a singular JSON configuration file.
We make the script publicly available to facilitate reproduc-
tion of our work [6]. This configuration file used in the script
specifies the individual zones, the cryptographic parameters,
such as key size and NSEC3 iterations, nameservers, TTL
values, and relationship between the zones. The generation
script written in Python parses a configuration, generates the
defined records, creates all relevant DNSSEC signature and
key records, and exports each zone to a file to be hosted by a
nameserver implementation.

4 Evaluation of the Attack

To practically evaluate the impact of the attack, we deploy the
resolvers and a nameserver with the attack zones in a local
isolated setup. We send attack queries to the resolvers and
measure the impact of the attack under different scenarios.
Section 4.1 describes the test setup, Section 4.2 illustrates
the influence of different parameters on the impact of the
attack, and Section 4.3 delves into comparing the impact of the
attack between different resolvers, highlighting differences
in implementations that cause different reactions to attack
requests. Finally, in Section 4.4, we show that the attack can
sufficiently stall resolvers to cause a drop of benign client
queries.

4.1 Setup

We deploy the five resolvers in Table 2 as Docker containers
communicating via a network bridge with our nameserver for
the attack requests, and the internet for benign requests. We
additionally include the older Bind9 version 9.16.1 in our test
environment to compare the impact of the (historic) iteration
count limits defined in RFC5155 to the lower limits adopted
by the current implementations. To serve the attacker zones,
we set up an NSD 4.6.1 authoritative nameserver on our local

50 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

network which serves the generated zonefiles. This ensures
that we accurately measure the attack impact on the resolvers,
since the per-query overhead introduced by the authoritative
nameserver is negligible. The nameserver is not reachable
from the internet.

We generate and include zonefiles for different combina-
tions of parameters in NSD for each test, each having a unique
identifier as part of the domain name. The zones are gener-
ated as child zones EXii.NSEC3.EXAMPLE.ORG to a parent
zone NSEC3.EXAMPLE.ORG, where ii is the two-digit zone
identifier. It is unrealistic that an attacker can control zones
at the domain tree root or some top-level domain, but since
the impact of the attack depends on the length of the zone
domain name, we select the reasonable-length domain name
NSEC3.EXAMPLE.ORG. The parent zone contains signed DS
records with the digest of the child zone KSK’s, i.e., the zone
has a complete and valid DNSSEC configuration and follows
RFC specification.

Since the wire-format of the child zone domain is 24 bytes
(including the root label), there remain 231 bytes for addi-
tional labels in an attacker query QNAME. We use a randomly
chosen 4-byte label as the non-existent subdomain for the at-
tack to prevent the resolver from answering queries from the
caches. This effectively leaves 226 bytes for additional la-
bels. Hence, the attack query names to the resolvers have the
following format, resulting in 115 sub-labels:

(A.)113.abcd.EXii.NSEC3.EXAMPLE.ORG

Each resolver is configured to query the local NSD author-
itative nameserver for any queries to NSEC3.EXAMPLE.ORG
with the zone’s keys added to the set of trusted keys of the re-
solvers. Furthermore, the resolvers have DNSSEC validation
enabled and are run single threaded.

Our test setup is running Ubuntu 22.04 with a 12th Gen
Intel® Core™ i7-1280P CPU at 4.8GHz.

4.2 Comparison of Attack Parameters
To compare the impact of the attack parameters, we exe-
cute the resolvers in a controlled environment and measure
the attacker-induced CPU load for different rates of attacker
queries per second and different parameter configurations. In
our analysis, we identify how specific values for configurable
parameters influence the CPU exhaustion impact on the re-
solvers, illustrating how to maximize attack impact as well
as giving a numerical basis to choose appropriate limits for
attack mitigations.

Our analysis includes key sizes, the number of NSEC3
iterations, and the length of the NSEC3 hash, influenced over
the salt length. Each test case includes an incremental increase
of the rate of attacker requests on the resolver to illustrate
resolver behavior both under small scale and heavy attack.

We conduct multiple tests to find the ideal rate for increas-
ing the attack rate and the maximum rate of attack in the

(a) Unbound

(b) Bind9.16.1
Figure 2: Comparison of CPU workload for different key sizes.

experiments. We find increasing the attack rate too quickly
does not allow to distinguish the impact of a specific rate
from natural fluctuations in CPU load resulting from CPU
scheduling, while increasing it too slow wastes measurement
time. Following our evaluation, we find increasing the attack
rate every 3s as a suitable compromise. To identify a suitable
maximum attack rate for the experiment, we continuously
increase the rate of attack until we see artifacts caused from
the experiment hardware struggling to keep up with sending
enough requests to the nameserver. We find a value of 150
requests per second as a suitable maximum value were we did
not observe any kernel- or hardware-induced artifacts in our
measurement. A value of 150 requests per second is sufficient
to cause 100% CPU load in all investigated resolvers. Finally,
we choose to increase the attack rate with a delta of 10/3s to
cause a observable difference between measurement steps,
while also keeping the measurement fine-grained enough to
see detailed effects at different steps.

For Bind9.16.1, which poses no strict NSEC3 iteration limit
and therefore enables a much higher attack impact per request,
we reduce the attack rate to enable similar fine-grained in-
sights. We identify an attack rate delta of 0.5/s and an upper
bound of 7.5/s suitable for our setup.

In our experiments, we find that the impact of different
parameters is similar between the investigated resolvers. We
will thus in the following section focus on the parameter
impact on Unbound 1.17.1 and Bind9.16.1. The differences
between resolvers will be discussed in Section 4.3.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 51

(a) Unbound

(b) Bind9.16.1
Figure 3: CPU workload for different NSEC3 iteration counts.

4.2.1 Key Size

While no NSEC3 parameter per se, the key size influences the
maximum allowed number of NSEC3 iterations as defined in
RFC5155. We do not expect that the key size has a significant
impact on the induced CPU work load since the load stems
from the high number of hash calculations and not signature
validation. Nevertheless, we evaluate whether this assumption
holds for the tested resolvers. For this test, we fix the NSEC3
iterations at 150 and the salt length to 0 and compare the three
different supported RSA key sizes of 1024, 2048, and 4096.
The results are plotted in Figure 2. As expected, there is no
significant deviation between the three curves in CPU load.
Hence, for the subsequent tests, we use the key size 4096 as
it allows for a much larger range of NSEC3 iteration values.

4.2.2 NSEC3 Iterations

For Unbound, we evaluate different NSEC3 iteration counts
ranging between 0 and 165 in Figure 3a. We observe a clear
correlation between higher iteration counts and larger induced
workload which approaches a linear distribution as the attack
query rate increases. The exception is 165 iterations which
shows loads well below all other measurements. This is be-
cause the evaluated version of Unbound has a pre-configured
limit of 150 NSEC3 iterations and disregards the zone with a
higher iteration count as bogus without further validating the
NSEC3 records it receives from the authoritative nameserver.
Since processing the queries and validating the signatures has
some constant overhead, an iteration count of 0 incurs more
overhead than the rate 165.

(a) Unbound

(b) Bind9.16.1
Figure 4: CPU workload for different NSEC3 salt lengths.

In the case of Bind9.16.1, no limits are enforced for the
iteration values. As evident in Figure 3b, this allows us to
query zones with iteration counts well above the 150 limit
of all other tested resolvers. More significantly, we can use
values above the 2500 iteration limit of RFC5155 which illus-
trates a significant vulnerability in this version of the resolver.
At attack rates as low as 7.5 queries per second, we are able
to max out the CPU load at 100% for this iteration limit. But,
even for the standardized 2500 iterations, there is a significant
load on the resolver, reaching up to 90% at an attack rate of
7.5/s. Thus, higher iteration counts can significantly increase
the impact of the attack on resolvers.

4.2.3 NSEC3 Salt Length

Next, we compare different salt lengths in Figure 4. In this
test, we use a key size of 4096 and set the NSEC3 iterations
to the most impactful RFC5155-conform value of 150 for
Unbound and 2500 for Bind9.16.1, respectively. For Unbound,
we measure an increase of CPU load by approximately one
third and for Bind9.16.1 by about one half when increasing
the length of the salt from 0 to 255, with the load of the
intermediate values distributed uniformly in-between. This is
to be expected from the way the NSEC3 hashes are calculated.
Since the salt is appended to the hashed domain/digest at each
iteration, the additional workload of longer inputs to the hash
function applies to every iteration of the hash function. SHA-1
is a Merkle-Damgård hash function, hence, the calculation
overhead grows roughly linearly with the number of blocks
the hash function is calculated on. With a block size of 512
bit, every 64 bytes added to the hash function input require

52 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

(a) 150 iterations, 0 byte salt

(b) 150 iterations, 255 byte salt
Figure 5: Comparison of CPU workload between resolvers

one more calculation of the SHA-1 hash function to compute
the digest. Thus, a longer salt multiplies the total load on
the resolver for each NSEC3 hash calculation by the number
of blocks added through the concatenation of the salt to the
digest per hash function execution. Overall, the increased load
causes the CPU load to max out at 100% for Unbound at an
attack rate of 110/s and Bind9.16.1 at 4.5/s for a salt length
of 255 bytes.

4.3 Comparison of Resolvers
In this section, we compare the CPU load of the resolvers
under the most effective parameter choices. Since the high
iteration limit in Bind9.16.1 represents a special case, we limit
the comparative analysis to the resolvers with an iteration
limit of 150: Bind9.18.12, Unbound 1.17.1, PowerDNS 4.8.2,
and Knot 5.6.0. As in the previous section, we execute an
attack with an incrementally increasing attack rate of up to
150/s and measure the induced CPU load. We fix the zone
NSEC3 iterations at 150 and repeat the test with salt lengths
0 and 255. The test results are illustrated in Figure 5.

4.3.1 Salt Length 0

Figure 5a plots the CPU rates of all resolvers with a salt length
of 0. We can observe a clear differentiation of loads between
the resolvers with only Bind9.18.12 and PowerDNS reaching
the 100% CPU limit before the attack rate is maxed out, at 110
and 150 packets per second, respectively. Furthermore, we
observe that Bind9.18.12 remains at 100% CPU activity for 2

Resolver Attack Rate Total Loss Rate Adjusted Loss Rate∗

Bind9.18.12 150/s 5.10% 7.01%
Bind9.18.12 110/s 16.42% 22.99%

Unbound 150/s 24.75% 34.66%
PowerDNS 150/s 1.97% 2.76%
PowerDNS 120/s 5.62% 7.87%

Knot 150/s 12.87% 18.01%
(∗Total loss rate relative to the attack duration)

Table 3: Measured client request loss rate with an attack rate of 150/s
over 40s, 150 iterations, and 255 byte salt.

more seconds after the attack has concluded, indicating that
the resolver is falling behind processing the queries in real
time. Notably, Knot is able to process the attack queries more
effectively, only reaching a workload of up to 50% during the
test.

4.3.2 Salt Length 255

For the test case with the 255 byte salt, we illustrate the mea-
sured CPU load in Figure 5b. In this scenario, all resolvers
max out at 100% CPU load before the limit of 150 attack
queries per second is reached. Bind9.18.12 reaches full load
at 80/s, PowerDNS at 110/s, Unbound at 130/s, and Knot at
140/s. This confirms that the NSEC3 salt has a significant
effect on the impact of the attack on all resolvers, roughly
increasing the load by a third and — in the case of Knot – up
to one half. Once more, we observe continuing CPU load after
the attack has concluded, this time for all resolvers. The time
of continued stalling correlates with how early in the attack
the full CPU load is reached because, once rates continue to
rise above the rate at which the CPU is at 100%, the resolver is
unable to process the queries at the same rate as there are new
incoming queries. Bind9.18.12 continues processing queries
until after the measurement has concluded.

We can thus confirm that all examined resolvers are vulner-
able to the attack. Knot generally performs best when stressed
under the resource exhaustion attack for both attack configu-
rations, while Bind9.18.12 shows the greatest vulnerability to
the attack in terms of CPU load. In general, the effectiveness
of the attack scales linearly with the attack query rate per
second.

4.4 Effect on Benign Clients

Having established that high query rates are required for
achieving high CPU load on the resolvers, the question re-
mains whether the attack can be used to sufficiently stall the
resolvers such that they fail to answer benign client queries.
We evaluate this by continuously sending client queries at
a rate of 10/s to the resolvers while simultaneously attack-
ing the resolver with the NSEC3-encloser attack. The clients
query unique uncached records from the resolvers and log
whether they receive a reply. After 5s, we consider a client
request timed out, i.e., too old to be of value to the client and

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 53

(a) Unbound attacked with rate 150/s (b) Knot attacked with rate 150/s

(c) Bind9.18.12 attacked with rate 110/s (d) PowerDNS attacked with rate 120/s
Figure 6: Comparison benign query delays and drops with 150 iterations and 255 byte salt

therefore lost. This is in line with the timeouts used by dig3

and glibc.4 Figure 6 shows the results for all tested resolvers,
Table 3 lists the measured client loss rates.

We measure the resolvers at attack rates of up to 150/s, start-
ing the attack 10s into the test and executing it for 40s. For
both Unbound (Figure 6a) and Knot (Figure 6b), we achieve
adjusted loss rates — the total loss rate during the entire test
relative to the attack time — of 34.66% and 18.01%, respec-
tively. For Bind9.18.12, 150/s is well above the attack rate at
which CPU utilization reaches 100%, hence, the high num-
ber of stalled NSEC3 validations tend rapidly exhaust kernel
and hardware resources and interfere with the measurement
results yielding an adjusted loss rate of 7.01%. Bind9.18.12
reaches a peak adjusted loss rate of 22.99% at the rate of 110/s
(Figure 6c). Similarly, PowerDNS, when attacked at 150/s,
reaches a point where there are too many stalled attacker
queries leading to lower loss rates in our setup. The evaluated
peak rate for PowerDNS is 120/s where we measure a loss of
up to 7.87% of queries at 100% CPU utilization (Figure 6d).

The results show that, even with full CPU exhaustion, the
attack achieves no full client query loss, i.e., no comprehen-
sive DoS. The key limitation of the attack is that every indi-
vidual attacker query only causes a relatively minor load on
the resolver, leaving ample opportunities to process and re-
ply to client queries in-between the attacker-induced stalling
periods.

3https://linux.die.net/man/1/dig
4https://linux.die.net/man/5/resolv.conf

We measure the number of instructions of all resolvers for
2000 queries over a span of 40s for uncached benign queries
and attack queries. In their blog post,5 the developers from the
Internet Systems Consortium (ISC) mention that the discov-
ery of the NSEC3-encloser attack enables scaling the attack
to 125 times as previously thought possible. In theory, the
overhead of one attack query is made up of some constant
portion (e.g., for querying the authoritative nameserver and
verifying the signatures) and the hash calculation. The latter
is dependent on the number of iterations, multiplied by the
number of enclosed labels in the request (up to 125), roughly
multiplied again by the hash operations incurred by hashing
the digest plus salt (up to 4 additional hash blocks leading to
a factor of approximately 3–5). This leads to an increase of
instructions by a factor of up to 125 ·5 = 625 compared to a
single query with a high NSEC3 iteration count and no addi-
tional labels/salt. In practice, hash operations are relatively
cheap in terms of instructions, especially compared to asym-
metric cryptography. Hence, compared to an uncached benign
query, which incurs considerable overhead through recursive
querying of nameservers, retrieving keys, and validating sig-
natures, we measure an increase of instructions by a factor of
72 for Unbound, 41 for Bind9.18.12, 33 for PowerDNS, and
13 for Knot. The high factor for Unbound is mostly due to the
low number of instructions for the benign queries, which is
on average 65% lower compared to the other resolvers.

5https://www.isc.org/blogs/2024-bind-security-release

54 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://linux.die.net/man/1/dig
https://linux.die.net/man/5/resolv.conf

4.5 Comparison to PoC in CVE-2023-50868
Following our evaluation, we also look into CVE-2023-50868,
which made the NSEC3 vulnerability public and contains a
Proof of Concept (PoC) implementation of the attack.

To the best of our knowledge, neither the CVE-2023-50868,
nor related blog posts contain any detailed evaluations of the
impact of the attack on different resolvers. We contribute this
evaluation, showing that resolvers differ in their vulnerability
to the attack. For example, we find that Unbound is more vul-
nerable to the attack due to its internal scheduling of NSEC3
compared to e.g., PowerDNS.

We further identify the impact of different NSEC3 parame-
ters on the severity of the attack. The PoC correctly identifies
that maximizing the iteration count greatly improves impact
on resolvers, which we confirm in our evaluations. However,
the PoC lacks utilization of a salt value, which we show to
also substantially increase the attack impact. Since salts ex-
tend the length of the hash-function input, they increase the
required computation in every iteration of the hash, signifi-
cantly increasing effort for the resolver.

We experimentally demonstrate that a query rate in the
low hundreds is sufficient to exhaust a single CPU core on
unmitigated, open-source resolver implementations at vary-
ing degrees. Using the attack, we were not able to achieve
full DoS on any resolver. Our findings illustrate that the at-
tack is not as powerful in stalling resolvers as other attacks,
such as KeyTrap [7] and find that this is mainly due to the
linear scaling of the workload induced relative to the attacker
queries, compared to a quadratic increase in load for KeyTrap.
However, an attacker can still use the NSEC3 to inflict harm
on resolvers and achieve a degradation of service for benign
clients using the victim resolver.

5 Measurements of Signed Domains

RFC9276 raises the best practice of omitting the use of both
hash iterations and salts. We measured how NSEC3 is used in
domains on the Internet and investigate their NSEC3 parame-
ter configurations. To shed a light on how domains conform
to RFC9276 and whether they use NSEC3 parameters which
are suitable to be exploited in an attack, we next quantify
how many domains on the Internet use NSEC3 and which
parameter configurations they employ. During the week fol-
lowing 2024-03-10, we queried the nameservers of the Tranco
Top-1M domains6 for the SOA, DNSKEY as well as DS
records (located at the parent) and analyzed the DNSSEC
configurations of the domains they serve. To collect infor-
mation on the NSEC version and parameters used by the
domains, as they are presented to the resolvers, we addition-
ally issued queries for the records PTR-type RFC2317 at the
according Tranco domain names. PTR-type records are used
for reverse-mapping IP addresses to domain names and are

6https://tranco-list.eu/list/Z333G/1000000

Figure 7: Share of zones which meet or exceed the configured Salt
Length / Iteration Count in signed DNS zones.

most commonly located below the IN-ADDR.ARPA. domain.
Therefore, we expect negative responses for these queries,
indicating that no such resource exists. Our evaluations con-
firm that this methodology yields negative responses, i.e.,
containing either first-version NSEC or NSEC3 records, for
98.15% of the signed domains. We find 66339 (6.63%) of
the Tranco Top1M domains to be signed. Out of these, 27761
(41.85%) use NSEC3 while 37354 (56.31%) use NSEC in its
first version. 21522 (77.53%) of the domains using NSEC3
send records with an iterations count field value higher than
0, with a median of 5 iterations and a maximum of 500 itera-
tions, while 21248 (76.54%) of the domains utilizing NSEC3
employ a salt. Where employed, the median salt length is 8
bytes and the maximum we find in our dataset is 64 bytes. We
show the share of zones with salt lengths and iteration counts
greater or equal to the respective value on the x-axis in Fig-
ure 7. The combination of both parameters, which imposes the
highest NSEC3 hashing burden on resolvers is 500 iterations
with a salt of 16 bytes length. According to the results of our
evaluations, these domains can impose substantial load on the
resolvers even with benign responses. Such domains could
potentially be abused by adversaries to degrade the service
of a vulnerable resolver by employing a moderate volume of
malicious queries per second.

6 Related Work

DNS has a long history of Denial of Service (DoS) attacks
which exploit different aspects of the DNS protocol to launch
attacks against the DNS servers [1, 2, 4, 11]. Many of the
attacks exploit a lack of limits on the functionalities per-
formed by the DNS servers. For instance, [4] create a chain
of CNAME records and force DNS resolvers to perform deep
name resolutions, hence overloading the target victim author-
itative nameserver with requests and achieving an amplifica-
tion of 8.51. NXNSAttack [1] exploited a vulnerability that
generated a flood of queries between the recursive resolver
and the authoritative server creating a load on them both.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 55

https://tranco-list.eu/list/Z333G/1000000

Subsequently [2] showed how to exploit delegations to an
unresponsive authoritative server to cause computational load
on DNS resolvers. Their attack differs from the NSEC3 attack
in that they use plain DNS instead of DNSSEC, and create
computational load through memory lookups and IO over-
head instead of computational effort. Their attack achieves
a higher instruction count amplification of 5600x over 70x
with NSEC3. Still, the NRDelegation attack requires a high
attack traffic volume of 500 requests per second to achieve
substantial degradation of service, likely because the attack
includes many IO operations, which allow the resolver to
answer benign queries while waiting for IO responses. This
explains why the NSEC3 attack, while resulting in a smaller
instruction count amplification, can still achieve comparable
degradation of service to NRDelegation.

The concept of complexity attacks on DNSSEC, specifi-
cally exploiting signature validations and hash computations
was first introduced by [7]. Their work showed that DNSSEC
was vulnerable to a new class of attacks that can exhaust
CPU resources and thereby achieve Denial of Service on any
DNSSEC validating resolver. Their most impactful attack,
KeyTrap, achieves a full DoS of DNS resolvers for between
2min and 16h by exploiting colliding key-tags and a large
number of signatures, leading to quadratic complexity in vali-
dating DNSSEC signatures. Further, their findings include an
attack exploiting hash computations over the DS hash that con-
nects a parent zone to a child zone. Specifically, in their attack,
they include a large amount of DS hash records in the parent
zone and point them to a single entry in the child-zone with
a specific key-tag value. Exploiting colliding key-tags, they
achieve quadratic complexity in hash computations, requiring
the resolver to try each DS record in the parent zone against
each DNSKEY in the child-zone. This computational effort
allows for a DoS of the resolver. The NSEC3-encloser attack
that we study in this work differs significantly in its single-
request impact from the attacks described in [7]. Comparing
to the KeyTrap attack, the NSEC3-encloser attack inflicts a
modest 72x increase in CPU instruction count,7 while Key-
Trap increases CPU instructions by a factor of 2000000x.
Thus, with KeyTrap, a single attacker is able to DoS a re-
solver for an extended period of time, whereas with NSEC3,
a large attack traffic volume is necessary, consisting of hun-
dreds of DNS requests per second to exhaust the CPU of a
victim resolver. This is expected, as KeyTrap exploits com-
putationally heavy public key cryptography, while NSEC3
only uses hash calculations, which require less CPU resources.
However, while requiring more traffic, the NSEC3 attack can
still harm DNS resolvers, as it can create a heavy load on the
attacked resolver and therefore lead to substantial degradation
of service.

Our work is also related to downgrade attacks against
DNSSEC [8]. The DNSSEC downgrade attacks however fo-

7Measured on Unbound, average over 5 measurements

cus on disabling DNSSEC validation but do not have adverse
effects on the availability of the victim resolvers.

7 Conclusions

We perform extensive evaluations of NSEC3-encloser attack
and find that it can create a 72x increase in CPU instruction
count on victim DNS resolvers. This is much less than the
recently disclosed KeyTrap attack, which creates a factor of
2000000 increase in CPU instructions count. Our experimen-
tal evaluation shows that even the improved implementation
of the NSEC3-encloser attack that we developed creates a rel-
atively minor packet loss (between 2.7% and 30% depending
on the resolver implementation), yet requires a high traffic vol-
ume from an adversary and can be easily detected. Therefore
we do not expect to see such attacks in the wild. Nevertheless,
our study shows that NSEC3-encloser attack points to a poten-
tial problem in the resolvers, that was also raised by the NSEC
standard specification. In this work, we explore the practical
aspects of NSEC across DNS resolver implementations.

We experimentally analyze the role of the different param-
eters in NSEC3 on the load created on the resolvers and show
how to adjust the parameters to optimize the impact of the
attack. Although the increase in CPU instruction set is lower
than previous attacks on DNS, such as KeyTrap or NRDelega-
tion, using about a hundred packets per second, the adversary
can still create a sufficient load on the resolvers, eventually
leading to packet loss. The load is created by the iterative
application of the hash in NSEC3, and is further exacerbated
by the application of salt to the computation of the hash. Mul-
tiple hash iterations with salt make zone enumeration attacks
more difficult, requiring more resources from the attackers.

Such records can be exploited to exhaust resources on vic-
tim resolvers, as we experimentally demonstrate in this work.
The effect of resource exhaustion may become even more
severe with the new proposal NSEC5 which uses public key
operations [12]. Our research essentially shows that there
is a tradeoff between the privacy and the load on DNS re-
solvers, which can be exploited for attacks. This tradeoff is
also aligned with the question raised by RFC9276: do the
increased performance costs justify applying additional hash
operations.

As RFC9276 points out, most of the names published in
DNS are typically public and are rarely secret or unpredictable.
RFC9276: “They are published to be memorable, used and
consumed by humans. They are often recorded in many other
network logs such as email logs, certificate transparency logs,
web page links, intrusion-detection systems, malware scan-
ners, email archives, etc. Many times a simple dictionary
of commonly used domain names prefixes (www, mail, imap,
login, database, etc.) can be used to quickly reveal a large
number of labels within a zone.”

The fundamental question of the tradeoff between privacy
of the resources in the DNS zones vs load on the DNS re-

56 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

solvers poses an important decision that the research and
operational community need to take.

Acknowledgements

This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

References

[1] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. NXN-
SAttack: Recursive DNS inefficiencies and vulnerabili-
ties. In 29th USENIX Security Symposium (USENIX Se-
curity 20), pages 631–648. USENIX Association, 2020.

[2] Yehuda Afek, Anat Bremler-Barr, and Shani Stajnrod.
NRDelegationAttack: Complexity DDoS attack on DNS
recursive resolvers. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pages 3187–3204. USENIX
Association, 2023.

[3] Jason Bau and John C Mitchell. A security evaluation
of DNSSEC with NSEC3. Cryptology ePrint Archive,
2010.

[4] Jonas Bushart and Christian Rossow. DNS unchained:
Amplified application-layer DoS attacks against DNS
authoritatives. In Michael Bailey, Thorsten Holz, Mano-
lis Stamatogiannakis, and Sotiris Ioannidis, editors, Re-
search in Attacks, Intrusions, and Defenses, pages 139–
160. Springer, 2018.

[5] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos,
Leonid Reyzin, Sachin Vasant, and Asaf Ziv. Stretching
NSEC3 to the limit: Efficient zone enumeration attacks

on NSEC3 variants. Technical report, Boston University,
2015.

[6] Olivia Gruza, Elias Heftrig, Oliver Jacobsen, Haya
Schulmann, Niklas Vogel, and Michael Waidner.
Goethe-Universitat-Cybersecurity/NSEC3-Encloser-
Attack: WOOT’24 Artifact, May 2024.

[7] Elias Heftrig, Haya Schulmann, Niklas Vogel, and
Michael Waidner. The Harder You Try, The Harder You
Fail: The KeyTrap Denial-of-Service Algorithmic Com-
plexity Attacks on DNSSEC. In ACM Conference on
Computer and Communications Security (CCS), 2024.

[8] Elias Heftrig, Haya Shulman, and Michael Waidner.
Downgrading DNSSEC: How to Exploit Crypto Agility
for Hijacking Signed Zones. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 7429–7444,
2023.

[9] Himanshu Kumar, Sudhanshu Kumar, Remya Joseph,
Dhananjay Kumar, Sunil Kumar Shrinarayan Singh,
Ajay Kumar, and Praveen Kumar. Rainbow table to
crack password using MD5 hashing algorithm. In 2013
IEEE Conference on Information & Communication
Technologies, pages 433–439. IEEE, 2013.

[10] Harrison Mitchell. Taking the DNS for a walk; NSEC3
prevalence and recoverability.

[11] Giovane C. M. Moura, Sebastian Castro, Wes Hardaker,
Maarten Wullink, and Cristian Hesselman. Clouding
up the internet: how centralized is DNS traffic becom-
ing? In Internet Measurement Conference, pages 42–49.
ACM, 2020.

[12] Dimitrios Papadopoulos, Duane Wessels, Shumon
Huque, Moni Naor, Jan Včelák, Leonid Reyzin, and
Sharon Goldberg. Making NSEC5 practical for
DNSSEC. Cryptology ePrint Archive, Paper 2017/099,
2017. https://eprint.iacr.org/2017/099.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 57

https://eprint.iacr.org/2017/099

Amplifying Threats: The Role of Multi-Sender Coordination in
SMS-Timing-Based Location Inference Attacks

Evangelos Bitsikas⋆, Theodor Schnitzler†‡, Christina Pöpper§, Aanjhan Ranganathan⋆
⋆Northeastern University, †Research Center Trustworthy Data Science and Security,

‡Maastricht University, §New York University Abu Dhabi
bitsikas.e@northeastern.edu, theodor.schnitzler@maastrichtuniversity.nl,

christina.poepper@nyu.edu, aanjhan@northeastern.edu

Abstract
SMS-timing-based location inference attacks leverage
timing side channels to ascertain a target’s location.
Prior work has primarily relied on a single-sender ap-
proach, employing only one SMS attacker from a spe-
cific location to infer the victim’s whereabouts. How-
ever, this method exhibits several drawbacks. In this re-
search, we systematically enumerate the limitations of
the single-sender approach, which prompted us to ex-
plore a multi-sender strategy. Our investigation delves
into the feasibility of an attacker employing multiple
SMS senders towards a victim to address these limi-
tations and introduces novel features to bolster predic-
tion accuracy. Through exhaustive experimentation, we
demonstrate that strategically positioned multiple SMS
senders significantly enhance the location-inference ac-
curacy, achieving a 142% improvement for four distinct
classes of potential victim locations. This work further
highlights the need to develop mitigations against SMS-
timing-based location inference attacks.

1 Introduction

SMS (Short Message Service) has emerged as a key vec-
tor in numerous cyber-attacks due to its widespread use
for purposes such as two-factor authentication [21], iden-
tity verification [24, 25], and emergency alerts [24, 25].
Its prevalence, reliability, and global reach have made it
a favored medium for malicious activities. Smishing at-
tacks, for example, leverage SMS to distribute links that
direct victims to phishing sites, aiming to steal sensitive
information [14]. The Flubot virus utilized SMS links
to spread trojan apps that compromised banking creden-
tials, personal data, and disabled security features [9].
Beyond these, SMS has been exploited for spamming [8]
and to propagate malware such as Simjacker and WIBAt-
tack, which embed malicious commands within binary
SMS messages [4, 28].

Most recently, a novel approach to ascertain the lo-
cation of recipients was demonstrated in [6], utilizing
the timing of silent SMS messages in conjunction with
machine-learning techniques. This strategy exploits the
delivery reports generated upon SMS reception as a tim-
ing attack vector for the sender. Rigorous experimen-
tation across various countries, telecommunications op-
erators, and a range of devices demonstrated that an at-
tacker could deduce a recipient’s location by analyzing
timing data from typical receiver locations. Although
this method introduces an innovative side channel for lo-
calizing mobile users, it encounters notable limitations.
Most importantly, there is a significant probability that
the attack originating from a single source/mobile de-
vice can be detected and potentially be blocked by the
victim’s service providers. This is more apparent when
the attack requires a substantial amount of SMS trans-
missions to collect the necessary data. Additionally, as
the number of possible victim locations increases, the
method’s accuracy in predicting locations degrades due
to the finite entropy available from single attacker-victim
channel timing reports. As a result, there are classifica-
tions in which machine learning can perform poorly.

To tackle the above-mentioned limitations associated
with single-sender-based SMS location inference at-
tacks, this paper focuses on the following key research
questions. The primary question we explore is whether
using multiple coordinated SMS senders can improve
the accuracy of localization predictions. We hypothe-
size that using senders from different locations could
create unique timing side-channels which, when com-
bined, could lead to more accurate classifications. This
multi-sender approach can improve the prediction accu-
racy, especially as the number of potential victim lo-
cations increases. Additionally, using multiple SMS
senders spread out geographically could also make the
attack more resilient against being blocked, as the vic-
tim’s service provider now has to identify and block sev-
eral senders. Optimizing the timing and pattern of SMS

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 59

mailto:bitsikas.e@northeastern.edu
mailto:theodor.schnitzler@maastrichtuniversity.nl
mailto:christina.poepper@nyu.edu
mailto:aanjhan@northeastern.edu

sending could further reduce the likelihood of the at-
tack being detected. Finally, we hypothesize that the at-
tacker can collect a significantly smaller amount of data
to conduct this attack efficiently, without compromising
the model’s accuracy. Consequently, the adversary can
save resources, as well as measurement collection and
training time.

Motivated by the above hypothesis, in this paper, we
make the following contributions:

• We identify limitations of single-sender SMS-
timing-based location inference attacks and con-
ceive multi(ple)-sender SMS-timing-based location
inference attack in cellular networks. To estab-
lish a baseline for comparison with our multi-
sender approach, we reproduced the single SMS
sender-based localization attack described in prior
work [6]. Interestingly, our data analysis highlights
certain limitations inherent in the single-sender ap-
proach which serve as a crucial motivation for the
development of our multi-sender approach.

• Through rigorous experimentation, we demonstrate
the enhanced capability of multiple SMS senders,
strategically placed across different locations, to co-
ordinate and significantly improve the accuracy in
determining a victim’s location. Our experiments
reveal that the multi-sender MMS approach can
reach up to 142% accuracy improvement for four
classes. This further emphasizes that the effective-
ness of the multi-sender attack strategy improves
with an increasing number of potential victim lo-
cations, thereby overcoming a significant limitation
of the single-sender approach.

• We highlight two substantial improvements and in-
sights: (1) From the distinct timing side-channels
generated by the multi-sender setup, we identify
and introduce new features that are instrumental
in boosting the prediction accuracy: the statisti-
cal mean, median, and standard deviation of the
senders’ delivery time measurements, allowing us
to effectively fuse the timings from multiple senders
to improve the accuracy even further. (2) We in-
vestigate the required sample sizes for location in-
ference attacks and demonstrate that already a few
hundred SMS can yield strong results without the
need for thousands of collected messages.

2 Background and Motivation

In this section, we provide the technical background for
SMS delivery processes and then delve into the concept
of SMS-timing-based Location Inference Attacks. We

Figure 1: Brief representation of the SMS process, ac-
cording to GSMA [11].

subsequently outline its limitations, which serves as the
foundation for our research presented in this paper.

2.1 Overview on SMS Process

Short Message Service (SMS) is an inherent component
of the cellular infrastructure and universally accessible
across all network generations from 2G to 5G [1–3, 11].
Figure 1 briefly outlines the SMS delivery process in-
volving the originator (sender), Short Message Service
Center (SMSC), and the recipient (receiver).

The process begins with the message submission (Step
1) by the originator, who composes the message and
sends it to the SMSC. Upon receiving the SMS, the
SMSC performs the necessary network and validation
checks and then forwards the SMS to the intended re-
cipient. The SMSC ensures that the message reaches the
recipient (Step 2), even if it means storing it temporarily,
in case the recipient is unavailable immediately. Addi-
tionally, the originators have been informed by now that
the submitted message was actually sent.

Next, once the recipient receives the message, the
involved device sends the delivery report back to the
SMSC. The report confirms that the message has been
successfully delivered to the recipient’s device (Step 3).
Finally, the report is sent to the originator via the SMSC,
called the submission report (Step 4). This report ulti-
mately confirms that the message was sent and delivered
to the recipient successfully.

2.2 SMS-timing-based Location Inference

In an SMS-timing-based Location Inference attack, an
attacker is interested in learning the current physical lo-
cation of a specific victim by sending them (silent) SM-
Ses. The attack builds upon the time elapsed between
sending the SMS and the SMS being delivered to the vic-
tim and is conducted in two phases.

In the first phase (fingerprint generation), the attacker
repeatedly sends SMSes to the victim while knowing
their respective locations and measures the time it takes
to deliver the SMS messages. By analyzing the result-
ing delivery timings and their distributions, the attacker
is able to determine a unique fingerprint for each of the
locations the victim has visited.

60 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

In the second phase (location inference), the attacker
sends new SMS messages to the victim without know-
ing their current location, measures the time it takes to
deliver them, and then classifies the collected timings by
comparing them to the previously obtained fingerprints.
Thus, the attacker can determine and re-identify the vic-
tim’s location out of a set of known locations.

2.3 Limitations and Motivation

When the SMS-timing-based Location Inference Attack
is carried out from a single sender at a fixed location, it
has several drawbacks. In particular, the success and per-
formance of the attack depend heavily on the specifics of
the chosen location and its mobile network connection,
such as the distance to the base station. The quality and
reliability of the connection, along with the robustness
of the collected data, may also vary depending on cir-
cumstances specific to the location, such as fluctuating
numbers of people and concurrent mobile network con-
nections throughout the day or week.

Another drawback is that during the initial phase of
the attack (fingerprint generation), the attacker engages
in non-standard behavior as a mobile network subscriber.
Consequently, there is a risk that the adversary may be
perceived as suspicious by the network operator and po-
tentially be blocked, particularly if only a single static
location is utilized.

From an organizational perspective, the attack out-
lined in [6] encompasses analyses at various levels of
granularity, and a broad range of locations, from regional
to worldwide attacks. However, the study lacks a thor-
ough analysis of the sample size impact regarding the
classification accuracy. This limitation implies that the
attack requires additional evaluation.

Hence, we recognize the necessity for a more system-
atic evaluation of factors that could impact the SMS-
timing-based Location Inference Attack’s performance.
This entails varying the adversary’s location, system-
atically assessing the attack’s performance with differ-
ent receiving devices at the same locations, conduct-
ing repeated evaluations with varying sample sizes, and
expanding the attack to encompass attackers operating
from multiple vantage points simultaneously.

3 Multi-Sender Location Inference

3.1 Threat Model

We consider an attacker whose primary goal is to deter-
mine the presence of a victim’s mobile device within a
specific geographic area, without the intention to track
the victim’s exact movements.

The attacker is presumed to possess the victim’s mo-
bile number, enabling them to initiate various forms
of SMS communications, including personal messages,
undirected mass messages such as marketing advertise-
ments, and notably, silent SMSes which the victim’s de-
vice acknowledges without alerting the user. It is as-
sumed that the attacker has access to an arbitrary number
of smartphone devices, SIM cards, mobile numbers, and
subscription plans. Furthermore, the attacker can deploy
multiple sender devices in different geographical areas
to collect data from the victim receivers simultaneously
and combine them for location extraction. The adversary
is assumed to possess the capability to utilize network
services as a conventional user: leveraging several SIM
cards, having the ability to send messages to any sub-
scriber with a valid number, and maintaining a normal
connection for the transmission of text messages and re-
ceipt of delivery notifications.

We emphasize that the attacker does not require phys-
ical access to the victim’s mobile device, USIM cards, or
any network infrastructure, nor do they seek to obtain or
modify sensitive victim data such as cryptographic keys.

3.2 Attack Concept

The foundation of the multi-sender approach rests on the
observation that fingerprints generated from the SMS ex-
changes between a single sender (attacker) location and a
receiver can be limited in their effectiveness for accurate
location classification. This limitation becomes particu-
larly pronounced in complex environments, such as cer-
tain German locations in [6], where the variability and
granularity of the urban landscape can dilute the distinc-
tiveness of timing fingerprints.

To address these challenges, this work pioneers the in-
tegration of multiple attacker locations into the analysis
framework. By orchestrating SMS exchanges from var-
ious (unique) attacker positions to the receiver, a richer
and more nuanced dataset emerges. Each unique pairing
of attacker and receiver locations contributes a distinct
timing fingerprint to the dataset. These timing finger-
prints, when aggregated, undergo further processing to
distill additional dataset features, thereby forging more
robust and comprehensive fingerprints. This enriched
dataset plays a crucial role in enhancing the efficacy of
machine-learning models during both the training and
prediction phases.

For conducting a multi-sender location inference at-
tack, we essentially replicate the attack methodology
presented in [6] and simultaneously execute it from mul-
tiple locations. Consistent with previous work, the at-
tack comprises two phases: fingerprint generation and
location inference, but both are conducted from multi-
ple sender locations. Basically, multiple instances of the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 61

Figure 2: Multiple attackers in different locations estab-
lish SMS streams to send silent messages to the victim
in various locations and receive delivery reports. This is
possible even with distinct network providers.

single-sender location inference attack are executed in
parallel.
Multi-Sender Setup. To gather data from multiple van-
tage locations and eventually enhance the accuracy of
the location identification attack, the attacker deploys
the setup at various geographical locations. Intuitively,
by employing more attacking locations that are diverse,
an adversary could generate more precise receiver loca-
tion fingerprints. This distributed approach allows the
attacker to collect measurements of the victim’s location
from different "angles", increasing the robustness and re-
liability of the subsequent analysis.
Attacking Process. The attacker, situated in multiple
locations, initiates the process by sending a barrage of
silent SMS messages to the victim. The victim, unknow-
ingly participating in this scheme, moves across differ-
ent locations at different times. The silent nature of these
messages means that the receiver’s device does not notify
the victim of the incoming SMS, thus keeping the pro-
cess clandestine. Each time a message is received, the
victim’s device automatically generates and sends back
delivery reports as part of its standard operating proce-
dure. These reports, unbeknownst to the victim, reveal
valuable information for the attacker, notably the sent
and delivered times. By analyzing the time discrepancies
between when a message was sent and when the delivery
report was received, the attacker can infer certain aspects
of the victim’s location.

Since this procedure is repeated multiple times in the
multi-sender attack, it accumulates a substantial dataset
of measurements. The attacker categorizes the measure-
ments based on the victim’s known locations during the
attack, forming distinct datasets for each location. These
datasets are then aggregated and analyzed to predict the
victim’s location in the future. According to Figure 2, the
attacker creates several SMS streams, which could be es-

tablished with different operators since the attacker can
operate from different countries. The victim may also
move to different countries and sends back the delivery
reports to the corresponding SMS.

In the prediction stage, the attacker collects fresh mea-
surements from the current location of the victim in the
same fashion. These measurements serve as input for a
machine-learning model that has been trained on the pre-
viously collected data, representing potential locations of
the victim. Then, the model processes this input and out-
puts a prediction of the victim’s current location.

4 Experimental Validation

In this section, we detail our experimental validation
of the SMS-timing-based location inference attack with
multiple senders and report on our setup for data collec-
tion, processing, and evaluation.

4.1 Data Collection Setup
At the core of the attacker’s setup is the use of typical
computer devices equipped with a smartphone running
Android Debug Bridge (ADB). ADB allows for a wide
range of communication with a connected device, in this
case, to transmit silent SMS messages and record the sent
and delivered timestamps. As in [6], the SMS transmis-
sion and recording of the timing metrics is conducted by
an Android application, which also stores results for fur-
ther processing. Controlling the application via ADB al-
lows us to automate this process since it should be re-
peated multiple times to collect a sufficient number of
timing metrics. This process also happens stealthily,
without altering the victim, since the attacker utilizes
silent SMSs which are accepted by the network opera-
tor. Moreover, the attacker’s equipment includes a SIM
card, granting access to the cellular network.

Adhering to the aforementioned attacking concepts,
over a period of 12 weeks, we repeatedly send SMS mes-
sages between smartphones in different locations in Ger-
many and the Netherlands. We do not consider locations
that are very far apart, as they are easier for an attacker
to identify [6]. We use three smartphones, each placed
in a fixed location that remains unchanged during the ex-
periments, to send messages to four phones whose po-
sitions are periodically rotated. For sending SMS mes-
sages, we use two locations in Germany and one in the
Netherlands. The receiving phones are placed in five dif-
ferent locations in Germany and three in the Netherlands
(including the locations of the sending devices). Table 1
lists the devices we used for sending and receiving SMS
messages, and Table 2 provides an overview of the loca-
tions used during our measurements and the amounts of
data collected.

62 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 1: Device Specifications

ID Device Chipset OS Model Release

Sending Devices
D Samsung Galaxy A53 Samsung Exynos 1280 Android 12 SM-A536E/DS 2022
V Nokia 5.3 Qualcomm Snapdragon 665 Android 11 TA-1234 2020
B Huawei P8 Lite 2017 HiSilicon Kirin 655 Android 8 PRA-LX1 2017

Receiving Devices
px6a Google Pixel 6a Google Tensor Android 12 G1AZG 2022
a53 Samsung Galaxy A53 Samsung Exynos 1280 Android 12 SM-A536E/DS 2022
op7 OnePlus 7 Pro Qualcomm Snapdragon 855 Android 11 GM1910 2019
p8l Huawei P8 Lite 2017 HiSilicon Kirin 655 Android 8 PRA-LX1 2017

Table 2: Data Collection Summary

Number of SMS per Receiving Device Distances [km] to Sender

px6a p8l op7 a53 Sender B Sender D Sender V

Receiver Locations in Germany
DE-1 3160 3280 420 – 11 0 140
DE-2 1540 1560 – – 2 11 130
DE-3 4960 4540 8920 6900 0 11 129
DE-4 420 460 – – 4 14 126
DE-5 1220 320 – – 5 11 140

Receiver Locations in the Netherlands
NL-1 7140 5500 0 1440 125 135 4
NL-2 5820 5280 10300 8700 129 140 0
NL-3 2020 960 1680 1120 125 136 7
Locations (Cities): DE-1,5: Dortmund, DE-2,3,4: Bochum, NL-1: Eindhoven, NL-2: Veldhoven, NL-3: Valkenswaard

Locations in the same country are chosen to be rela-
tively close to each other. The distance from a receiving
location to the closest sending device is 11 km at max-
imum, which also corresponds to the distance between
the two sending devices in Germany.

4.2 Data Collection Procedure
We replicated the attack to use an Android app that sends
one silent SMS at a time to a designated target phone
number. Additionally, the app waits for the Sent and
Delivered notifications and collects and stores the times-
tamps for the SMS transmission and both notifications.
In line with previous work, we schedule 20 consecutive
SMS transmissions on an hourly basis. We automate
SMS transmissions by controlling the app remotely via
a Python script issuing ADB commands to the smart-
phone. We simultaneously send SMS messages from all
senders to the same receiver by scheduling the script to
start once per hour at the same time for a specific re-
ceiver (i. e., :00 for the first receiver, :15 for the second
receiver, . . .) across all senders. While this does not

guarantee perfect sender synchronization due to poten-
tial offsets in their individual system clocks, we consider
this a best-effort approach to approximate the behavior
of an adversary simultaneously probing a specific target
from multiple locations.

Our data collection tooling builds upon the code re-
leased by Bitsikas et al. [6] available on GitHub1 and is
extended to fit with the phones we use for sending mes-
sages. We also follow the guidelines provided along with
the framework to implement the missing code handling
the actual SMS transmission and timestamp collection
procedures.

4.3 Feature Set Generation & Multi-
Sender Fusion

To generate the timing features for each SMS transmis-
sion and combine the multi-sender datasets, we take the
following steps:

1https://github.com/vaggelis-sudo/SMS-Location-Ide
ntification-Attack

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 63

https://github.com/vaggelis-sudo/SMS-Location-Identification-Attack
https://github.com/vaggelis-sudo/SMS-Location-Identification-Attack

Step 1: Calculating the initial metrics. Follow-
ing [6], we calculate the initial metrics for each SMS
transmission in the collected dataset: the real sent dura-
tion Tsent , the real delivery duration Tdel , the total delivery
duration Ttot , and the delivery ratio P.

Tsent = tsent − ttx (1)

Tdel = tdel− tsent (2)

Ttot = Tdel +Tsent (3)

P =
Tdel

Ttot
=

tdel− tsent

tdel− ttx
(4)

Then, for every two consecutive SMS transmissions
(j−1 and j), we calculate the differences in sent duration
T∆sent and delivery duration T∆del , respectively:

T∆sent = (T j
sent −T j−1

sent)/T j−1
sent (5)

T∆del = (T j
del−T j−1

del)/T j−1
del (6)

Moving beyond [6], the fingerprint does not conclude
with this calculation, as we do not consider only one but
multiple senders.

Step 2: Combining the sender datasets. Let Di rep-
resent the dataset for sender i, where i = 1,2, . . . ,m, with
n receiver locations. Additionally, let tdel,i,r, j denote the
delivery time of the j-th SMS transmission from sender
i to receiver r. Finally, let Si,r, j represent the data asso-
ciated with the j-th SMS transmission from sender i to
receiver r, including tdel,i,r, j. Then, Dconcat is the dataset
resulting from the concatenation process, where each el-
ement is derived by matching Si,r, j from all senders based
on the closest matching tdel,i,r, j.

For each Si,r, j in Di, we seek to find Sk,r,l in Dk (k ̸=
i) such that the difference in delivery times |tdel,i,r, j −
tdel,k,r,l | is minimal or zero, indicating the closest match-
ing timestamps across different senders. This process
occurs for every receiver separately and every available
sender, until the new Dconcat dataset contains per row the
data of each sender to the same receiver, but synchro-
nized. Algorithm 1 shows briefly the process.

Step 3: Fusing the sender datasets statistically.
Given m senders, the number of unique combinations of
two senders is given by the binomial coefficient:(

m
2

)
=

m!
2!(m−2)!

(7)

For each pair of senders and for every z consecutive
SMS transmissions (in this study, z = 5 2), we calcu-
late the Mean, Median, and Standard Deviation of

2We determined that the number should be less than 10 in our
dataset to accommodate small sample sizes while not covering too
many transmissions at a time. A middle value of 5 was chosen as a
result.

Algorithm 1 Match and Concatenate SMS Transmis-
sions based on Timestamps

1: Initialize Dconcat = /0 as empty dataset
2: for each receiver location r from 1 to n do
3: for each Si,r, j in Di for all i do
4: Initialize a list Li,r to hold data for concate-

nation
5: for each Dk where k ̸= i do
6: Find Sk,r,l in Dk such that |tdel,i,r, j −

tdel,k,r,l | is minimized
7: Add Sk,r,l to Li,r
8: end for
9: NewRecordi,r← Concatenate(Li,r)

10: Dconcat← Dconcat∪{NewRecordi,r}
11: Clear Li,r
12: end for
13: end for

the delivery times. Let t(s,r)del,i denote the delivery time of
the i-th SMS in a sequence of z consecutive messages
from sender s to receiver r. The statistics are calculated
as follows:

µ
(s,r) =

1
z

z

∑
i=1

t(s,r)del,i (8)

Median(s,r) = Median{t(s,r)del,1, t
(s,r)
del,2, . . . , t

(s,r)
del,z} (9)

σ
(s,r) =

√
1

z−1

z

∑
i=1

(t(s,r)del,i −µ(s,r))2 (10)

Differences in these statistics for the delivery time be-
tween pairs of senders are calculated as their actual dif-
ferences. For example, for means between sender pair
(s1,r) and (s2,r):

∆µ
(s1,s2,r) = µ

(s1,r)−µ
(s2,r) (11)

These differences, ∆µ(s1,s2,r), ∆Median(s1,s2,r), and
∆σ (s1,s2,r), are incorporated into the dataset for each
sender pair accordingly, as additional features.

4.4 Multi-Sender Techniques
Simple Integration of Senders. In this method, the
initial features are generated based on the timing data
from individual sender-receiver pairings (Step 1). Sub-
sequently, datasets corresponding to multiple senders are
amalgamated (Step 2) without the application of sophis-
ticated statistical fusion techniques (Step 3). Thus, we
create datasets that are matched and concatenated based
on the timestamps, but without incorporating unique fea-
ture types.

Specifically, we consider double- and triple-sender
datasets as distinct (simple) approaches. For the double-
sender cases, we create the BV, VD, and BD datasets,

64 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

while for the triple-sender cases, we create BDV, based
on Table 2. The total number of features for double-
senders is 12, and for triple-senders is 18, according to
Algorithms 1- 6 from Step 1. This exploratory step seeks
to discern whether straightforward sender concatenation
can bolster the machine-learning model’s predictive ac-
curacy compared to single senders and to statistically
combined datasets.
Statistical Fusion of Senders. Advancing beyond the
simple approach, the statistical combination of sender
datasets represents a more refined approach to dataset
enhancement. This technique encompasses a compre-
hensive process involving the generation of initial fea-
tures (Step 1), the combination of sender measurements
(Step 2) followed by the fusion of datasets from multiple
senders through the statistical metrics (Step 3). Unlike
the simple method, this approach enriches the combined
dataset with additional features derived from the statis-
tical analysis of delivery times: using the means, me-
dians, and standard deviations between the sender mea-
surements. For this approach, we use all three senders
with their maximum sample size available for each re-
ceiver location.

In this work, we explore the following two strategies:

1. Enhanced Mean Datasets. Datasets statistically
enhanced by the mean of the delivery time. A to-
tal number of 21 features is used, corresponding to
the 18 combined features for the three senders and
the 3 additional ones generated by the differences
between the sender means.

2. Enhanced MMS Datasets. Datasets statistically
enhanced by the mean, median and standard devi-
ation of the delivery time. A total number of 27
features is utilized, correlated with the 18 combined
features for the three senders and the 9 extra ones
engendered by the differences between the sender
means, medians, and standard deviations.

This dual-strategy approach aims to demonstrate the
superiority of statistically enhanced datasets over both
single-sender datasets and those trivially combined. The
hypothesis posits that the inclusion of a broader array of
statistical features not only increases the accuracy of lo-
cation predictions beyond that achievable with simpler
dataset combinations but also highlights the comparative
advantage of the "Enhanced MMS" over the "Enhanced
Mean" approach. This distinction underscores the prin-
ciple that the depth and complexity of features within the
dataset are pivotal to the refinement of model accuracy.

4.5 Attack Training & Prediction
In this study, we employ a Multilayer Perceptron (MLP)
Classifier, a type of feedforward artificial neural net-

work, as the core predictive model to analyze the rela-
tionship between the features derived from SMS trans-
mission data and the target outcomes. The MLP Clas-
sifier is instantiated with a specific configuration of hy-
perparameters to optimize its performance for the given
dataset. The architecture of the neural network is de-
fined by hidden layer sizes = (10, 40, 10), indicating a
three-layered structure where the input data is first pro-
cessed by a layer of 10 neurons, followed by a denser
layer of 40 neurons, and finally, the information is aggre-
gated through a layer of 10 neurons before reaching the
output layer. This configuration is designed to capture
the nonlinear relationships between the input features.

The model utilizes the stochastic gradient descent
(SGD) algorithm for optimizing the network’s weights.
This choice is motivated by SGD’s efficiency in handling
large datasets and its capability to escape local minima
during training. The regularization term, alpha= 0.0001,
is set to a low value to prevent overfitting while allow-
ing the model to learn complex patterns in the data. With
learning rate=’constant’ and a max iteration of 5000, the
learning rate is kept fixed across all epochs of training,
and the model is allowed a substantial number of iter-
ations to converge towards an optimal set of weights.
Batch processing is employed with a size of 32 to lever-
age computational efficiency and stability in gradient de-
scent updates. Model evaluation is conducted through a
10-fold cross-validation process providing a robust esti-
mate of the model’s predictive accuracy on various ran-
dom data. Finally, the Accuracy metric is calculated to
quantify the model’s performance, offering a measure of
how often the model predictions match the true labels. In
our experimentation, we repeatedly run the model pre-
diction with increasing numbers of samples per class,
(i. e., 100, 200, 300, 500, 1000, 5000, and 10000), to
analyze differences in the classification accuracy.

5 Experimental Evaluation and Results

We next describe the exact experimental setup we used
in our experiments and then delve into our results with
the multiple-sender approaches.

5.1 Single Senders: Baseline
We ran the classifications for single senders (D, B, and
V) to establish the baseline for the subsequent improve-
ment. Figure 3 illustrates the results of all classifications
for all sample sizes. Generally, the lowest accuracy is
observed for sender D on the device p8l with 5 classes
(21%), while the highest accuracy is observed for sender
B on the device op7 with 2 classes (82%). In fact, we
make similar observations for the single sender classifi-
cations with [6], regarding the average accuracy scores

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 65

a53 op7 p8l px6a
Device

0
10
20
30
40
50
60
70
80
90

100
Av

er
ag

e
Ac

cu
ra

cy
 (%

) D
B
V

(a) Scores for 2 Classes

a53 op7 p8l px6a
Device

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

Ac
cu

ra
cy

 (%
) D

B
V

(b) Scores for 3 Classes

a53 op7 p8l px6a
Device

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

Ac
cu

ra
cy

 (%
) D

B
V

(c) Scores for 4 Classes

p8l px6a
Device

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

Ac
cu

ra
cy

 (%
) D

B
V

(d) Scores for 5 Classes

Figure 3: Average single-sender accuracy scores across devices and classes. These scores are considered the estab-
lished baseline for which we provide improvement. The presented results take into account all possible sample sizes.
The red dashed line indicates random guessing.

and the decline across the increasing number of classes.
Specifically, for each device examined ranging from

a53 to px6a, the data showcases a nuanced relationship
between the number of classes involved in the classifica-
tion task and the single sender accuracy scores. Notably,
as the number of classes increases, a general trend of de-
creasing accuracy is observed, which is consistent across
all devices. This trend is particularly evident when com-
paring results from 2-class configurations to those with
4 or 5 classes, where the average accuracy scores tend
to diminish, highlighting the increased complexity and
challenges associated with classifying a larger number
of classes. Moreover, some devices and senders exhibit
a more graceful degradation in accuracy as more classes
are added. For example, V on px6a degrades from 66%
with 2 classes to 40% with 5 classes, a relatively mod-
est decline compared to D on p8l, which plummets from
61% with 2 classes to 21% with 5 classes.

In the comparative analysis of device performance,
the op7 and a53 models significantly outperform the p8l
and px6a devices across all metrics. In particular, the
p8l and px6a devices achieve a maximum accuracy of
69% and 66%, respectively, when tested with sender V.
Furthermore, sender V consistently surpasses senders
B and D in performance on the p8l and px6a devices,
highlighting a notable disparity in efficacy. Conversely,
when evaluating the performance on the op7 and a53 de-
vices, the results among senders B, D, and V demon-
strate a remarkable uniformity, with only minimal vari-
ations in accuracy. The most significant discrepancy
observed is a 6% difference between senders B and D
when assessed with four classes on the op7 device. This
suggests that while op7 and a53 provide more consis-
tent and higher performance across different senders, p8l
and px6a exhibit limitations, particularly in terms of ac-
curacy and sender variability. Consequently, sender V
not only shows higher accuracies across the board but

also appears to be more resistant to accuracy drops as
the number of classes increases. This suggests that V’s
data might be inherently more separable or that V em-
ploys more consistent patterns in location-related behav-
ior. Overall, the presence of differences in performance
between the senders within the same device and class
configuration underscores the variability in sender effec-
tiveness.

5.2 Multiple Senders: Simple Combina-
tion

In this subsection, we start by comparing the double-
and triple-sender accuracy scores with the single-sender
scores. In Figure 4, we show all classification accu-
racy scores with the worst (minimum) and best (max-
imum) performances of the single- and double-sender
data, across all devices and sample sizes. The aim here is
to show the minimum and maximum improvement of the
multi-senders with simple combinations, based on this
collected dataset.

Reflecting on previous discussions, sender V consis-
tently emerges as the top performer across all metrics,
capturing both the lowest and highest scores. However,
this trend does not uniformly extend to scenarios involv-
ing double- and triple-sender configurations. Initially, all
multi-sender combinations yield superior accuracy rates
compared to individual efforts by senders B and D, un-
derscoring the premise that pooling sender data can en-
hance overall performance. Notably, in binary classifi-
cation tasks, sender V is marginally eclipsed by combi-
nations such as DV, BV, BD, and BDV, and similarly by
DV, BV, and BDV in contexts involving three and four
classes. On the contrary, the BD pairing underperforms
for three and four classes, highlighting that sender D’s
contributions do not bolster the collective accuracy to the
same extent as other senders in these specific instances.

66 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

B D V DV BV BD BDV MEAN MMS
Sender Category

0
10
20
30
40
50
60
70
80
90

100
A

cc
ur

ac
y

(%
)

Max Accuracies for 2 Classes

B D V DV BV BD BDV MEAN MMS
Sender Category

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y
(%

)

Max Accuracies for 3 Classes

B D V DV BV BD BDV MEAN MMS
Sender Category

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y
(%

)

Max Accuracies for 4 Classes

B D V DV BV BD BDV MEAN MMS
Sender Category

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y
(%

)

Min Accuracies for 2 Classes

B D V DV BV BD BDV MEAN MMS
Sender Category

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y
(%

)

Min Accuracies for 3 Classes

B D V DV BV BD BDV MEAN MMS
Sender Category

0
10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y
(%

)

Min Accuracies for 4 Classes

Figure 4: The scatter plots illustrate the accuracy points between different sender types and classes. All devices and
sample sizes are considered. The plots with the minimum accuracy scores take into account the worst performance of
the single- and double-sender data, while the maximum accuracy scores focus on the best possible (in this setup).

This phenomenon underscores a critical insight: a sender
with generally lower performance can, in certain con-
ditions, detrimentally impact the collective accuracy of
multi-sender configurations.

To illustrate the enhancements in accuracy we
achieved by integrating multi-sender data over single-
sender benchmarks, we included Figure 5. This fig-
ure highlights the maximal accuracy improvements re-
alized in our study for configurations involving two and
three senders combined. It provides a detailed exam-
ination of the specific devices engaged in our exper-
iments and quantifies the average accuracy enhance-
ment across different class numbers. For each clas-
sification category, we pinpointed the lowest accuracy
scores from single-sender scenarios and juxtaposed these
with the highest-performing scores from multi-sender
configurations across all sample sizes. This approach
was designed to showcase the performance improve-
ments achievable with multi-sender strategies within our
dataset. The underlying principle is that the attacker can
always adapt the classifications by choosing the best-
performing multi-sender combination.

The analysis reveals that for devices a53 and op7, en-
hancements from multi-sender configurations are rela-
tively modest for binary classifications. This is attributed
to the already high performance of single-sender setups
in these instances (as detailed in Figure 3). However, the
narrative shifts significantly for classifications involving
three and four classes, where we observe improvements

of approximately 20%. The scenario is even more pro-
nounced for the p8l and px6a devices, which exhibit
progressively larger gains in accuracy with an increase
in the number of classes. Notably, the peak improve-
ment recorded is an impressive 120% for the px6a device
within four-class scenarios using three senders (namely,
the BDV combination).

This data suggests a clear trend: Classifications that
initially present lower accuracy in single-sender formats
tend to benefit substantially from the incorporation of
multi-senders, particularly in multi-class classifications.

5.3 Multiple Senders: Statistical Combina-
tion

In this subsection, we delve into a comparative analy-
sis between the performance of individual senders and
the aggregated results from multiple senders, specifically
focusing on the statistically enhanced Mean and MMS
datasets. These datasets incorporate data from all three
senders at their largest sample sizes, representing the best
dataset advancements explored in this study.

By observing Figure 4 once more, it becomes appar-
ent that the Mean and MMS datasets exhibit superior
performance for binary classifications compared to other
methodologies. This is particularly noticeable in their
minimum accuracy scores, which significantly exceed
those achieved by alternative approaches. The gap be-
tween the Mean and MMS datasets is relatively narrow,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 67

2 3 4
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)
Improvement for Device a53

Two Senders
Three Senders

2 3 4
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Improvement for Device op7
Two Senders
Three Senders

2 3 4 5
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Improvement for Device p8l
Two Senders
Three Senders

2 3 4 5
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Improvement for Device px6a
Two Senders
Three Senders

2 3 4
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Improvement for Device a53
Max Mean
Max MMS

2 3 4
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)
Improvement for Device op7

Max Mean
Max MMS

2 3 4
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Improvement for Device p8l
Max Mean
Max MMS

2 3 4
Number of Classes

0

20

40

60

80

100

120

140

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Improvement for Device px6a
Max Mean
Max MMS

Figure 5: Best accuracy improvement of all multi-sender techniques from the single-sender baseline (not globally
optimal), across all sample sizes. Lines in 4 and 5 classes indicate that there was only one classification, meaning one
accuracy outcome.

with the MMS dataset showing a marginal enhancement
in accuracy. However, the distinction in performance
between these advanced datasets and other techniques
becomes starkly apparent in the analyses for three and
four classes. For these more complex classifications, the
MMS dataset demonstrates a better performance than the
Mean dataset, unlike the improvement observed in bi-
nary classifications. The results indicate that the MMS is
currently the best-performing method for location iden-
tification, especially for multi-class classifications.

To further investigate the improvement of the Mean
and MMS datasets per device, we study the correspond-
ing boxplots of Figure 5 which illustrate the improve-
ment percentages for the enhanced datasets for the four
distinct devices. These plots reveal the percentage im-
provements of the advanced datasets across four distinct
devices. For devices a53 and op7, the increments be-
tween the Mean and MMS methods are relatively mod-
est. However, as we shift our focus to devices p8l and
px6a, especially with an increasing number of classes,
the distinction becomes more significant. The MMS
dataset showcases the maximum improvement, reaching
up to 142% for a four-class scenario on the px6a de-
vice. Furthermore, when juxtaposing the performance
of the Mean and MMS datasets against results from two
or three senders, the superiority of the MMS strategy
becomes more evident. Particularly, the MMS dataset

demonstrates considerable superiority over the conven-
tional multi-sender combinations, highlighting its effec-
tiveness not just in enhancing accuracy, but also in pro-
viding a more consistent and reliable performance across
varying class complexities and devices. This compara-
tive analysis not only underscores the value of the MMS
approach but also positions it as a notably advanced
methodology within the scope of our investigation, sig-
nificantly outpacing traditional techniques in terms of
performance improvement. Still, Figure 5 displays our
best improvements, but they are not considered as global
optimal, since there might be ways to enhance these tech-
niques even further. Finally, Figure 6 provides additional
information comparing the Mean and MMS results to all
single senders with all sample sizes.

5.4 Sample Size Comparisons
In machine learning, the sample size is a significant fac-
tor that influences the model’s performance. A sufficient
sample size ensures that the model can capture the di-
versity of the entire population within the data. Typi-
cally, larger sample sizes provide more data points for
the mode to learn from, which can lead to higher accu-
racy and reliability. In our work, we explore the con-
nection between the model’s performance and the sam-
ple size. Our goal is to determine whether the accuracy
increases as the sample size increases. To this end, we

68 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

a53 op7 p8l px6a
Device

0

20

40

60

80

100
A

cc
ur

ac
y

Va
lu

e
(%

)
Metrics for 2 Classes

Min Single-Sender
Max Single-Sender
Enhanced Mean
Enhanced MMS

a53 op7 p8l px6a
Device

0

20

40

60

80

100

A
cc

ur
ac

y
Va

lu
e

(%
)

Metrics for 3 Classes

Min Single-Sender
Max Single-Sender
Enhanced Mean
Enhanced MMS

a53 op7 p8l px6a
Device

0

20

40

60

80

100

A
cc

ur
ac

y
Va

lu
e

(%
)

Metrics for 4 Classes

Min Single-Sender
Max Single-Sender
Enhanced Mean
Enhanced MMS

Figure 6: Accuracy boxplots between the single-senders and the enhanced multi-sender approaches for all classifica-
tions. The plots consider the worst and best performing accuracy scores for single senders. These distributions show
that MMS achieves the best improvement (not global optimal).

meticulously analyze the performance metrics of single-,
double-, and triple-sender results across a sample size
range from 100 to 1000.

For single-senders B, D, and V, Figure 7 shows the av-
erage accuracy for all number of classes in each device,
unveils a trend where accuracy generally stabilizes with
an increase in sample size across various device contexts.
For double-senders BD, DV, and BV, Figure 8 reveals a
consistent pattern of steady or small improved accuracy
with larger sample sizes, across all class numbers. This
pattern persists into Figure 8, representing triple-sender
configurations, where the trends once again affirm the
model’s steady performance with increased data volume
for each class number per device.

Regarding the classification, the trends give us the in-
sight that the model might be well-tuned to the complex-
ity of the task at hand, effectively capturing the patterns
within the available data. In addition, this means that
the key features and patterns necessary for making accu-
rate predictions are already captured within the smaller
dataset. Steadiness after a certain sample size also shows
that the model’s structure is robust enough to perform
reliably under varying dataset conditions.

Consequently, for the attacker, these are promising re-
sults as it is not necessary to collect large amounts of
data, corresponding to the SMS transmissions, in or-
der to conduct the location identification attack. This
can be beneficial in reducing the measurement collection
time, computational costs, and training time, making the
model more efficient to develop and deploy, where ac-
quiring large volumes of data is challenging or impracti-
cal. Additionally, this can also make the adversary less
susceptible to detection, since the attacker can adapt to
the least amount of SMS transmission and senders for
the desired accuracy.

6 Discussion

In this section, we discuss the distribution of the sender
locations in our study. Then, we provide our insights on
the countermeasures against multi-sender SMS location
inference attacks and explain their potential limitations.

6.1 Geographical Distribution of Senders

The strategic placement of sender locations, adhering to
the principle of distancing them by several Kilometers,
aims to capture diverse timing characteristics (e. g., via
different routing), since the networks are black-box to
the attacker based on our threat model. In our study, we
utilize the most suitable locations from our options, for
which we can collect a sufficient amount of data continu-
ously and for a long time. We confine our options to two
adjacent countries since it is more challenging to conduct
the location inference attack in lower granularity levels.
Expanding the number of senders and diversifying loca-
tions internationally as well can potentially improve the
accuracy of attack even further.

6.2 Countermeasures

Ways to mitigate this attack can span from the elimi-
nation of silent SMSes and delivery reports to the im-
plementation of more rigorous SMS filtering mecha-
nisms for spam and flooding, which represents one of
the most direct and practical countermeasures against
location identification attacks [6]. Enhancing the core
concept of resilient spamming/flooding filters, networks
are encouraged to integrate advanced anomaly detection
systems in order to accurately distinguish between nor-
mal and anomalous patterns of SMS traffic. However,
it’s important to acknowledge that these systems pri-
marily operate based on predefined rules and thresholds
for anomaly detection, thereby limiting their efficacy to

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 69

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100
Av

er
ag

e
A

cc
ur

ac
y

(%
)

Single Sender-Device a53

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Single Sender-Device op7

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Single Sender-Device p8l

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Single Sender-Device px6a

Figure 7: Single-Sender accuracy trend plots for each device, per number of classes. The trends behave steadily and
continuously in most cases, as the sample sizes expand. We have included B, D, and V for 2 (◦), 3 (□), 4 (△), and 5
(⋄) classes.

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Double Sender-Device a53

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Double Sender-Device op7

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Double Sender-Device p8l

100 200 300 500 1000
Sample Size

0
10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Double Sender-Device px6a

100 200 300 500 1000
Sample Size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Triple Sender-Device a53

100 200 300 500 1000
Sample Size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Triple Sender-Device op7

100 200 300 500 1000
Sample Size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Av

er
ag

e
A

cc
ur

ac
y

(%
)

Triple Sender-Device p8l

100 200 300 500 1000
Sample Size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Triple Sender-Device px6a

Figure 8: Accuracy trend plots per number of classes for two and three senders. The trend is rather steady and
continuous as the sample sizes expand. We include BD, BV, DV, & BDV for 2 (◦), 3 (□), 4 (△), & 5 (⋄) classes.

merely delaying, rather than outright preventing, the ex-
ecution of such attacks.

To further complicate the attacker’s efforts in utilizing
timing information, the implementation of adaptive jitter
mechanisms introduces a more nuanced counterstrategy.
These mechanisms, capable of introducing variable de-
lays in SMS processing, adjust dynamically in response
to fluctuating network conditions and traffic patterns.
This adaptability ensures that networks can impede side-
channel analysis through effective timing obfuscation.
Nevertheless, considering the sophisticated strategy of
attackers deploying multiple senders across different ge-
ographical locations and leveraging various networks,
the effectiveness of previously mentioned countermea-
sures could be compromised. To address this, networks
could adopt a multi-layered defense strategy that also
considers the following methods:

1. Geographic Analysis of Source: Implement
anomaly detection systems that not only monitor the
frequency and pattern of messages but also analyze
the geographic origins of SMS traffic. By identify-
ing unusual patterns of messages coming from mul-

tiple locations (also through roaming) targeting a
single number, the system can flag potential coor-
dinated attacks.

2. Adaptive Routing: Dynamically alter the rout-
ing of messages based on real-time analysis to dis-
rupt the timing measurements of attackers. This
could involve randomizing the path messages take
through the network or introducing variable delays
for messages from identified suspicious sources and
roaming.

3. Joint Defense Initiatives: Since the attacks can
happen internationally from any location, it is im-
perative to establish shared intelligence on known
attack patterns, including the use of multiple
senders, across networks. Networks that work to-
gether can implement joint defense measures, such
as coordinated blocking of attack sources and uni-
fied response strategies to emerging threats.

70 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

6.3 Limitations

In this work, we alleviated the problems of some limita-
tions present in the location identification attack. First,
the attacker is not constrained by one location only and
can combine multiple sender measurements to signifi-
cantly improve the model’s accuracy. In addition, our
sample size study showed that the attacker is not con-
strained by the data size in most cases, making the attack
more efficient. The adversary has also the flexibility to
choose the best-performing multi-sender technique per
classification and is not restricted by one method only.

Despite the initial success of our experimentation, sev-
eral challenges remain in multi-sender attacks. Firstly,
while our study did not directly encounter coordination
or resource challenges, expanding the attack to incor-
porate multiple senders may necessitate significant re-
sources. This includes not only hardware but also lo-
gistical efforts to strategically position devices across
various locations. Such expansion could substantially
increase the complexity, cost, and effort required, po-
tentially making the attack viable only for adversaries
with substantial resources. Secondly, even though our
experiments did not face any issues with anomaly de-
tection systems, attacks conducted by multiple senders
are more likely to be identified as anomalous, resem-
bling patterns of spam or malicious activity more closely
than those conducted by single senders. Lastly, our focus
has largely been on closed-world scenarios, where the at-
tacker has predefined knowledge of the victim’s potential
locations. The efficacy of multi-sender attacks in open-
world scenarios, where the victim’s location is unknown,
remains less explored. We are planning to investigate
these aspects of the attack in the future.

7 Related Work

Recent studies have increasingly focused on the exploita-
tion of timing side-channel analysis for various secu-
rity and privacy implications. Schnitzler et al. [27] ex-
plored the feasibility of distinguishing the location of
message recipients in messenger applications using a
technique based on timing differences, focusing on In-
ternet infrastructure, similar to the concept examined by
Bitsikas et al. [6] which was centered on cellular net-
works. This line of inquiry is part of a broader spec-
trum of research into timing side-channel analysis even
across different web aspects, as evidenced by works such
as Rasmussen et al. [23], Kohlbrenner et al. [15], Brum-
ley et al. [7], and Goethem et al. [10], highlighting the
versatility and risk of timing attacks in various online en-
vironments.

In the domain of cellular networks, a rich body of lit-
erature has methodically explored both active and pas-

sive techniques to localize cellular network users. Stud-
ies range from capturing specific identifiers to leverag-
ing vulnerabilities within the network’s paging messages
and Radio Link Failure reports [12, 13, 17, 18, 29, 30].
The MAC layer and timing advance values have been
investigated for their potential in enhancing localization
accuracy [22, 26]. Notably, LTrack [16] demonstrated
an improvement in localization accuracy to as precise as
20 meters, significantly enhancing tracking capabilities
with minimal adversary involvement. Furthermore, Lak-
shmanan et al. [18] showed that by collecting data from
the public scheduling channel and finding unique identi-
fiers, one could trace a target’s path with an accuracy of
less than 1 kilometer.

Various SMS attacks have been demonstrated, exploit-
ing vulnerabilities to extract sensitive user information or
execute commands, as seen in the case of Simjacking [4]
and studies on spamming, spoofing, DoS, and silent SMS
in LTE networks [31]. Mulliner et al. [19] introduced
a vulnerability analysis framework for monitoring unex-
pected smartphone behaviors leading to large-scale DoS
attacks. Furthermore, audio call features have been ex-
plored for security applications, such as fingerprinting
and anomaly detection to combat call redirection/hijack-
ing. Techniques leveraging audio latency and network
characteristics have been investigated, with notable ex-
amples including Sonar [20] and PinDr0p [5].

8 Conclusion

In this work, we explored various multi-sender tech-
niques of the SMS location inference attack, which
provide a substantial accuracy improvement compared
to the single-sender approaches. Our results showed
that the best-performing method for all devices, sam-
ple sizes, and number of classes was the multi-sender
MMS method. Additionally, we performed an analysis
on the effects of the sample size on the model’s accuracy
for single- and multi-sender attacks, which revealed that
the attacker can leverage smaller sample sizes to conduct
the attack saving measurement collection time, resources
and reducing the possibility for detection. Finally, we re-
examined the potential countermeasures with extra sug-
gestions.

Acknowledgements

This work was supported by NSF grant 2144914, by UA
Ruhr under the Research Alliance Ruhr program, and by
the Center for Cyber Security at New York University
Abu Dhabi (NYUAD). The authors would like to thank
Michel Lang, Philipp Markert, and Lena Schnitzler for
their help with data collection.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 71

References

[1] 3GPP. Digital cellular telecommunications system
(Phase 2+)(GSM); Universal Mobile Telecommu-
nications System (UMTS); LTE; 5G; Support of
SMS over IP networks; Stage 3. Technical Spec-
ification (TS) 24.341, 3rd Generation Partnership
Project (3GPP), 05 2022. Version 17.1.0.

[2] 3GPP. Digital cellular telecommunications sys-
tem (Phase 2+)(GSM); Universal Mobile Telecom-
munications System (UMTS); LTE; IP Multime-
dia Subsystem (IMS); Stage 2 . Technical Spec-
ification (TS) 23.228, 3rd Generation Partnership
Project (3GPP), 05 2022. Version 17.3.0.

[3] 3GPP. Digital cellular telecommunications system
(Phase 2+)(GSM); Universal Mobile Telecommu-
nications System (UMTS); LTE; Use of Data Ter-
minal Equipment - Data Circuit terminating Equip-
ment (DTE - DCE) interface for Short Message
Service (SMS) and Cell Broadcast Service (CBS).
Technical Specification (TS) 27.005, 3rd Genera-
tion Partnership Project (3GPP), 04 2022. Version
17.0.0.

[4] Adaptive Mobile Security Limited. Simjacking. ht
tps://f.hubspotusercontent10.net/hubfs
/8487362/Reports/AdaptiveMobile_Securi
ty_Simjacker_Technical_Paper_v1.01.pdf.

[5] Vijay A. Balasubramaniyan, Aamir Poonawalla,
Mustaque Ahamad, Michael T. Hunter, and Patrick
Traynor. Pindr0p: Using single-ended audio fea-
tures to determine call provenance. In Proceed-
ings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, page 109–120,
New York, NY, USA, 2010. Association for Com-
puting Machinery.

[6] Evangelos Bitsikas, Theodor Schnitzler, Christina
Pöpper, and Aanjhan Ranganathan. Freaky leaky
SMS: Extracting user locations by analyzing SMS
timings. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 2151–2168, Ana-
heim, CA, August 2023. USENIX Association.

[7] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. In 12th USENIX Security Sym-
posium (USENIX Security 03), Washington, D.C.,
August 2003. USENIX Association.

[8] Cloudmark. SMS spam overview — preserving the
value of SMS texting. https://www.cloudmar
k.com/en/resources/white-papers/sms-s
pam-overview-preserving-value-sms-tex
ting.

[9] Europol. Takedown of sms-based flubot spyware
infecting android phones. https://www.europo
l.europa.eu/media-press/newsroom/news
/takedown-of-sms-based-flubot-spyware
-infecting-android-phones.

[10] Tom Van Goethem, Christina Pöpper, Wouter
Joosen, and Mathy Vanhoef. Timeless timing at-
tacks: Exploiting concurrency to leak secrets over
remote connections. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 1985–2002.
USENIX Association, August 2020.

[11] GSM Association. Official Document NG.111 -
SMS Evolution. Technical Specification (TS) 111-
v2.0, GSM Association, 11 2020. Version 2.0.

[12] Byeongdo Hong, Sangwook Bae, and Yongdae
Kim. GUTI reallocation demystified: Cellular lo-
cation tracking with changing temporary identifier.
In 25th Annual Network and Distributed System Se-
curity Symposium, NDSS 2018, San Diego, Califor-
nia, USA, February 18-21, 2018. The Internet So-
ciety, 2018.

[13] Syed Rafiul Hussain, Mitziu Echeverria, Omar
Chowdhury, Ninghui Li, and Elisa Bertino. Pri-
vacy attacks to the 4G and 5G cellular paging pro-
tocols using side channel information. In 26th An-
nual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[14] Kaspersky. What is smishing and how to defend
against it. https://www.kaspersky.com/reso
urce-center/threats/what-is-smishing-a
nd-how-to-defend-against-it.

[15] David Kohlbrenner and Hovav Shacham. On the
effectiveness of mitigations against floating-point
timing channels. In USENIX Security Symposium,
2017.

[16] Martin Kotuliak, Simon Erni, Patrick Leu, Marc
Röschlin, and Srdjan Capkun. LTrack: Stealthy
tracking of mobile phones in LTE. In 31st USENIX
Security Symposium (USENIX Security 22), pages
1291–1306, Boston, MA, August 2022. USENIX
Association.

[17] Denis Foo Kune, John Kölndorfer, Nicholas Hop-
per, and Yongdae Kim. Location leaks over
the GSM air interface. In 19th Annual Network
and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8,
2012. The Internet Society, 2012.

72 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://f.hubspotusercontent10.net/hubfs/8487362/Reports/AdaptiveMobile_Security_Simjacker_Technical_Paper_v1.01.pdf
https://f.hubspotusercontent10.net/hubfs/8487362/Reports/AdaptiveMobile_Security_Simjacker_Technical_Paper_v1.01.pdf
https://f.hubspotusercontent10.net/hubfs/8487362/Reports/AdaptiveMobile_Security_Simjacker_Technical_Paper_v1.01.pdf
https://f.hubspotusercontent10.net/hubfs/8487362/Reports/AdaptiveMobile_Security_Simjacker_Technical_Paper_v1.01.pdf
https://www.cloudmark.com/en/resources/white-papers/sms-spam-overview-preserving-value-sms-texting
https://www.cloudmark.com/en/resources/white-papers/sms-spam-overview-preserving-value-sms-texting
https://www.cloudmark.com/en/resources/white-papers/sms-spam-overview-preserving-value-sms-texting
https://www.cloudmark.com/en/resources/white-papers/sms-spam-overview-preserving-value-sms-texting
https://www.europol.europa.eu/media-press/newsroom/news/takedown-of-sms-based-flubot-spyware-infecting-android-phones
https://www.europol.europa.eu/media-press/newsroom/news/takedown-of-sms-based-flubot-spyware-infecting-android-phones
https://www.europol.europa.eu/media-press/newsroom/news/takedown-of-sms-based-flubot-spyware-infecting-android-phones
https://www.europol.europa.eu/media-press/newsroom/news/takedown-of-sms-based-flubot-spyware-infecting-android-phones
https://www.kaspersky.com/resource-center/threats/what-is-smishing-and-how-to-defend-against-it
https://www.kaspersky.com/resource-center/threats/what-is-smishing-and-how-to-defend-against-it
https://www.kaspersky.com/resource-center/threats/what-is-smishing-and-how-to-defend-against-it

[18] Nitya Lakshmanan, Nishant Budhdev, Min Suk
Kang, Mun Choon Chan, and Jun Han. A stealthy
location identification attack exploiting carrier ag-
gregation in cellular networks. In 30th USENIX
Security Symposium (USENIX Security 21), pages
3899–3916. USENIX Association, August 2021.

[19] Collin Mulliner, Nico Golde, and Jean-Pierre
Seifert. Sms of death: From analyzing to attack-
ing mobile phones on a large scale. In USENIX
Security Symposium, 2011.

[20] Christian Peeters, Hadi Abdullah, Nolen Scaife,
Jasmine Bowers, Patrick Traynor, Bradley Reaves,
and Kevin Butler. Sonar: Detecting ss7 redirec-
tion attacks with audio-based distance bounding.
In 2018 IEEE Symposium on Security and Privacy
(SP), pages 567–582. IEEE Computer Society, 05
2018.

[21] Christian Peeters, Christopher Patton, Imani N. S.
Munyaka, Daniel Olszewski, Thomas Shrimpton,
and Patrick Traynor. SMS OTP security (SOS):
hardening SMS-based two factor authentication. In
ASIA CCS’22: ACM Asia Conference on Computer
and Communications Security, Nagasaki, Japan, 30
May 2022 - 3 June 2022, pages 2–16. ACM, 2022.

[22] Benjamin A Pimentel. Passive Geolocation in a
4G WIMAX Single Base Station Scenario. Phd the-
sis, Naval Postgraduate School, Monterey Califor-
nia, 2013.

[23] Kasper Bonne Rasmussen and Srdjan Capkun. Lo-
cation privacy of distance bounding protocols. Pro-
ceedings of the 15th ACM conference on Computer
and communications security, 2008.

[24] Bradley Reaves, Nolen Scaife, Dave Tian, Logan
Blue, Patrick Traynor, and Kevin R. B. Butler.
Sending out an SMS: characterizing the security of
the SMS ecosystem with public gateways. In IEEE
Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016, pages 339–356.
IEEE Computer Society, 2016.

[25] Bradley Reaves, Luis Vargas, Nolen Scaife, Dave
Tian, Logan Blue, Patrick Traynor, and Kevin R. B.
Butler. Characterizing the security of the SMS
ecosystem with public gateways. ACM Trans. Priv.
Secur., 22(1):2:1–2:31, 2019.

[26] John D. Roth, Murali Tummala, John C. Mceachen,
and James W. Scrofani. On location privacy in
LTE networks. IEEE Transactions on Information
Forensics and Security, 12:1358–1368, 2017.

[27] Theodor Schnitzler, Katharina Kohls, Evangelos
Bitsikas, and Christina Pöpper. Hope of Deliv-
ery: Extracting User Locations From Mobile In-
stant Messengers. In Network and Distributed Sys-
tem Security Symposium, NDSS ’23, San Diego,
CA, USA, February 2023. The Internet Society.

[28] Security Affairs. After simjacker, wibattack hack-
ing technique disclosed. billions of users at risk.
https://securityaffairs.co/wordpress/9
1800/hacking/wibattack-sim-attack.html.

[29] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Bor-
gaonkar, N. Asokan, and Valtteri Niemi. Prac-
tical attacks against privacy and availability in
4G/LTE mobile communication systems. ArXiv,
abs/1510.07563, 2016.

[30] Ankush Singla, Syed Rafiul Hussain, Omar
Chowdhury, Elisa Bertino, and Ninghui Li. Protect-
ing the 4G and 5G cellular paging protocols against
security and privacy attacks. Proc. Priv. Enhancing
Technol., 2020(1):126–142, 2020.

[31] Guan-Hua Tu, Chi-Yu Li, Chunyi Peng, Yuanjie Li,
and Songwu Lu. New security threats caused by
IMS-based SMS service in 4G LTE networks. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’16, page 1118–1130, New York, NY, USA, 2016.
Association for Computing Machinery.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 73

https://securityaffairs.co/wordpress/91800/hacking/wibattack-sim-attack.html
https://securityaffairs.co/wordpress/91800/hacking/wibattack-sim-attack.html

MakeShift: Security Analysis of Shimano Di2
Wireless Gear Shifting in Bicycles

Maryam Motallebighomi1, Earlence Fernandes2, and Aanjhan Ranganathan1

1Northeastern University, Boston, USA
2University of California, San Diego, USA

Abstract

The bicycle industry is increasingly adopting wireless gear-
shifting technology for its advantages in performance and
design. In this paper, we explore the security of these systems,
focusing on Shimano’s Di2 technology, a market leader in the
space. Through a blackbox analysis of Shimano’s proprietary
wireless protocol, we uncovered the following critical vulner-
abilities: (1) A lack of mechanisms to prevent replay attacks
that allows an attacker to capture and retransmit gear shift-
ing commands; (2) Susceptibility to targeted jamming, that
allows an attacker to disable shifting on a specific target bike;
and (3) Information leakage resulting from the use of ANT+
communication, that allows an attacker to inspect telemetry
from a target bike. Exploiting these, we conduct successful
record and replay attacks that lead to unintended gear shifting
that can be completely controlled by an attacker without the
need for any cryptographic keys. Our experimental results
show that we can perform replay attacks from up to 10 meters
using software-defined radios without any amplifiers. The
recorded packets can be used at any future time as long as
the bike components remain paired. We also demonstrate
the feasibility of targeted jamming attacks that disable gear
shifting for a specific bike, meaning they are finely tuned to
not affect neighboring systems. Finally, we propose coun-
termeasures and discuss their broader implications with the
goal of improving wireless communication security in cycling
equipment.

1 Introduction

Modern bicycles are cyber-physical systems that contain em-
bedded computers and wireless links to enable new types of
telemetry and control. The key motivating factors for moving
away from traditional mechanical systems are the ability to
gain insights about a rider’s physical performance, better re-
sponsiveness in gear shifting, customizability of how the gear
shifters operate, and easier setup and maintenance.

Among all these technologies, we observe that the one with

the most impact on bike control and safety is wireless gear
shifting.1 It uses wireless links between the gear shifters and
the derailleur — an electro-mechanical component that uses
motors to move the chain between gears. Electronic control
provides increased precision in shifts and is less prone to
issues like cable stretch and contamination that plague me-
chanical gear shifting systems. Although wired electronic
control of gear shifting exists, the current trend in the bicycle
industry is to move towards wireless control. All major man-
ufacturers now support wireless shifting (Shimano, SRAM,
Campagnolo).

In this work, we analyze the security guarantees of wire-
less gear shifting. Any security vulnerability in this system
can significantly impact the rider’s safety and performance,
especially in professional bike races, where an attacker could
target a victim rider to gain an unfair competitive advantage.
In a professional race, a peloton of hundreds of riders are close
to each other, often a few feet apart, and can reach speeds up to
40 mph. Any sudden changes to a bike’s performance can be
catastrophic. For example, if an attacker were to target a sub-
set of riders and shift the gears or jam the shifting operation,
it could result in crashes and injuries. As another example, if
the riders are climbing slowly (or descending at high speed),
an attacker could shift a target rider’s bike into high gear or
jam their shifting, leading them to lose their position in the
race and even lose control of the bike itself.

The sport of professional cycling has a long and troubled
history with the use of illegal performance-enhancing drugs
— security vulnerabilities in one of the most critical compo-
nents of the bike could be viewed as an attractive alternative
method for people who want to compromise the integrity
of the sport. Furthermore, our attacks do not leave any de-
tectable trace, unlike the use of performance-enhancing drugs.
As such, with the introduction of wireless gear shifting, one
must adopt an adversary’s viewpoint — professional bike
races are adversarial environments, and the technology must
withstand motivated attackers. We focus on the Shimano 105

1The other important component is the brakes, but these are mechanical
systems.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 75

Di2 [10] and Shimano DURA-ACE Di2 [16] wireless shift-
ing systems. Shimano is a leader in the bicycle control sys-
tem industry, commanding approximately 50% of the market
share [15, 28]. We purchased a recent version of the control
system and performed a black box security analysis, from
capturing raw physical signals, examining their behavior on
gear shifting, and finally performing packet structure/content
analysis. This study seeks to address the following research
questions: (1) What are the security guarantees provided by
these wireless gear-shifting systems? (2) Do these wireless
systems, when integrated into bicycles, maintain robust de-
fenses against specific cyber attacks, such as replay attacks,
similar to those observed in automotive key fob systems [20]?
Have the lessons learned from analyzing similar systems con-
tributed to the design of these wireless gear shifters? (3) What
is the practical feasibility of executing the identified cyber
attacks? In other words, what constraints and requirements
would an attacker face in attempting to compromise these
systems?

Our key contribution is the discovery of a record-and-replay
attack that allows an unauthorized party to fully control gear
shifting on a victim bike at ranges up to 10 meters with-
out the use of amplifiers. This attack can be realized using
commercial-off-the-shelf software-defined radios (SDR). The
attacker only needs to record two signals — an upshift and a
downshift.
We make the following contributions in this paper.

• Analysis of the Shimano Wireless Gear Shifting Protocol.
We investigate the proprietary protocol used by Shimano for
its wireless gear shifting. This process allows us to decode
the communication framework of these systems, providing
insights into their operational mechanics.

• Identify Security Weaknesses. Based on the analysis, we
identify several security weaknesses within the protocol, no-
tably the absence of replay protection mechanisms such as
timestamps or sequence numbers. Despite the implementa-
tion of cryptographic primitives, these vulnerabilities present
significant security risks.

• Record-and-Replay and Targeted Jamming Attacks.
Leveraging the identified weaknesses, we successfully ex-
ecute record-and-replay attacks. These attacks can cause un-
expected gear shifts in arbitrary patterns by interacting at the
physical layer, bypassing the need for extracting any cryp-
tographic secrets and making the attack independent of the
cryptographic layer. Furthermore, we explore the potential
for targeted jamming attacks that specifically disable gear-
shifting capabilities on targeted bicycles without impacting
nearby cyclists.

• Experimental Evaluation. We conduct various experiments
with two identical Shimano 105 Di2 wireless gear shifting
systems. We also confirmed our findings on Shimano DURA-
ACE Di2 system. Through these experiments, we executed

replay and jamming attacks utilizing SDRs and explored their
effective range. Additionally, we examined the shifting sys-
tem’s behavior in response to interference. Our experiments
indicate that replay attacks using SDRs are effective up to a
distance of 10 meters without amplification. The effectiveness
of replayed packets persists as long as the pairing between
shifters and derailleur remains unchanged.

• Countermeasures. We provide a discussion of potential coun-
termeasures. Wireless gear shifting operates in a highly con-
strained environment — security mechanisms should not add
significant time delay in shifting and must not degrade bat-
tery life. While implementing techniques such as timestamps
has particular challenges, employing rolling codes or distance
bounding within wireless gear shifting can effectively miti-
gate replay attacks.

Although our paper’s main focus is on Shimano’s gear-
shifting systems, we also examine vulnerabilities in the com-
munication protocol used for telemetry on bike displays, no-
tably the ANT protocol. This protocol is widely used in Shi-
mano and other low-power wireless data transmission sys-
tems, extending the relevance of our findings. We have shown
that any nearby third party with Shimano’s private key and
knowledge of the channel configuration can intercept all trans-
mitted information. In our replay attack scenario, this informa-
tion enables the attacker to determine the targeted bike’s cur-
rent gear and replay the upshifting/downshifting commands
to adjust the gear according to their preference. For example,
the attacker waits until the rider is in gear 3 and then launches
a downshift replay to move it to gear 2.

Our study aims to highlight vulnerabilities in wireless gear
shifting systems, especially focusing on Shimano’s Di2, and
offers a first look into the security challenges of bicycle wire-
less communication technologies. Through this work, we
hope to contribute to the ongoing effort to secure wireless
communications in cycling equipment.

Responsible Disclosure. We notified Shimano about the
vulnerabilities, along with detailed information on replicat-
ing the attacks, part numbers of the devices we tested, and a
description of countermeasures that might be helpful in this
context. Shimano has acknowledged these vulnerabilities and
is working on fixes at the time of this writing.

2 Wireless Gear Shifting: An Overview

In the cycling industry, all major manufacturers have ventured
into developing wireless gear-shifting systems, aiming to en-
hance the cycling experience through technology. Brands like
SRAM [17] and Campagnolo [3], alongside Shimano, have
introduced their versions of wireless shifting, each bringing
unique features and innovations to the market. These systems
signify a leap forward in bicycle design, offering cyclists

76 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 1: The equipment list on the test bikes for Shimano 105
Di2 groupset.

Item Model Firmware Version
Rear Derailleur RD-R7150 ver 4.0.2
Front Derailleur FD-R7150 ver 4.0.1
Right Shifter ST-R7170-R -
Left Shifter ST-R7170-L -
Battery BT-DN300 ver 4.0.1

Table 2: The equipment list on the test bikes for Shimano
Dura-Ace Di2 groupset.

Item Model Firmware Version
Rear Derailleur RD-R9250 ver 4.0.7
Front Derailleur FD-R9250 ver 4.0.3
Right Shifter ST-R9270-R -
Left Shifter ST-R9270-L -
Battery BT-DN300 ver 4.0.1

improved performance, convenience, and integration. Due
to Shimano’s significant market presence and role as a pio-
neering force in cycling technology, we’ve selected Shimano
as our case study to examine the vulnerabilities inherent in
wireless gear-shifting systems.

For our experiments, we chose the Shimano 105 Di2 and
the Dura-Ace Di2 wireless gear-shifting systems as our case
study. Tables 1 and 2 contain the equipment list, their respec-
tive model numbers, and firmware versions. We note that the
two groupsets, Shimano 105 Di2 and Shimano Dura-Ace Di2,
are compatible. Therefore, we tested pairing various shifters
and derailleurs from these groupsets and confirmed that they
all use the same protocol. Consequently, the vulnerabilities
identified are consistent across both systems.

The Shimano gear-shifting system consists of four main
components.

(1) Rear Derailleur: The rear derailleur is the core of the
gear-shifting system and facilitates all wireless communica-
tions. This includes connections with the shifters, Bluetooth
Low Energy (BLE), and ANT+ communications. It offers
eleven gear levels (and, in some newer versions, 12 levels),
ranging from the lowest to the highest.

(2) Front Derailleur: The front derailleur is wired to the rear
derailleur through the battery and allows switching between
two distinct gear levels, which are large gear changes.

(3) Right and Left Shifters: These components wirelessly
transmit gear-shifting instructions to the rear derailleur using
Shimano’s proprietary protocol, which we will explore in
detail in the following section. One of the shifters controls the
rear derailleur, and the other controls the front derailleur. This
setting can be customized through the E-TUBE PROJECT [4]
over BLE.

(4) Battery: The battery ports are connected to the rear and

ANT

ETUBE PROJECT Cycle Computer

BLE

Shimano's

Proprietary Protocol

Shifter

Rear

Derailleur

Figure 1: Shimano’s RF communication.

front derailleur, ensuring they are powered for operation.
The Shimano system employs three key protocols to estab-

lish connections among its various components, each serving
a distinct function. The communication methods within Shi-
mano’s network are illustrated in Figure 1.

2.1 Bluetooth Low Energy
The Shimano E-TUBE PROJECT is a software tool that con-
nects cyclists to their bike configuration. This platform can
personalize the settings, such as customizing shifter button
functions and conducting firmware updates. It employs BLE
for efficient communication in many power-constrained de-
vices, which fits the requirements of a system like E-TUBE
PROJECT that aims to provide seamless and user-friendly
interaction with bicycle components. While BLE is essential
for configuring and updating the system, it does not control
real-time biking actions such as shifting gears.

Also, the initial setup of shifters and the rear derailleur
involves pairing them through the E-TUBE mobile app. Users
need to register and connect the rear derailleur to the mobile
app, then scan the QR code on the shifters to pair both shifters
with the rear derailleur. Given that Bluetooth Low Energy
(BLE) vulnerabilities have been extensively documented in
existing literature [41], our paper did not focus on this aspect.

2.2 ANT+
ANT is a low-power wireless protocol designed to transmit
information between devices efficiently and reliably. It is
known for robustness and adaptability in different network
setups, including mesh networks, making it ideal for gathering
and sending sensor data.

Building on the ANT protocol, ANT+ is an enhancement
that standardizes how specific data types are communicated.
It establishes device profiles for consistent data transmission,
like heart rate, bike speed, and cadence. This standardization
allows devices from various manufacturers to work together
seamlessly. In cycling, ANT+ plays a crucial role in the Di2
system. It wirelessly sends vital information such as gear
position and battery life to compatible cycling computers,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 77

Shifter
Rear

Derailleur

Command Packet 1 _ Button Pushed

Command Packet 2 _ Button Pushed

Command Packet 3 _ Button Pushed

Command Packet n _ Button Released

Acknowledgement 1

Acknowledgement 2

Acknowledgement 3

Acknowledgement n

. . .

Figure 2: The sequence of command and acknowledgment
packets between the shifter and rear derailleur after a button
press. The user’s actions can influence the sequence and num-
ber of command packets, which are subsequently followed by
an acknowledgment.

allowing riders to monitor these details in real-time during
their rides. The frequency range for ANT devices spans from
2.400 GHz to 2.524 GHz, but 2.457 GHz is reserved specifi-
cally for ANT+ devices. These devices can operate using a
public network key, a private one, or a managed network key
owned privately, providing flexibility in network security and
access [1]. In summary, ANT and ANT+ offer versatile and
efficient solutions for wireless communication, especially in
scenarios where reliable data transmission and interoperabil-
ity are essential.

2.3 Shimano’s Proprietary Communication
Protocol

In the Shimano Di2 system, gear shifting is controlled through
a unique, Shimano-specific protocol. This protocol operates
on the 2.478 GHz frequency band, facilitating communica-
tion between the rear derailleur and the shifters. However,
Shimano’s official documentation does not disclose detailed
information about this protocol, leaving specifics such as mod-
ulation, data rate, and packet structure unclear. Thus, we ana-
lyze Shimano’s proprietary communication protocol as a first
step.

Figure 3: One command packet being transmitted from the
shifter to the rear derailleur, along with the corresponding
acknowledgment sent from the rear derailleur back to the
shifter.

3 Analyzing Shimano’s Wireless Gear Control
Protocol

We begin with an overview of Shimano’s Wireless Gear Con-
trol Protocol, providing a detailed examination of the com-
mand and acknowledgment packet sequences exchanged be-
tween the shifter and the rear derailleur. Next, we analyze the
physical layer, focusing primarily on demodulating captured
RF signals into binary data to understand the underlying com-
munication mechanisms. We employ a black-box methodol-
ogy to passively capture raw signals. Subsequently, we delve
into the packet structures within the Shimano wireless com-
munication protocol, exploring all components of the various
packet types. Finally, we discuss the security weaknesses that
could potentially threaten the protocol’s integrity.

3.1 High-Level Protocol Overview

The shifters send two types of commands to the rear derailleur
— Gear Up and Gear Down. On each press of the shift button
(either up or down), the shifter transmits at least three packets
to the derailleur. Upon receiving each packet, the derailleur
transmits an acknowledgment to the shifter. The quantity of
packets transmitted is influenced by the speed at which the
user presses and releases the shifter button. If the button is
pressed and held, packets will be sent for the hold duration.
Conversely, a single press of the button results in the transmis-
sion of at least three packets. Figure 2 illustrates the sequence
of packets triggered by the user pressing the button, leading
to one upshift on the rear derailleur. As noted, the sequence of
command packets followed by an acknowledgment can vary
based on the user’s actions. Figure 3 displays one command
packet being transmitted from the shifter to the rear derailleur,
along with the corresponding acknowledgment sent from the
rear derailleur back to the shifter. Each command packet has
an approximate duration of 112 µs, while each acknowledg-
ment packet is about 76 µs.

If the shifter fails to receive an acknowledgment within
a time frame, it initiates a burst transmission. Each burst

78 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 3: Behavior of different packets during a replay attack: Pressing the button by the user results in the transmission of three
packets from the shifter to the derailleur. To understand the packet’s functionality, we conducted experiments by replaying the
packets both individually and in various combinations.

Setting First
Packet

Second
Packet

Third
Packet Observations

A 1
This will cause the derailleur to shift up by one gear.
The repeating signal will not function until you manually press the button once.
After that, the signal can be replayed successfully once more.

B 1 Similar to A.
C 1 No reaction.
D 1 1 Works like a normal replay. Repeated many times.
E 1 1 Similar to D.
F 1 1 Every time the signal was replayed, it resulted in shifting twice instead of a single time.

Figure 4: Segments from a burst sequence when acknowl-
edgments are not received, showcasing a total of 748 packets
transmitted over 1.5 seconds.

contains 748 packets and lasts 1.5 seconds. We captured the
packet burst while the rear derailleur was disconnected from
the battery. Figure 4 illustrates a segment of this burst. In
Section 4.3, we discuss the relevance of the packet burst under
conditions like interference.

In the next step, we conducted tests by individually trans-
mitting the three captured packets associated with a single
gear shift to analyze each packet’s effect. Furthermore, we
experimented with various combinations of these three pack-
ets to examine the outcomes, acknowledging that redundancy
among them might be designed to guarantee command recep-
tion by the derailleur to prevent potential interference.

Table 3 summarizes the functionality of the packets. We
monitored how the packets behaved under different conditions
(labeled A to F), continuously replaying the specific packet(s)
relevant to each condition. This was then contrasted with a
baseline scenario, wherein all three packets were replayed
in their original sequence, mirroring the authentic command
exactly. Our observations indicated that the behaviors of the
first and second packets were strikingly similar.

On the other hand, replaying only the third packet triggers
no derailleur action, leading us to speculate that this packet
might serve as a "button released" command.

In scenarios D and E, eliminating the first or second packet
does not affect the behavior of the packets compared to the

Table 4: Signals information derived from publicly available
documents

Signal Feature Value
Frequency 2.478 GHz
Bandwidth 2127 KHz
Modulation GFSK
Emission Reference <TX3064779>
Emission Designator 2M13F1D–

baseline scenario. This suggests that one of the packets may
be sent as a form of redundancy. In both cases, D and E, repeat-
edly replaying the packets consistently triggers a single gear
shift, akin to the baseline scenario. However, replaying the
same packet in scenarios A and B does not lead to subsequent
gear shifts after the successful initial replay.

Furthermore, in scenario F, sending both the first and sec-
ond packets causes the gear to shift twice, which could mirror
the situation where the user keeps the button pressed.

We clarify that our analysis in Table 3 focuses exclusively
on individual shift events rather than MultiShift settings. Mul-
tiShift settings in Shimano’s wireless gear-shifting system
allow multiple gear changes with a single button press, en-
abling quicker transitions across gears. This distinction is
important as our experimental setup and data collection were
designed to evaluate single-shifting actions.

In conclusion, our experiments revealed that the roles of
the first and second packets might stem from redundancy and
correspond to the user’s button press, while the third packet
appears to be associated with the user releasing the button.

3.2 Physical Layer Analysis

The primary focus is demodulating the captured RF signals
into binary data and subsequently examining their contents.
We use a black box methodology that passively captures raw
signals.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 79

Preamble

Preamble

Protocol Identifier

Protocol Identifier

Packet type Counter1 Counter2

Packet type Destination IDPayload1

Payload1 Payload2

16 bit

16 bit 32 bit 16 bit 48 bit 16 bit

80 bit48 bit4 bit4 bit16 bit32 bit

Command packet

Acknowledgement packet

Figure 5: Overview of Command and Acknowledgment Packet Structures. Illustrating the differences between 200-bit command
packets and 128-bit acknowledgment packets, including the content of their respective fields.

Table 5: Modulation/Demodulation parameters for Shimano’s
proprietary protocol

Modulation Parameter Value
Carrier Frequency 2.478 GHz
Data Rate 2 Mbps
Bit per Symbol 1
Frequency Deviation -250 kHz/250 kHz
Gauss BT 0.5
Gauss Filter Width 1

The first step in analyzing a wireless signal is determining
its precise frequency and modulation type. We found this data
in documents from the Federal Communications Commis-
sion (FCC) and the Radio Equipment List (REL). Table 4
presents the information summarized from these documents.
The communication between devices occurs at 2.478GHz and
does not utilize frequency hopping. The signal’s bandwidth is
2127 KHz.

The term ‘Emission Reference <TX3064779>’ is identified
as a distinct code or number linked to specific emission prop-
erties. The ‘Emission Designator 2M13F1D’ is recognized
globally to categorize a signal’s bandwidth, modulation type,
and content. ‘2M13’ details the required signal bandwidth.
‘F’ denotes the modulation type of the primary carrier as fre-
quency modulation, ‘1’ represents a single channel carrying
quantized or digital data without an additional modulating
sub-carrier, and ‘D’ describes the nature of the transmitted
information, highlighting the transmission of digital data.

Shimano gear shifting utilizes Gaussian Frequency Shift
Keying (GFSK) for their proprietary communication protocol,
a form of Frequency Shift Keying that applies Gaussian filter-
ing to smooth out signal transitions or frequency shifts. GFSK
is a prominent modulation technique employed across various
wireless technologies, including Bluetooth, IEEE 802.15.4,
and Z-wave. Dealing with GFSK presents more complexity
in the analysis compared to systems using simpler modu-
lation techniques like amplitude shift keying, where signal
demodulation can be straightforwardly achieved using open-

source tools such as Inspectrum [8]. However, demodulating
GFSK requires identifying the correct demodulation param-
eters, which increases the complexity. For Shimano devices,
all specific modulation parameters were initially unclear. The
FCC documents did not disclose any of these parameters.

We utilized Universal Radio Hacker (URH) [34], a tool
specifically designed to analyze and manipulate wireless com-
munication signals for our analysis. This tool facilitates the
recording, analysis, and modification of signals across various
wireless devices. However, the automatic parameter detec-
tion feature in URH failed to demodulate our captured signal
effectively. We were unclear about the data rate, a critical
piece of information for GFSK demodulation, which depends
heavily on the correct sample/symbol ratio. Through a com-
bination of trial and error and visual analysis of our signals,
we identified the necessary parameters to successfully demod-
ulate the captured data. Table 5 outlines the required modu-
lation/demodulation parameters we identified. The Gaussian
filter in GFSK modulation has a parameter called the time-
bandwidth product (BT), which is the product of the filter
bandwidth and the bit duration. The BT value affects the
shape of the data pulses and the resulting GFSK signal.

3.3 Packet Structure and Content
Upon successful demodulation, we could distinguish two pri-
mary types of packets within the Shimano communication
protocol: command and acknowledgment. Command packets,
originating from the shifter, comprise 200 bits and are directed
towards the derailleur. Conversely, acknowledgments follow
these command signals and consist of 128 bits, transmitting
from the derailleur back to the shifter. Figure 5 graphically
illustrates these packet structures, annotated with their com-
ponents.

In our analysis of numerous packet sequences, we identify
and describe specific fields within the packets as follows:
Preamble: Each packet starts with a 16-bit preamble, repre-
sented as 0101010101010101. The preamble plays a critical
role in various RF communication protocols by helping to syn-
chronize the receiver’s timing with the sender’s signal. This
synchronization aids in accurately detecting the beginning

80 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 6: Analysis of different fields in Shimano command packets. It shows our observation of how different fields in the packets
change under various conditions, helping to clarify how the fields are connected.

Action/Condition Counter1
changes?

Counter2
changes?

Observations
Payload1 Consistency Payload2 Consistency Destination ID Consistency

Bike1, Upshifting No No Yes Yes Yes
Bike1, Upshifting Yes No No No Yes
Bike1, Upshifting No Yes No No Yes
Bike1, Downshifting No No Yes No Yes
Bike2, Upshifting No No No No No
Bike1, Upshifting
(Repairing) No No Yes No Yes

of a new packet. Additionally, the preamble facilitates the
adjustment of the receiver’s Automatic Gain Control (AGC)
circuits to the strength of the incoming signal. We verified
the correct demodulation of the preamble at the start of each
packet during our adjustments of the modulation parameters.
Protocol Identifier: Following the preamble is a 32-bit pro-
tocol identifier, which remains unchanged across all packets
captured under this specific Shimano’s proprietary protocol.
This identifier functions similarly to the “access address” in
BLE protocols and helps distinguish Shimano’s protocol from
other traffic in the 2.4 GHz spectrum.
Packet Type: A 16-bit field follows, identifying the packet as
either a command or acknowledgment packet. In our observa-
tions, every 200-bit command packet contains 0x8888 within
this field, while acknowledgments are marked with 0x1010.
Counters: The first counter (Counter1) increments with
each transmitted packet. The second counter (Counter2)
increments only upon receiving an acknowledgment, indi-
cating a successful transmission. If the shifter does not re-
ceive an acknowledgment and begins to emit a burst of pack-
ets, Counter2 remains constant, whereas Counter1 cycles
through 15 possible values.
Payload: The next segment within command packets involves
Payload1 and Payload2, together spanning 128 bits. We
divided the payload into two parts because some parts of the
payload in command packets are exactly replicated in the
acknowledgments.

Table 6 offers a comprehensive look at our findings, illus-
trating how each field varies across different test scenarios
and setups. For any given wireless shifting setup and com-
mand type (either upshifting or downshifting), Payload1 and
Payload2 remain consistent as long as the counters are iden-
tical.

Specifically, Payload1 comprises a sequence that is
present both in the command packets and in the acknowledg-
ment packets. This section of the payload, a 48-bit sequence,
is repeated in the acknowledgment packets to confirm which
command the acknowledgment is intended for. On the other
hand, Payload2 is exclusive to the command packets and
does not appear in the acknowledgment packets. If two pack-
ets have similar values for counter1 and counter2, the values

of both Payload1 and Payload2 would be the same too. This
consistency holds true while the same shifters are consistently
paired with the same derailleur.

However, if the shifters are unpaired and re-paired,
Payload2 will have a different value under the same counter
conditions, while Payload1 remains unchanged even after
unpairing. So, in other words, Payload2 is susceptible to
changes upon reconfiguring the shifting system components.
Destination ID: The acknowledgment packets feature a 16-
bit Destination ID at their conclusion. This ID corresponds
to the identity of the shifter—the commanding device or the
device that the acknowledgment is intended for. Through
extensive testing involving various pairings of shifters and
derailleurs, we consistently observed that the Destination
ID is determined by the shifter that sends the command packet.
In other words, the acknowledgment identifies and responds
to the shifter initiating the command.

Additionally, our experiments revealed that the
Destination ID remains constant, even after devices
are unpaired and then repaired. This consistency indicates
that the Destination ID is inherently linked to the shifter it-
self and does not change with different pairing configurations.
It highlights that the identity encoded in the Destination
ID is intrinsic to the shifter rather than being dependent on
the pairing status or the particular session of interaction
between the devices.

It is worth mentioning that the command packets lack a
feature similar to the Destination ID, which is consistent
and unencrypted, that would allow one to identify the receiver
from captured messages.

For our analysis, we looked into the packets from shifters
controlling both the rear and front derailleurs. We confirmed
that the packet structure remains consistent for all command
packets and constant across all acknowledgment packets.

3.4 Security Weakness

Our analysis revealed that Shimano’s wireless gear shifting
protocol employs a form of encryption, which hinders attack-
ers from creating and transmitting their own packets to the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 81

Figure 6: The attacker model for the replay attack. The at-
tacker captures the command signal from the shifter, sends it
to the derailleur, and later replays it.

derailleurs. However, the protocol does not offer protection
against replay attacks, as the packets lack timestamps and
sequence numbers, rendering the protocol vulnerable to such
attacks. In this scenario, the attacker is not required to fab-
ricate packets but can simply capture and replay them. We
further describe this vulnerability with our experimental find-
ings in the following section.

4 Replay and Jamming Attacks

In the following, we will explore the susceptibility of Shi-
mano’s wireless gear shifting protocol to replay attacks in
Section 4.2, and discuss targeted jamming against this proto-
col in Section 4.3.

4.1 Attacker Assumptions and Experimental
Setup

The attacker is equipped with an SDR capable of transmitting
and receiving signals in the 2.4 GHz band. All commercial
off-the-shelf SDRs, such as the USRP B210 [5], HackRF [7],
PlutoSDR [11], and LimeSDR [9], are potential options for
this purpose. In our experiments, we used an USRP B210.
While the attacker may opt for more advanced setup, e.g.,
amplifiers to extend the attack range, these are not essential
components in our baseline attacker model.

A replay attack in RF communications is when an attacker
captures the legitimate signals and retransmits them to exe-
cute authenticated actions on a system without authorization.
This vulnerability poses significant risks as it can bypass vari-
ous security measures, including data encryption. To perform
a successful replay attack, the attacker does not need to know
the packet’s format or contents. Replay attacks can even work
against systems with encrypted protocols. In our targeted jam-
ming attack, we capture and retransmit the signal similar to

Figure 7: Our experimental setup, featuring the Shimano wire-
less gear shifting system (including shifters and derailleurs)
and the USRP B210 as the attacker’s transceiver.

the replay attack. The methodology and details are explained
in Section 4.3.

As previously mentioned, the attacker is equipped with an
SDR; for our experiments, we used a USRP B210 to trans-
mit and receive signals without external amplifiers. Figure 6
depicts the attack model. The attacker’s strategy involves cap-
turing the signal emitted when the user engages the button to
shift gears up or down. Once captured, replaying this signal
enables gear shifting on the target’s bike, The attack works
independently of the system’s current gear, effectively allow-
ing for unauthorized control over gear adjustments. Figure 7
shows a photo of our evaluation setup.

A pre-requisite is that the attacker can capture a single
upshift and downshift signal. There are several situations
in which the attacker could collect these transmissions. An
attacker does not need physical access to the bike; being in
the vicinity is sufficient to capture the signal remotely in just
a matter of seconds. For example, at a professional race, many
individuals are within close proximity to a racer’s bike. The
attacker can capture the signals on the fly as the victim rider
is actually shifting their bike’s gears. Recall that our attack
works irrespective of which gear the bike is currently in; thus,
it is sufficient for the attacker to capture any upshift and any
downshift signal. In a professional race, the attacker is easily
within the signal range of the victim rider (e.g., riders are just
a few feet apart).

4.2 Replay attack
We explored the mechanics and implications of replay attacks
within the context of Shimano’s Wireless Gear Control Proto-
col. We detail our experimental setup and methodology using
SDRs to transmit and receive signals, demonstrating how an
attacker can exploit the system without needing to decrypt or

82 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 8: Assessing the Effective Distance for Replay Attacks
without amplifier. Replay attack success rate vs distance from
the target system.

even understand the signal’s content.
Figure 8 presents the outcome of our replay attack exper-

iments. The distance is measured from the attacker’s trans-
mitter to the bike’s rear derailleur. At various distances, we
conducted tests to shift the gear from the lowest to the highest
level, encompassing eleven levels in total. Our results indi-
cate that the replay attack is effective up to a distance of 9
meters without encountering any failures. At a distance of 10
meters, we observed an average success rate of 10 out of 11
attempted gear shifts. Each test involved shifting through all
11 gears, from the lowest to the highest. Beyond 10 meters,
the signal falls outside the effective range. Consequently, for
the attack to be viable, the attacker must be within 10 meters
of the target bike. All tests were conducted multiple times
to ensure reliability. Specifically, each test was repeated at
least five times across all shift levels. Additionally, for critical
aspects of our study, such as measurements beyond 10 meters,
we increased the number of repetitions to up to ten times to
confirm the protocol’s effective range.

A critical point is that the attacker does not require direct
physical access to the bike to capture and store the necessary
signal. Once recorded, these signals can be reused at any
future point without issue, owing to the lack of timestamps in
the packet data.

The system completely lacks defenses against replay at-
tacks, a finding reinforced by our ability to successfully replay
the same signals two months after initially capturing the pack-
ets. Additionally, we conducted an experiment in which we
recorded and replayed the signal, manually made at least 400
shifts, and subsequently performed the replay again, which
proved to be effective. As long as the shifters remain paired
with the same derailleur, the captured packets remain effective
for replay.

Furthermore, by capturing just one instance of upshifting
and one of downshifting from the targeted bike, an attacker

can create any sequence of gear shifts at varying intervals.
This enables them to carry out attacks at any future point as
long as the derailleur remains paired with the same shifters.
We successfully created and executed our arbitrary sequences
of upshifting and downshifting through replay attacks. In sum-
mary, this has the effect of creating an unauthorized shifter
that completely controls the rear derailleur and the front de-
railleur of the victim. We successfully replicated the exper-
iments by replaying the control commands (upshifting and
downshifting) for the front derailleur and managed to take
control of it.

4.3 RF Jamming Attack
A jammer operates as an RF transmitter, transmitting noise
that interferes with wireless communications. Our study uti-
lized two varieties of jammers: one generating random noise
and another broadcasting sine and cosine waves. To assess
the effectiveness of our jammers, we carried out tests under
various conditions. Based on our observations, using sine
and cosine waves for the jamming signal proved more effec-
tive than noise. Consequently, we conducted our experiments
to assess the jamming range by generating sine and cosine
waves.

We transmitted the generated signal precisely at 2.478 GHz
to interfere with the communication, as this is the specific
frequency used for all Shimano proprietary communications.
Consequently, the jamming would affect all nearby bikes op-
erating on this frequency. In our jamming tests, we positioned
the shifter and the derailleur one meter apart, reflecting the
typical distance between these components on a bike. We
then experimented with the jammer at varying distances.

We use GNURadio [6] for generating our jamming signals
and a USRP B210 to transmit them over the air.2 The effec-
tiveness of jamming depends on various factors, including the
power of the jamming device, the type of signal being jammed,
the environmental conditions, and the distance between the
jammer and the receiver. The result of jamming can vary
significantly based on these conditions. If the jammer is lo-
cated anywhere within the one meter zone from the derailleur,
the gear-shifting system becomes completely non-functional,
losing all capability for successful communication.

Generally, jamming effectiveness increases as the jammer
gets closer to its target. Outside the tested ideal jammer zone
(1 meter from the derailleur), the jammer still disrupts com-
munication to some extent, but it doesn’t completely disable
the bike’s functionality. Our jamming range experiment was
conducted using a baseline setup without the enhancement of
amplifiers or directional antennas. There are multiple methods
to make jamming more effective. Directional antennas, for
instance, could intensify the jamming signal’s focus toward
a particular area while lessening its effect elsewhere. The

2We note that although the devices operate in ISM band, care was taken
to isolate the experimental setup in a separate area.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 83

Figure 9: Analysis of Gear Shifting Success Rate in Bike2
Relative to Packet Interval Timing from Bike1: Demonstrat-
ing the Impact of Interference on Functionality

operational success and strategy of jamming can be greatly in-
fluenced by directionality, based on the jammer’s construction
and strategic goals.

In a targeted jamming attack, the attacker would try to
replay the signal on one bike so that it doesn’t cause any inter-
ference to other bikes. In our study, we labeled two Shimano
wireless gear-shifting sets as Bike1 and Bike2. We captured
an upshifting signal from Bike1 and replayed it at various
intervals using a USRP B210. The targeted bike suddenly
goes to the highest gear and stops there. Simultaneously, we
attempted manual gear shifting on Bike2 in the vicinity. Our
findings, illustrated in Figure 9, reveal that if the interval is
less than 112 µs, which is equal to one packet length, Bike2
also stops working due to interference. The interference on
Bike2 ceases when replay intervals exceed 112 µs, allowing
normal communication due to sufficient time for transmitting
command packets and receiving acknowledgments. In conclu-
sion, when the attacker sends the replay packets with 112 µs
interval, Bike1 ceases to function, whereas Bike2 or any other
bike continues to operate normally.

5 Eavesdropping ANT Communication

Shimano utilizes the ANT+ protocol to transmit data, which
devices like cycle computers can then pick up and display
for cyclists. It’s important to note that the Shimano wireless
gear shifting system does not send control commands via the
ANT+ protocol. In ANT+ communication, multiple devices
can connect to a single source. This means that with the Shi-
mano network key, any nearby ANT+ receiver can pick up
the data being transmitted. For instance, if two bikes are close
together, the second bike can link to the first bike’s transmis-
sion and access its data simultaneously as the first bike is
connected to its cycle computer. This allows an attacker to
time their gear shifting replay based on precise knowledge of

Table 7: Configuration for Capturing Shimano’s ANT+ com-
munication

Channel Frequency 57 (0x39), 2457 MHz
Network Key A9-AD-32-68-3D-76-C7-4D
Channel Type Master (0x10), Slave (0x00)
Device Number 1-65535, 0 searching
Device Type 1 (0x01)
Transmission Type 5 (0x05)
Channel Period 8198 counts, 4 Hz

what gear the victim rider is using.
We emphasize that eavesdropping on ANT+ communica-

tion does not form a core component of our attacker model.
However, being able to target a specific gear through eaves-
dropping can indeed offer a strategic advantage to an attacker.

Table 7 outlines the configuration parameters necessary for
capturing data using Shimano’s ANT+ protocol. The critical
piece of information is the Shimano network key, a unique
identifier that secures and enables communication on the Shi-
mano ANT+ network. Cycle computers need this network
key to capture ANT+ communications from Shimano de-
vices. The Channel Frequency identifies the specific radio
frequency used for communication, with channel 57 operat-
ing at 2457 MHz, which helps avoid signal interference. The
Channel Type indicates whether a device acts as a ‘Master’
(initiating communication) or a ‘Slave’ (receiving data), with
specific hexadecimal values for setup. The Device Number
serves as a unique identifier within the ANT+ network. Num-
bers range from 1 to 65535, with 0 reserved for searching
mode to connect with nearby devices. Device Type corre-
sponds to the ANT+ standard for different device categories,
with a type of 1 usually denoting a generic sensor. Trans-
mission Type refers to specific patterns or information for
device communication. The Channel Period details the fre-
quency of data broadcasts, with ‘8198 counts’ equating to a
4 Hz rate, affecting both data timeliness and device battery
life. Using the ANTware II [2] application and the correct
configuration, we managed to intercept communications on
the Shimano ANT+ network. ANTware II is a tool for manag-
ing ANT/ANT+ devices via an ANT+ USB stick. Figure 10
displays the captured packets during gear shifts from 8 to 1
on Shimano’s ANT+ network. The data highlighted in red
represent the current gear values. Having a detailed knowl-
edge of the network parameters and packet structure allows
an attacker to easily replicate these packets.

6 Discussion

Shimano’s protocol incorporates basic encryption techniques
to prevent attackers from creating counterfeit signals. Reverse
engineering was notably demanding due to its use of GFSK
modulation, which complicates demodulation when parame-

84 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 10: Eavesdropping ANT communication. The data
highlighted in red represent the current gear values in each
packet.

ters are undisclosed. This is very different from the amplitude
shift keying used by numerous security systems, which, due to
its simplicity, leaves them more open to security breaches. In
the current landscape, where many wireless devices commu-
nicate without encryption, exposing them to security threats,
Shimano stands out by implementing encrypted communica-
tion, enhancing its defense against direct hacking. However,
the system remains exposed to replay attacks. Below, we out-
line recommended strategies to mitigate the risk of replay
attacks.

Effects of the Attacks. A modern bicycle typically has two
derailleurs that control the chain position: rear and front. The
rear derailleur typically has 11 or 12 levels, and the changes
between levels are usually minor but still impact the rider’s
performance. The front derailleur has two levels with large
gear ratios. For example, consider a racer who is climbing a
mountain. They will typically be in the smallest gear on the
front. If the attack targets the front derailleur, causing it to
move into a larger gear (i.e., harder for the rider), it can signif-
icantly impact rider performance, force them to stop, or even
snap the chain. In professional races, any unintended changes
to the gear position will have drastic consequences and affect
the integrity of the sport. We believe that unauthorized gear
changes through the attacks highlighted in our paper have a
similar effect on the sport as performance-enhancing illegal
drugs.

Size/Cost of Attack Device. In the current implementation
of our signal capture and replay system, we utilize a setup
comprising a SDR and a laptop. While effective, this con-
figuration is not optimized for size or portability. However,
with advancements in miniaturization and integrated circuit
(IC) technology, it is feasible to reduce the size of the attack

device significantly. By custom designing specific circuits,
we can integrate a receiver, a modest amount of memory
for signal storage, and a transmitter into a compact, single
System on a Chip (SoC) or small circuit board. This minia-
turization process makes the attack system more discreet and
enhances its portability and deployment ease. For example,
researchers demonstrated relay attacks [20] on passive key-
less entry systems with SDRs costing more than $1500 in
2011. A few years later, the same attack was demonstrated
using $225 [12].

Countermeasures. Adding timestamps into wireless com-
munications can mitigate replay attacks to some degree by
allowing only messages sent within a designated timeframe,
thereby rendering older, possibly replayed messages invalid.
Nonetheless, integrating timestamps into wireless communi-
cation poses challenges. Effective use of timestamps requires
precise synchronization between the devices. This can be
challenging, particularly in settings where devices lack con-
sistent access to a shared time source, such as the Internet or
GPS signals.

Rolling or hopping codes stand as another prevalent strat-
egy in wireless systems to prevent replay attacks. Within this
framework, each transmitted signal is accompanied by a dis-
tinct code generated through a specific algorithm known to
both the sender and receiver. These codes are one-time-use
only, ensuring that once a code has been utilized for authenti-
cation, it is voided, prompting both devices to proceed to the
subsequent sequence code. This method is especially preva-
lent in scenarios prone to signal interception and unauthorized
reuse, such as passive keyless entry in cars and garage door
systems. Although rolling codes significantly counter basic
replay attacks, they are not foolproof against more sophisti-
cated threats, such as code grabbing and delayed playback if
an attacker intercepts the original code’s delivery to the re-
ceiver. However, this approach can significantly increase the
difficulty of performing a replay attack in Shimano wireless
gear shifting.

There are other types of countermeasures designed for spe-
cific applications that can be highly effective and useful. Par-
ticularly for Shimano bikes, implementing distance-based
restrictions could be beneficial [35]. Since legitimate inter-
actions occur only between shifters and derailleurs within
limited distances, establishing range limitations on the re-
ceiver to only accept commands from close proximity can
be helpful. This approach is based on the assumption that
attackers are more likely to conduct replay attacks from a
distance, so by restricting the range at which commands are
accepted, we reduce the likelihood of successful remote at-
tacks. However, securely measuring distance is a challenging
problem [33, 36] in itself, and therefore, while it can reduce
the risk of replay attacks, it should be used in conjunction
with other security measures for comprehensive protection.

Our current observation indicates that it is likely that Shi-
mano is not using any kind of rolling code or other mentioned

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 85

countermeasures. Our study reveals that the current security
measures in Shimano’s wireless gear shifting systems are
insufficient to protect against replay attacks. The practical fea-
sibility of executing these identified attacks demonstrates that
attackers could exploit these vulnerabilities with relatively
modest resources. Despite advancements in similar systems,
the lessons learned have not been fully integrated into the
design of Shimano’s wireless gear shifters, leaving them vul-
nerable to specific cyber attacks such as those observed in
automotive key fob systems. Moving forward, it is crucial to
implement robust defenses, including rolling codes and other
complementary security measures, to enhance the security
guarantees of these wireless systems and safeguard against
potential attacks.

E-TUBE PROJECT. The Shimano E-TUBE PROJECT is a
platform that allows users to customize, update, and diagnose
Shimano’s electronic gear-shifting systems via BLE. When
connected to the E-TUBE PROJECT over BLE, the rear de-
railleur would be out of operation. If the malicious attacker
has any chance to physically access the derailleur, they can
easily pair their phone with it and cause a DoS (Denial of
service). The biker in this situation would not know what is
wrong, and the only way to fix it is to completely disconnect
the derailleur from the battery to cut off the power. Users are
strongly advised to change the default passkey immediately af-
ter acquisition. Often, the initial pairing occurs at dealerships,
which may result in the default code remaining unchanged if
the end-user is not prompted to modify it. Furthermore, en-
hancing BLE security with unique, secure passkeys for each
bike, rather than a standard default passkey, is recommended
to prevent unauthorized access. If an attacker manages to con-
nect the bike to his E-TUBE PROJECT, the implications can
be severe. They could easily alter the bike’s settings and even
change the passkey, preventing any quick fix.

Future Work. In future research, we intend to expand our
investigation into the security architecture of wireless gear-
shifting systems beyond the scope of Shimano. We plan to
analyze and compare various manufacturers’ vulnerabilities
and defense mechanisms, identifying common weaknesses
and best practices within the industry. This comprehensive
analysis will allow us to develop more robust security guide-
lines and recommendations for all wireless gear-shifting sys-
tems. Our goal is to ensure safer and more secure cycling
experiences for users.

7 Related Work

In this section, we will review two primary areas of focus re-
lated to our work. First, we examine previous research on the
reverse engineering of wireless systems. Second, we describe
the security challenges posed by replay and relay attacks,
exploring how these threats impact various technological do-
mains.

7.1 Analysis of Proprietary Wireless Protocols

Many devices contain inherent security flaws. They often rely
on security through obscurity by keeping their protocols and
information secret, hoping this discourages efforts to reverse
engineer and uncover potential vulnerabilities.

Various reverse-engineering studies have been conducted
on different devices [18, 40], each with unique attributes and
methodologies. For example, Garcia et al. [22] investigated
the security of wireless smart cards used in payment systems,
while Strobel et al. [39] examined a digital locking and access
control system prevalent in corporations and educational insti-
tutions. Both studies required physically opening the devices
to connect the wireless chips to a logic analyzer, which is in-
vasive and could be easily detected compared to non-invasive
techniques. Contrastingly, non-invasive reverse engineering,
such as intercepting wireless communications using SDRs,
offers a less detectable, scalable, and repeatable approach.
This method avoids the complications of hardware tampering
while still providing deep insights into wireless protocols.
For example, [32] research on wireless mice and keyboards,
which often use proprietary protocols in the 2.4 GHz ISM
band.

Kim et al. [26] report instances in which authors could
eavesdrop by recovering the 128-bit AES key. In [27], the pro-
cess of demodulating RF signals into binary data for analysis
was documented for a smart home alarm system known as
SecuritasHome.

Researchers have recently adopted hybrid approaches for
reverse engineering and launching attacks. Notable instances
include Samy Kamkar’s innovative methods for remote key-
less entry systems [25] and Mike Ryan et al. [37] for electric
skateboard control interfaces. Also, in [23], the authors fo-
cused on a case study with rolling codes.

Tools like URH [34] have aimed to streamline the re-
verse engineering process of wireless protocols, offering an
open-source solution for signal capture and protocol analysis
through SDRs. RFQuack [29] represents another advance-
ment, a modular RF dongle system that allows for the cus-
tomized development of dongles tailored to specific reverse
engineering needs in wireless protocols. This tool underscores
the evolving landscape of non-invasive techniques in security
research.

In addition to academic studies, there have been non-
academic reverse engineering efforts on the Shimano Di2
system [13, 14, 30]. However, these efforts primarily focus
on reverse engineering the ANT communication protocol.
To the best of our knowledge, none of these works have ex-
plored Shimano’s proprietary protocol. Furthermore, none
have investigated replay attacks or targeted jamming attacks
on Shimano’s command signals.

86 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

7.2 Replay and Relay Attack

Replay and relay attacks pose significant threats in wireless
communications. It enables attackers to capture and rebroad-
cast packets for unauthorized access or service disruption,
impacting various systems such as keyless vehicle entry, GPS,
and remote garage door openers. For instance, previously,
researchers have shown that through a relay attack, where
a device is used to extend the communication between two
legitimate devices, it’s possible to unlock a vehicle and drive
away even when the actual key is far from the car [20].

Similarly, GPS spoofing mirrors these concerns, with stud-
ies like [24, 31] demonstrating the potential for GPS signal
manipulation, impacting navigation and timing. In RF com-
munication, Roland et al. [21] explore relay attack risks in
NFC transactions, commonly used in touchless payment and
entry systems. The challenge in the abovementioned works
would be relaying the signal in real-time. However, as shown
in this paper, our attack on the wireless gear shifting system
doesn’t necessitate real-time relays and can be executed using
any packet previously captured. RFID systems, crucial for
secure access and transactions, face similar threats, with [38]
addressing these system’s susceptibilities to replay attacks.

Additionally, the increase in replay attacks on smart home
systems underscores growing security gaps, as examined by
Fernandes et al. [19], spotlighting exploitable weaknesses in
smart home protocols.

8 Conclusion

The sport of cycling is an adversarial environment. Modern
bicycles are cyber-physical systems that support wireless con-
trol of gear shifting. We conducted the first security analysis
of the Shimano wireless shifting protocol and discovered its
vulnerability to replay and jamming attacks. This allows at-
tackers to target riders and take over control of the bike’s
gear shifting behavior. Allowing attackers such control can
lead to negative outcomes on the performance of riders in
professional races and can affect the integrity of the sport.

We discussed our analysis of Shimano’s protocol with the
hope that it would bring additional scrutiny to these tech-
nologies. We envision that future work will investigate the
security of other wireless gear control manufacturers. Long
term, we outlined countermeasures that manufacturers could
use to reduce the impact of attacks. For example, a rolling
codes system can reduce the attacker’s ability to arbitrarily
control gear changes.

Acknowledgements

The work was partially supported by NSF grant 2144914. We
thank Keith Wakeham and Virgyl Fernandes for their techni-
cal expertise in cycling components, Andreas Noack for his

expert suggestions on URH, Yoshi Kohno for early discus-
sions, the anonymous reviewers and our shepherd, Manuel
Egele, for their insightful comments, and finally Stefan Sav-
age, Geoff Voelker and the UCSD SysNet group for paper
title ideas.

References
[1] ANT / ANT+ Defined. https://www.thisisant.com/developer/ant-

plus/ant-antplus-defined.

[2] ANTware II. https://www.thisisant.com/developer/resources/software-
tools.

[3] Campagnolo. https://www.campagnolo.com/.

[4] E-TUBE PROJECT. https://bike.shimano.com/en-US/e-tube.html.

[5] Ettus Research. https://www.ettus.com/products/.

[6] GNU Radio. https://www.gnuradio.org/.

[7] HackRF. https://greatscottgadgets.com/hackrf/one/.

[8] Inspectrum. https://github.com/miek/inspectrum.

[9] LimeSDR. https://limemicro.com/products/boards/limesdr/.

[10] New shimano 105 di2 delivers 12-speed, shifting and wireless per-
formance. https://bike.shimano.com/en-US/information/news/new-
shimano-105-di2-delivers-12-speed–shifting-and-wireless-per.html.

[11] PlutoSDR. https://wiki.analog.com/university/tools/pluto.

[12] Radio Attack Lets Hackers Steal 24 Different Car Models.
https://www.wired.com/2016/03/study-finds-24-car-models-open-
unlocking-ignition-hack/.

[13] REVERSE ENGINEERING SHIMANO BIKE ELECTRONICS.
https://hackaday.com/2019/03/26/reverse-engineering-shimano-bike-
electronics/.

[14] Reverse Engineering Shimano DI2. https://titanlab.co/reverse-
engineering-shimano-di2/.

[15] Shimano: Bike component monopoly at an attractive price.
https://seekingalpha.com/article/4572435-shimano-bike-component-
monopoly-at-an-attractive-price.

[16] Shimano dura-ace di2. https://bike.shimano.com/en-
EU/product/component/dura-ace-r9200.html.

[17] SRAM. https://www.sram.com/.

[18] CHOI, K., SON, Y., NOH, J., SHIN, H., CHOI, J., AND KIM, Y. Dis-
secting customized protocols: automatic analysis for customized proto-
cols based on ieee 802.15. 4. In Proceedings of the 9th ACM Confer-
ence on Security & Privacy in Wireless and Mobile Networks (2016),
pp. 183–193.

[19] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on
security and privacy (SP) (2016), IEEE, pp. 636–654.

[20] FRANCILLON, A., DANEV, B., AND CAPKUN, S. Relay attacks on
passive keyless entry and start systems in modern cars. In Proceedings
of the Network and Distributed System Security Symposium (NDSS)
(2011), Eidgenössische Technische Hochschule Zürich, Department of
Computer Science.

[21] FRANCIS, L., HANCKE, G., MAYES, K., AND MARKANTONAKIS, K.
Practical relay attack on contactless transactions by using nfc mobile
phones. Cryptology ePrint Archive (2011).

[22] GARCIA, F. D., DE KONING GANS, G., MUIJRERS, R.,
VAN ROSSUM, P., VERDULT, R., SCHREUR, R. W., AND JA-
COBS, B. Dismantling mifare classic. In Computer Security-ESORICS
2008: 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings 13 (2008), Springer,
pp. 97–114.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 87

[23] GHANEM, A., AND ALTAWY, R. Garage door openers: A rolling code
protocol case study. In 2022 19th Annual International Conference on
Privacy, Security & Trust (PST) (2022), IEEE, pp. 1–6.

[24] HUMPHREYS, T. E., LEDVINA, B. M., PSIAKI, M. L., O’HANLON,
B. W., KINTNER, P. M., ET AL. Assessing the spoofing threat: De-
velopment of a portable gps civilian spoofer. In Proceedings of the
21st International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS 2008) (2008), pp. 2314–2325.

[25] KAMKAR, S. Keysweeper, 2015.

[26] KIM, K., KIM, T. H., KIM, T., AND RYU, S. Aes wireless keyboard:
Template attack for eavesdropping. Black Hat Asia, Singapore (2018).

[27] LINDEBERG, A. Hacking into someone’s home using radio waves:
Ethical hacking of securitas’ alarm system, 2021.

[28] LLOYD, D. The fight for the crown: Shimano vs sram,
2018. https://www.bicycling.co.za/bikes-gear/the-fight-for-the-crown-
shimano-vs-sram/.

[29] MAGGI, F., AND GUGLIELMINI, A. Rfquack: A universal hardware-
software toolkit for wireless protocol (security) analysis and research.
arXiv preprint arXiv:2104.02551 (2021).

[30] MILLER, S. Shimano Di2 Security.
https://www.youtube.com/watch?v=Kxecl08qB60&abchannel =
ShaneMiller−GPLama.

[31] MOTALLEBIGHOMI, M., SATHAYE, H., SINGH, M., AND RAN-
GANATHAN, A. Location-independent gnss relay attacks: A lazy
attacker’s guide to bypassing navigation message authentication. In
Proceedings of the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (2023), pp. 365–376.

[32] NEWLIN, M. Mousejack: Injecting keystrokes into wireless mice.
Retrieved January 10 (2016), 2019.

[33] ÓLAFSDÓTTIR, H., RANGANATHAN, A., AND CAPKUN, S. On the
security of carrier phase-based ranging. In International Conference
on Cryptographic Hardware and Embedded Systems (2017), Springer,
pp. 490–509.

[34] POHL, J., AND NOACK, A. Universal radio hacker: A suite for an-
alyzing and attacking stateful wireless protocols. In 12th USENIX
Workshop on Offensive Technologies (WOOT 18) (2018).

[35] RANGANATHAN, A., AND CAPKUN, S. Are we really close? verifying
proximity in wireless systems. IEEE Security & Privacy 15, 3 (2017),
52–58.

[36] RANGANATHAN, A., DANEV, B., FRANCILLON, A., AND CAPKUN, S.
Physical-layer attacks on chirp-based ranging systems. In Proceedings
of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks (2012), pp. 15–26.

[37] RYAN, M., AND HEALEY, R. Hacking electric skateboards: Vehicle
research for mortals, 2015. https://www.defcon.org/html/defcon-23/dc-
23-speakers.html.

[38] SINGH, A. K., AND PATRO, B. Security attacks on rfid and their
countermeasures. In Computer Communication, Networking and IoT:
Proceedings of ICICC 2020 (2021), Springer, pp. 509–518.

[39] STROBEL, D., DRIESSEN, B., KASPER, T., LEANDER, G., OSWALD,
D., SCHELLENBERG, F., AND PAAR, C. Fuming acid and cryptanaly-
sis: Handy tools for overcoming a digital locking and access control
system. In Advances in Cryptology–CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I (2013), Springer, pp. 147–164.

[40] STUTE, M., KREITSCHMANN, D., AND HOLLICK, M. Reverse engi-
neering and evaluating the apple wireless direct link protocol. GetMo-
bile: Mobile Computing and Communications 23, 1 (2019), 30–33.

[41] ZHANG, Y., WENG, J., DEY, R., JIN, Y., LIN, Z., AND FU, X. Break-
ing secure pairing of bluetooth low energy using downgrade attacks.
In 29th USENIX Security Symposium (USENIX Security 20) (2020),
pp. 37–54.

88 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 89

90 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 91

92 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 93

94 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 95

https://explorer.bc-2.jp/tx/f019bd3461309ae48c48a9cee5edaefb8ff4ef4c921fbd9d43377ff64162d77b

96 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 97

98 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 99

100 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.ledger.com/
http://trezor.io/
rump2007.cr.yp.to/15-shumow.pdf
rump2007.cr.yp.to/15-shumow.pdf

Oh No, My RAN! Breaking Into an O-RAN 5G Indoor Base Station

Leon Janzen , Lucas Becker , Colin Wiesenäcker, Matthias Hollick
Technical University of Darmstadt (TUDa)

{ljanzen, lbecker, cwiesenaecker, mhollick}@seemoo.de

Abstract
Indoor base stations are expected to play a crucial role in 5G
and beyond, as they are required to provide millimeter wave
connectivity in buildings. However, they are a prime target
for attacks, as they are difficult to secure against physical ac-
cess attacks and highly connected within the RAN, especially
for Open Radio Access Network (O-RAN) indoor base sta-
tions. In this work, we develop and introduce a threat model
for indoor base stations. We conduct a security analysis of a
proprietary O-RAN Radio Unit and present four novel vul-
nerabilities. Further, we analyze the Radio Unit regarding its
hardware, software, and services, highlighting deviations from
the O-RAN standards. The vulnerabilities we discover lead
to remote code execution on the Radio Unit, highlighting se-
curity issues arising from the novel attack surface introduced
by indoor base stations.

1 Introduction

Two trends in the fifth-generation technology standard for
cellular networks (5G) make indoor base stations (BSs) a
prime target for attacks, especially in the Open Radio Access
Network (O-RAN): (1) Achieving physical access control for
indoor BSs is hard, if not infeasible, and (2) indoor BSs are
highly connected within the O-RAN.

While mobile network operators (MNOs) have thoroughly
designed policies regulating the security of outdoor BSs, phys-
ical access control is impractical for indoor BSs. Unlike out-
door BSs, typically secured with fences, security cameras,
and stringent physical access control measures [14], indoor
BSs are often deployed on walls or ceilings, similar to enter-
prise Wi-Fi routers [40]. As a result, only some of the outdoor
BS policies apply to indoor BSs. This lack of access con-
trol exposes indoor BSs to potential physical port access by
attackers, significantly expanding the attack surface of the
Radio Access Network (RAN) and the cellular network. The
aspect of cellular network security has received limited atten-
tion in the research community so far, which motivates us to
introduce a threat model for indoor BSs.

O-RAN BSs are highly connected using various interfaces
to communicate with other cellular network componens. In
O-RAN, the BS is disaggregated into several components
[52], leaving only the Radio Unit (RU) deployed at the cell
site (Figure 1). Within the O-RAN ecosystem, the RU di-
rectly interfaces a Distributed Unit (DU) and the Service
Management Orchestration Framework (SMO) featuring one
of the RAN Intelligent Controllers (RICs) [52]. The O-RAN
Alliance has released specifications for the Open Fronthaul
Interface surrounding the RU [46, 47]. In this work, we con-
duct a security analysis of a proprietary O-RAN RU to
evaluate how vendors implement the specifications in the real
world.

Physical access to indoor BS makes adjacent attacks on
the RAN feasible, drawing attention to the security of RAN
hardware. We deem this novel attack surface one of the major
security challenges for RAN vendors and MNOs. To highlight
this issue, we present four vulnerabilities we discovered
on a proprietary O-RAN RU, two exploitable to achieve
Remote Code Execution (RCE). In summary, our key contrib-
utions are as follows:

• We develop a threat model for indoor BSs (Section 3).

• We conduct a security analysis of a real-world O-RAN
RU, highlighting deviations from the Open Fronthaul
standards (Section 4).

• We present four vulnerabilities we discovered on a pro-
prietary O-RAN RU (Section 5), which we classify as
high or critical.

• We discuss our findings in the context of research trends
for future cellular networks, including mitigation of the
found exploits (Section 6).

We responsibly disclosed all identified issues to Airspan
Networks Inc. and are in the process of requesting Common
Vulnerabilities and Exposures (CVE) entries for our findings.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 101

https://orcid.org/0000-0003-2648-6507
https://orcid.org/0009-0004-5437-5067
https://orcid.org/0000-0002-9163-5989

DU
RU

gNB

Attacker

CU

Core

SMO

RU

The Internet

gNB

Figure 1: In conventional cellular networks, users connect to indoor or outdoor Next Generation NodeBs (gNBs) that directly
connect to the core network (CN), from where traffic is forwarded to the Internet. The Open Radio Access Network (O-RAN)
disaggregates the gNB into Radio Unit (RU), Distributed Unit (DU), and Central Unit (CU) with an additional Service Manage-
ment Orchestration Framework (SMO). DU, CU, and SMO are typically virtualized and deployed remotely.

2 Background and Related Work

This section introduces relevant concepts and terminology
of 5G networks (Section 2.1), the Open Radio Access Net-
work (O-RAN) (Section 2.2), and indoor base stations (BSs)
(Section 2.3) before summarizing related work (Section 2.4).

2.1 5G Cellular Networks
As depicted in Figure 1, in conventional Radio Access Net-
works (RANs), the user equipment (UE) connects to a Next
Generation NodeB (gNB) that handles all layers of the 3rd
Generation Partnership Project (3GPP) stack [2] from the
physical layer (PHY) to the Radio Resource Control (RRC)
and Service Data Adaptation Protocol (SDAP) and sends
user traffic to the core network (CN) [3]. The CN is the cen-
tral point of the cellular network, providing numerous core
network functions (NFs), e.g., user authentication, session
management, access- and mobility management, and policy
control [5]. When users access the Internet via 5G, the CN
converts user plane (U-Plane) traffic from the 3GPP stack to
the Internet Protocol (IP) stack and forwards it to the Internet.

2.2 O-RAN and Open Fronthaul
The O-RAN-specific parts of the cellular network are high-
lighted in blue in Figure 1. One of the innovative ideas of the
O-RAN is that the gNB is disaggregated into three compo-
nents [41], as depicted in Figure 2: The Radio Unit (RU)
handles the radio frequency (RF) connectivity and lower
PHY [4] before sending user traffic via the Open Fronthaul
interface [46, 47] to the Distributed Unit (DU) [41]. The DU
handles the remaining upper PHY, the medium access con-
trol (MAC) layer, and the Radio Link Control (RLC) layer.
Finally, the Central Unit (CU) handles the Packet Data Con-
vergence Protocol (PDCP) and RRC layers before forwarding
the traffic to the CN [41, 52]. In contrast to the RU, which is
deployed physically at the cell site, DU and CU are typically

virtualized [10]. The CN, CUs, DUs, and RUs often build a
tree topology where multiple RUs connect to one DU, mul-
tiple DUs connect to one CU, and multiple CUs connect to
the CN [41,52]. The O-RAN Alliance uses the data modeling
language Yet Another Next Generation (YANG) to model
Network Configuration Protocol (NETCONF) configuration
and state data of O-RAN components and interfaces. Thus,
NETCONF and YANG models facilitate standardization and
interoperability between O-RAN vendors.

The Open Fronthaul interface is one of the numerous
interfaces in O-RAN, connecting RU and DU. While con-
trol and user plane (CU-Plane) traffic is sent via enhanced
Common Public Radio Interface (eCPRI), synchronization
plane (S-Plane) traffic is sent via Precision Time Protocol
(PTP) [46]. Management plane (M-Plane) traffic is sent via
NETCONF [21, 47].

The above description suits the O-RAN Split 7.2x [52],
where the RU/DU split is within the PHY. Other popular
O-RAN splits are Split 6 below the MAC layer [1], also
referred to as network functional application platform in-
terface (nFAPI) [56] and preferred by the Small Cell Fo-
rum (SCF) [57] or Split 8 above the analog-to-digital and
digital-to-analog converter (ADC/DAC) [2].

2.3 Indoor Base Stations

Indoor BSs are expected to play a crucial role in 5G and be-
yond to utilize the extremely high frequency (EHF) band for
millimeter waves (mmWave) communications [2, 62]. Ven-
dors of indoor BSs include Airspan Networks Inc. (Airspan),
Nokia Corporation (Nokia), Telefonaktiebolaget LM Eric-
sson (Ericsson), and Hon Hai Precision Industry Co., Ltd.
(Foxconn). This paper focuses on the Airspan AirVelocity
2700 (AV2700) because it is intended for indoor deployments,
supports mmWave communications, and is compatible with
O-RAN Split 7.2x [7].

102 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Central Unit

Distributed Unit

Radio Unit

PHY-high

MAC
RLC

RF

PHY-low

PDCP

RRC

PDCP

SDAP

ADC/DAC
Beamforming

Precoding
iFFT/CP

RE Mapping
Precoding

Modulation
Layer Mapping

Scrambling

F1 C-Plane U-Plane

Open
Fronthaul

CU-Plane S-Plane M-Plane
eCPRI PTP NETCONF

Figure 2: Open Radio Access Network (O-RAN) disaggre-
gation of a Next Generation NodeB (gNB) into a Central
Unit (CU), Distributed Unit (DU), and Radio Unit (RU). This
figure depicts O-RAN Split 7.2x, where the control and user
plane (CU-Plane) of the Open Fronthaul is split within the
physical layer (PHY). The F1 interface connects DU and CU.
This figure is adapted in parts from [52].

2.4 Related Work

We summarize general O-RAN-security-related publications
(Section 2.4.1), address existing work related to the Open
Fronthaul and RU security (Section 2.4.2), and distinguish our
work from the aforementioned publications (Section 2.4.3).

2.4.1 O-RAN Security

Liyanage et al. [36] analyze security risks and challenges
within the O-RAN ecosystem by classifying security-related
risks. They offer a detailed overview of various threat cat-
egories, including descriptions and evaluations of their ap-
plicability to the O-RAN ecosystem. They discuss potential
security solutions derived from Cloud Radio Access Net-
work (C-RAN) and delve into design errors while explor-
ing their consequences and available mitigation options for
O-RAN. Klement et al. [33] investigate the O-RAN environ-
ment, evaluating the security status of its deployed compo-
nents and proposing measures to ensure their secure opera-
tion. They identify critical stakeholders in the O-RAN context
and list best practices to enhance O-RAN security. Groen et
al. [30] investigate the security aspects of O-RAN systems,
adopting a holistic approach, including the O-RAN interfaces
and the overall platform. They identify potential threats and
offer solutions to address security issues in these areas.

Without a specific focus on the O-RAN architecture, Fa-
rooqui et al. [23] present a threat model for 5G-based systems,
defining a layered architecture and mapping threats to the re-
spective applicable layers. Sattar et al. [54] model the threats
arising from small cells in Long-Term Evolution (LTE) net-
works. They define trust boundaries including physical secu-
rity as one aspect.

2.4.2 Open Fronthaul and Radio Unit Security

Abdalla et al. [6] delve into the standardization efforts of the
O-RAN Alliance, focusing on network threats with a specific
emphasis on the Open Fronthaul. They identify end-to-end
security threats affecting the interface and recommend coun-
termeasures and best practices against the identified threats.
They detail an attack scenario involving unauthorized access
to the physical layer of the Open Fronthaul by compromising
the physical connection between the DU and the RU. Liao
et al. [35] developed a Denial-of-Service (DoS) attack tool
for the Open Fronthaul control plane (C-Plane) by generating
C-Plane packets that initiate DoS attacks. Dik et al. [16, 17]
contribute two consecutive works on the security of the Open
Fronthaul. In their first work [16], the researchers examine
the transport security of the Open Fronthaul by investigating
threats that can impact the interface. They survey the data
types transported over the different data planes and derive
necessary security measures. In their second work [17], Dik
et al. conduct a more in-depth analysis of the transport net-
work security in the Open Fronthaul. They discuss threats and
vulnerabilities of the interface and their network impact. They
provide a threat protection solution in MACsec as a layer
two security mechanism implemented on field-programmable
gate arrays (FPGAs) to secure the Open Fronthaul.

2.4.3 Distinction from Related Work

The publications presented in this section are relevant to our
work as they introduce overarching challenges, threats, and
vulnerabilities associated with O-RAN, showing the larger
attack surface of the ecosystem and shedding light on various
approaches attackers can take when attacking the O-RAN
components and interfaces. The presented papers all take a
theoretical approach to analyzing O-RAN security. In con-
trast, our work focuses on the security of a single O-RAN
component, i.e., the RU. We investigate the AV2700 as an
example of a proprietary RU and present real-world vul-
nerabilities and security issues of the AV2700.

3 Threat Model

In contrast to wireless access points [37, 59, 65], RUs pose
an especially interesting attack surface with their multiple
interfaces to other RAN components. Our threat model is con-
sistent with existing publications [6, 23, 31, 36, 42, 45, 54, 55]

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 103

and applicable standards [22,43] tailored towards indoor BSs.
It aligns with existing threat models of indoor BSs in conven-
tional RANs, including femtocells [28], for all non-O-RAN
aspects. This section defines our system model (Section 3.1)
and discusses an adversary’s motivation (Section 3.2) and
their assumed capabilities (Section 3.3).

3.1 System Model
Figure 1 depicts our system model. We assume an O-RAN in-
frastructure with one or more RUs deployed indoors. The RUs
connect to a corresponding DU via Ethernet to handle control,
user, synchronization, and management plane (CUSM-Plane)
communication. The RU also connects to the Service Man-
agement Orchestration Framework (SMO), where one of the
RAN Intelligent Controllers (RICs) is deployed [42, 43].

In contrast to physically protected outdoor cell towers [14],
RUs are installed akin to prevalent enterprise Wi-Fi routers,
implying that they are accessible from within the build-
ing [15]. We consider an RU affixed to a wall. The RU might
be located within or without the reach of an adversary. The
RU might be secured with anti-theft protection means, e.g.,
a Kensington lock. Surveillance measures might be imple-
mented to mitigate undiscovered interactions with the RU.
The network infrastructure might be configured so an adver-
sary can achieve Ethernet access from an adjacent Ethernet
port connected to the RU. Depending on these deployment
options, the adversary can gain different capabilities (Sec-
tion 3.3). Possible scenarios enabling such access include
installations in shared or multi-tenant buildings, e.g., office
complexes, shopping centers, or universities.

3.2 Adversary Motivation
The adversary we consider aims to attack the 5G network,
using the O-RAN RU for their initial foothold. Note that the
cellular network is classified as a critical infrastructure [24]
and, hence, is particularly interesting to adversaries. In the
context of this work, the adversary aims to gain complete
control of an RU to facilitate further attacks.

While any attacks beyond controlling the RU are outside
this work’s scope, the adversary’s next steps might include
local operation or lateral movement: (1) On the RU, the adver-
sary might manipulate in-transit traffic by recording, manip-
ulating, or redirecting, potentially targeting UEs [12, 34, 51].
Additionally, the adversary might extract sensitive configura-
tion data. (2) The adversary might prepare attacks for lateral
movement in the O-RAN by escalating attacks from the con-
trolled RU to the DU [6] or SMO [58, 60].

3.3 Adversary Capabilities
We consider an adversary targeting the RAN by abusing physi-
cal access to an indoor RU, directly achieving physical access,

Table 1: Summary of the adversary’s potential actions achiev-
able with capabilities C1 - C4. Checkmarks imply that the
adversary is capable of the potential action and crosses imply
that the adversary is not.

Potential Action C1 C2 C3 C4
Accees to the RU’s Ethernet ports ✓ ✓ ✓ ✓

Access to the RU’s power socket ✗ ✓ ✓ ✓

Access to the RU’s debug ports ✗ ✓ ✓ ✓

Evaluation in own environment ✗ ✗ ✓ ✓

Redeployment of a modified RU ✗ ✗ ✗ ✓

or connecting to an adjacent Ethernet port connected to the
RU’s Open Fronthaul interfaces. In doing so, our assumed
adversary achieves a subset of the following four capabilities
summarized in Table 1:

Ethernet Access With access to the RU via Ethernet (C1),
the adversary can communicate with the RU’s Open Fronthaul
interface (Figure 3). This access enables the adversary to
take the logical position of another RAN component, e.g., the
DU or SMO, to target exposed services on the RU and any
attack surface provided by the Open Fronthaul interface. By
exploiting vulnerabilities in this attack surface, they attempt
to obtain control over the RU. The adversary can achieve C1
with access to an adjacent Ethernet port connected to the RU,
regardless of surveillance and anti-theft protection means in
place.

Full Interface Access Access to all of the RU’s interfaces
(C2) grants the adversary all of C1 and access to the RU’s
power socket and, potentially, to debug ports. With the power
socket, the adversary can shut down and restart the RU, e.g.,
for trivial DoS attacks and to activate the RU’s start-up proce-
dure. Additionally, the adversary can inspect the RU’s High-
Definition Multimedia Interface (HDMI) debug port, poten-
tially facilitating gaining control of the RU. Capability C2
requires physical access to the RU, the feasibility of which
depends on surveillance and access control means in place.

RU Theft If the adversary can remove the RU (C3), they
can conduct further attacks in a prepared environment. This
enables the adversary, on top of C1 and C2, to perform more
intrusive operations that require disassembly. If no hardware
security features exist, they can use this access to extract
secrets from the device. In addition, they can inspect and
modify the firmware running on the device. After probing
the RU, e.g., to extract non-default secrets and potentially
tamper with the software and hardware of the device, the
adversary can use the findings to attack other RUs. Capability
C3 requires direct physical access to the RU and an unguarded
deployment.

104 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

RJ45 FH

HDMI Debug Port

SFP+ FH DC Socket

SMO DU

Figure 3: The AV2700’s interfaces feature a power socket, an
HDMI debug port, and two Open Fronthaul interfaces (Small
Form-factor Pluggable+ (SFP+) and RJ45; blue) that connect
to the Distributed Unit (DU) and Service Management Or-
chestration Framework (SMO).

RU Redeployment Redeploying the RU (C4) grants the ad-
versary all of C1 - C3 and the option to set up a manipulated
RU into the O-RAN. After probing, modifying, and possibly
gaining control over the removed RU, the adversary can re-
deploy the device to its designated spot. Taking the position
of the RU enables interaction with the other components in
the RAN and lays the basis for further attacks. Capability C4
requires physical access to the RU and a deployment envi-
ronment that is unguarded and unsecured over an extended
period.

4 Analysis

The AV2700’s hardware and software structure is not publicly
disclosed, so we decided to learn as much as possible about
its inner workings to understand its attack surface. We con-
nected a computer to the AV2700 (Section 4.1) to understand
the network interfaces, remotely connected to the AV2700 to
explore the file system, and reverse-engineered firmware parts.
We report insights into the AV2700’s hardware and software
structure (Section 4.2) and its exposed services (Section 4.3).

4.1 Setup

Our hardware setup comprises two components interconnec-
ted via an Ethernet cable: A commercial off-the-shelf (COTS)
computer and an AV2700. We utilize the computer to com-
municate with the AV2700, investigate the device, and cap-
ture network traffic for analysis. The AV2700 connects to
the computer via Ethernet. In this connection, we observed
unencrypted traffic between the AV2700 and the PC for differ-
ent reasons: (1) During start-up, the RU initiates a call-home
procedure to the DU, and (2) some services running on the
RU’s host system are not directly related to O-RAN. In nor-
mal operation, RU and DU communicate over an encrypted
channel. Apart from the AV2700, our setup solely comprises
COTS hardware, highlighting that only minimal resources are
necessary to replicate our findings.

4.2 Hardware and Software Structure

The AV2700 hardware (Figure 3) is based on the Mercury+
XU8 System-on-Chip (SoC) [20] containing a Xilinx Zynq
UltraScale+, which includes an FPGA [64], an ARM Cortex
A53 [8] and an ARM Cortex R5F [9].

We investigated the AV2700 with firmware 19.6.3 of
System Release 1.6.37. The operating system (OS) on the
AV2700 is an embedded Linux solution built and deployed us-
ing PetaLinux 2019.1. PetaLinux is an embedded software
development kit (SDK) for Xilinx FPGA-based SoC designs
that includes auxiliary functions for building Linux solutions
for embedded systems [63]. Further, BusyBox v.1.29.2, a
Unix software suite for embedded systems and mobile de-
vices [11], provides Unix functionality on the AV2700.

Besides a power socket, the AV2700 has three physical in-
terfaces (Figure 3), two connecting to other RAN components,
while we assume the third to be a physical debug interface:

SFP+ port The first physical port is an SFP+ Ethernet
port, providing high-speed connectivity, which is ideal for
the Open Fronthaul control, user, and synchronization plane
(CUS-Plane). It requires an SFP+ module and connector.

RJ45 port The second physical interface is an RJ45 Ether-
net port, allowing communication to the AV2700.

Debug port The third physical interface is an HDMI port,
which we suspect to be an HDMI-muxed debug port similar
to [50] and compatible with HDMI-muxed debug cables [49].

4.3 Services

Figure 4 outlines the service architecture deployed on the
AV2700. Seven ports are open, out of which four are unau-
thenticated. The most notable components are:

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 105

Table 2: Summary of our findings. The impact of F1 - F4 is a combination of reconfiguration (Reconf.), Denial-of-Service (DoS),
and Remote Code Execution (RCE). The CVSS scores refer to the Common Vulnerability Scoring System (CVSS) version 4.

Finding Impact CVSS1 Affected Services Mitigation
F1 Exposed TCF Agent RCE 9.3 tcf-agent Remove before deployment
F2 Missing Access Control DoS, Reconf. 8.4 clish_agentd, mosquitto Implement authentication
F3 Memory Corruption DoS/RCE 8.3 All management daemons Secure coding best practices, bound checking
F4 Command Injection RCE 9.3 itf-mgmt Sanitize user input
1 We self-assigned the CVSS scores to vulnerabilities F1 - F4 according to [25].

AV2700

dev_mgmt

fm_mgmt

itf_mgmt

ledd

pm_mgmt

process_mgmt

svc_mgmt

sw_mgmt

uplane_mgmt

bbp_mgmt

cbrs_mgmt

sshd

telnetd

mosquitto

clish_agentd

tcf-agent

ftpd

netopeer2-server

zmq

mqtt

telnet

ssh

netconf

ftp

tcf

unauthenticated authenticated port inter-process communication

830

1534

1883

23

22

21

8888

sysrepo-agent

Figure 4: Service architecture of the AV2700. The central
point is the mosquitto service communicating to the man-
agement daemons via inter-process communication (IPC).
Three of the ports are authenticated and four unauthenticated.

FTP Server The AV2700 runs the ftpd of BusyBox started
as an inetd server. The firmware misconfigures the File
Transfer Protocol (FTP) server using an unsupported argu-
ment without a directory to serve the supplied files, preventing
successful file transfers. Consequently, its purpose is unclear,
especially when considering that the O-RAN standard man-
dates Secure File Transfer Protocol (SFTP) and File Transfer
Protocol Explicit-mode Secure (FTPES), which secure FTP
with Secure Shell (SSH) and Transmission Control Proto-
col (TCP), respectively, see Section 5.1 of [47]. Furthermore,
per standard, the FTP service is located on the DU, where the
RU is supposed to connect for file uploads.

SSH server The sshd service is provided by the OpenSSH
7.8 SSH server. This service is required for secure M-Plane
connections; see Section 5.4 of [47]. However, the SSH server
with enabled shell access also allows command execution on
the RU, which is not a functionality described in the standard.

Telnet The built-in telnetd of BusyBox provides Tele-
type Network (Telnet) remote access. It offers functionality
similar to the SSH server without the confidentiality or integ-
rity protection of the transmitted data. Identical to the SSH

server, the remote access capabilities offered by Telnet are
not mandated by any standard covering the RU, nor are they
part of the M-Plane. However, when considering Telnet as a
vendor extension of the M-Plane specification, it violates the
end-to-end security requirement stated in [47].

Mosquitto MQTT server The mosquitto Message Queu-
ing Telemetry Transport (MQTT) server listens on all inter-
faces and is externally reachable. In extension, the IPC func-
tionality to the manager daemons can also be called from out-
side, indirectly exposing the manager daemons. The MQTT
server appears to be unrelated to any O-RAN standard. We
assume it to be a leftover implementation detail of the IPC
mechanism that the internal manager daemons (described
below) use to communicate.

Clish-agent service The clish-agentd implements the
functionality of a local oru-shell over ZeroMQ [66]. It
dispatches commands sent to the shell to the corresponding
internal manager daemon by publishing them on the MQTT
topic. No O-RAN standard describes the oru-shell, but it is
directly derived from the NETCONF YANG models. Conse-
quently, supported options overlap with settings configured
over NETCONF. The clish-agentd violates the mandatory
end-to-end security of the M-Plane because it uses an unau-
thenticated plain-text protocol [47].

TCF debugger The tcf-agent exposes debugger func-
tionality for the FPGA. The Target Communication Frame-
work (TCF) is an open-source network protocol to commu-
nicate with embedded devices [18]. The tcf-agent is unre-
lated to any O-RAN specification and appears to be a left-
over development artifact. We checked recent Board Support
Packages (BSPs) for the Zynq UltraScale+ and found the
tcf-agent enabled by default. Therefore, its presence might
be unintentional and not the result of a deliberate decision
during development.

NETCONF The netopeer2-server implements the
NETCONF protocol over SSH. NETCONF over SSH is re-
quired by the M-Plane specification [47]. In addition, the
specification also requires NETCONF over Transport Layer
Security (TLS), which we found missing (Section 5.5.1).

106 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 5: Target Communication Framework (TCF) packet
broadcasted periodically by the TCF agent on port 1534, dis-
closing the TCF agent with ID, port, and version, and the op-
erating system Linux 4.19.0-xilinx-v2019.1 with user
root, leading to F1.

Sysrepo agent The sysrepo-agent is another central com-
ponent that implements the NETCONF protocol’s internal
YANG datastore as part of the O-RAN M-Plane [47]. Fur-
thermore, it connects to the MQTT server to trigger man-
ager functions as a reaction to NETCONF remote proce-
dure calls (RPCs). This component directly results from the
M-Plane specification, which requires NETCONF support for
device management.

Manager daemons The AV2700 software is structured into
multiple manager daemons (the leftmost box in Figure 4),
which are used to configure and monitor device aspects re-
lated to the O-RAN: The sw_mgmtd, e.g., is used to update,
install, and activate firmware archives. These managers use
the publish-and-subscribe-based MQTT protocol for IPC to
exchange messages encoded with JavaScript Object Nota-
tion (JSON) via the shared mosquitto [26] server.

5 Findings

This section presents four novel vulnerabilities we discovered
on the AV2700, which are summarized in Table 2: An exposed
TCF agent (Section 5.1), missing access control (Section 5.2),
multiple memory corruption vulnerabilities (Section 5.3), and
an OS command injection vulnerability (Section 5.4). We also
discuss deviations from the O-RAN standards identified on
the AV2700 (Section 5.5). All vulnerabilities F1 - F4 are ex-
ploitable for adjacent adversaries with capability C1 using
low-complexity attacks without user interaction, special
privileges, or additional attack requirements (Figure 6).

1 import zmq
2

3 context = zmq.Context()
4

5 # Socket to talk to server
6 print("Connecting to remote server...")
7 con = context.socket(zmq.DEALER)
8 con.connect("tcp://o-ran-ru-ip:8888")
9

10 con.send(b"view=system -view subview=all reboot\n")
11

12 while 1:
13 message = con.recv()
14 print(message.decode(), end="")

Listing 1: Python code to interact with ORU shell views. In
this example, the reboot command in the system view is
invoked to disrupt the device (F2).

5.1 Exposed TCF Agent

In the context of the AV2700, TCF enables developers to
communicate with the built-in FPGAs [19], e.g., from within
Eclipse with the TCF debugger add-on that opens a terminal
for debugging. In the background, TCF opens a terminal on
the device and runs commands as root.

The AV2700’s TCF agent periodically sends out User Data-
gram Protocol (UDP) packets on port 1534 (Figure 5) while it
waits for connections. The O-RAN standards do not describe
the use of TCF to communicate to the RU, so we assume it to
be a leftover service that the vendor unintentionally enabled
during development. As the TCF agent was not removed be-
fore deployment, adversaries can abuse its functionality with
at least capability C1, yielding F1. The TCF packets disclose
detailed information about the device, including the host and
port. After recording the handshake between Eclipse and the
AV2700, we reconstructed the TCF messages required to exe-
cute arbitrary shell commands on the embedded device.

Finding F1 gives an adversary full control over the RU,
which we further discuss in Section 6.1. While mitigation is
straightforward, i.e., removing the TCF agent before deploy-
ment, we assign F1 a critical CVSS score of 9.3 (Figure 6a)
with a high impact regarding all security goals with low sub-
sequent impact on confidentiality and integrity and a high
subsequent impact on availability.

5.2 Missing Access Control

While the NETCONF, Telnet, and SSH interfaces require
authentication, the mosquitto MQTT and clish-agentd
services can be accessed unauthenticated, yielding F2. In con-
trast to NETCONF, these services are not required by the
applicable O-RAN standards. The clish-agentd is a more
user-friendly way to access the NETCONF settings and can,
therefore, be considered a vendor-specific O-RAN extension.
The MQTT server is an exposed implementation detail with-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 107

AV
AC
AT
PR
UI
VC
VI
VA
SC
SI
SA

none low high

adjacent

low

none

none

none

high

high

high

low

low

high

(a) Exposed TCF Agent (F1)

AV
AC
AT
PR
UI
VC
VI
VA
SC
SI
SA

none low high

adjacent

low

none

none

none

low

low

high

none

low

high

(b) Missing Access Control (F2)

AV
AC
AT
PR
UI
VC
VI
VA
SC
SI
SA

none low high

adjacent

low

none

none

none

none

low

high

none

none

high

(c) Memory Corruption (F3)

AV
AC
AT
PR
UI
VC
VI
VA
SC
SI
SA

none low high

adjacent

low

none

none

none

high

high

high

low

low

high

(d) Command Injection (F4)

Figure 6: The Common Vulnerability Scoring System (CVSS) scores of F1 - F4. The colored sectors depict the three CVSS
metrics: Exploitability, vulnerable system impact, and subsequent impact metrics. Each figure shows, starting from the top, the
following items: attack vector (AV), attack complexity (AC), attack requirements (AT), privileges required (PR), user interaction
(UI), confidentiality (VC), integrity (VI), availability (VA), confidentiality (SC), integrity (SI), availability (SA). The individual
scores of the exploitability metric are as follows: None, low, high for PR; none, passive, active for UI; low, high for AC; none,
present for AT; and network, adjacent, local, physical for AV.

out significant user benefits. As a result of the missing authen-
tication, the entire interface of the clish-agentd is available
to a remote adversary with at least C1. It can be used to set rel-
evant configuration options of the AV2700 (Listing 1). While
there is no built-in option to execute arbitrary commands, the
shell can be abused to misconfigure the device. Since the avail-
able configuration options include vital system parameters
such as the sending power, which affects the transmission of
user data, this attack vector endangers the system’s availabil-
ity. Communication with the mosquitto server grants com-
parable capabilities to accessing the clish-agentd since the
majority of commands implemented by this agent are also
dispatched via MQTT. However, it poses a higher risk be-
cause direct access to the underlying MQTT broker allows
the adversary to control message contents fully. A remote
adversary possessing at least C1 can exploit vulnerabilities in
the supposedly internal management daemons by carefully
crafting messages, which we discuss further in Sections 5.3
and 5.4. We assign F2 a high CVSS score of 8.4 (Figure 6b)
with a high impact on availability, low impact on confidential-
ity and integrity, high subsequent impact on availability, and
low subsequent impact on integrity.

5.3 Memory Corruption Vulnerabilities

The custom-written management daemons of the AV2700
(the leftmost box in Figure 4) are most likely written in C,
judging by the libraries used, some strings referring to file-
names with a .c extension, and the overall observable pro-
gramming paradigms in place. Consequently, these compo-
nents suffer from a lack of language-based memory safety,
leading to F3. Examples of such issues include multiple null
pointer de-references crashing the affected components.

In the custom components, bounds checking is done im-

1 void* buffer = calloc(1, 0x102c);
2 void* build_id = cJSON_GetObjectItem(json_obj ,
3 "build_id");
4 if (build_id != 0) {
5 // Fortified version of strcpy (safe)
6 __strcpy_chk(buffer , *(build_id + 32), 64);
7 [...]
8 void* buffer_ptr = buffer + 0x188;
9 void* filename_field = cJSON_GetObjectItem(

json_obj , "file -name");
10 if (filename != 0) {
11 // strcpy call with indirect pointer ,
12 // not fortified (unsafe!)
13 strcpy(buffer_ptr - 0x84,
14 *(file_name_field + 32));
15 }
16 }

Listing 2: Reverse-engineered code surrounding the heap
buffer overflow in Line 13 due to unfortified functions (F3).

plicitly using the fortified versions of security-relevant func-
tions such as __strcpy_chk instead of strcpy() [27]. These
functions perform checks to ensure sufficient buffer sizes and
prevent the exploitation of buffer overflows. However, this
means that all services using such functionality immediately
crash when encountering an out-of-bounds error, resulting
in straightforward attacks on availability. We found this a
problem in almost every case where input is copied from an
MQTT message containing a user-supplied JSON payload.
While one can argue that in our threat model, the adversary
can always attack availability by pulling the plug that sup-
plies the unit with energy, this attack vector allows for the
disruption of specific sub-services in a stealthier manner.

Fortified functions can only be used if the length of the
target buffer is known during compile time. This requirement

108 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

1 /* Function is called with user supplied input
2 extracted from the JSON payload in an MQTT
3 message. */
4 void create_interfaces(char *inf, int vlan_id) {
5 char if_name [10];
6 char cmd_buff [100];
7

8 /* This formatting call limits the size of
9 ‘inf‘ to 7. ‘if_name ‘ is not used for the

10 system() call , but the program crashes
11 if the size is exceeded. */
12 __sprintf_chk(if_name , 1, 10,
13 "%s.%d", inf, vlan_id);
14 if(!check_if_inf_exists(if_name)) {
15 __sprintf_chk(cmd_buff , 1, 100,
16 "vconfig add %s %d",
17 inf, vlan_id);
18 system(cmd_buff);
19 }
20 }

Listing 3: Reverse-engineered code excerpt of the operating
system (OS) command injection vulnerability in Line 18 (F4).

is violated when accessing dynamically allocated memory
areas such as heap buffers with pointers, and their fortified
counterparts cannot replace unsafe functions. We attribute
the existence of F3, a heap buffer overflow in the sw_mgmtd
daemon, to this fact (Listing 2): Surrounding code relies on
__strcpy_chk() in combination with stack-located buffers,
while the problematic code copies data from an MQTT
message into a heap buffer (Line 13). Here, the unfortified
strcpy() function is used, thus producing an overflow bug
when copying from untrusted input. The impact of such issues
goes beyond simple DoS attacks against services on the RU
and can lead to full RCE [32] with severe consequences for
the whole O-RAN (Section 6.1). At least C1 is required to
exploit this finding since the service is exposed on the Open
Fronthaul interface. We assign F3 a high CVSS score of 8.3
(Figure 6c) with a high impact on availability, a low impact
on integrity, and a high subsequent impact on availability.
We base this score on the conservative assumption that ex-
ploitation for full RCE might be infeasible due to insufficient
primitives.

5.4 Command Injection Vulnerabilities

Memory-related issues are not the only area where user
input sanitization is lacking. Generally, we noticed that com-
mands executed by the system function were built using
string formatting techniques. A review of associated input
parameters uncovered an exploitable command injection vul-
nerability in one of the management daemons (Listing 3),
resulting from the passing of untrusted user input to system
(F4). Since the management daemons run as root, this en-
ables the execution of arbitrary commands in the context
of the super-user. Similar to memory corruption issues, this

vulnerability is also externally exploitable with at least C1
and no authentication due to the missing access control on
the MQTT server. As described in Section 4.3, no O-RAN
standard mandates the MQTT server. Instead, it is an imple-
mentation detail of the RU vendor. The exposure of internal
services that implement O-RAN-specific functionality leads
to additional attack surfaces that could have been avoided.
The specific command injection vulnerability we found gives
an adversary-controlled buffer of seven bytes (Line 12). Only
five usable bytes remain after accounting for two bytes to
terminate the previous command and cut off trailing charac-
ters. Although this length restriction prevents straightforward
execution of arbitrary code, known techniques exist to exploit
exactly such scenarios to gain full RCE [61], with effects on
the whole O-RAN, which we describe in Section 6.1.

We adapt this idea to create empty files with controlled
filenames by using the shell’s output redirection operator (>).
After creating the necessary files, we use ls *> 0 to create a
file containing the chosen payload. Note that we get the trail-
ing zero for free due to the virtual local area network (VLAN)
ID appended to the injectable interface name (Line 15), al-
lowing us to stay within the payload length constraints. We
force ls to list the files in the order of most recent creation by
creating a file called -tx beforehand, which is parsed as an
argument to ls, controlling the sorting precedence of the out-
put. This order allows our files to appear first in the directory
listing, enabling us to ignore trailing characters. As ls adds
whitespace between filenames, we facilitate a combination of
tr and sed invocations to remove whitespaces and construct
arbitrary payloads, inserting ${IFS} whenever we require
spaces in our payload. We assign F4 a critical CVSS score of
9.3 (Figure 6d) with a high impact on confidentiality, integrity,
and availability, a low subsequent impact on confidentiality
and integrity, and a high subsequent impact on availability.

5.5 Open Fronthaul Standard Deviations

The investigation of the AV2700 RU revealed several devi-
ations from the concepts and functionalities introduced in
the O-RAN M-Plane specification for the Open Fronthaul.
Specifically, various features specified in the standard for the
RU startup procedure were absent in the AV2700. This sec-
tion addresses the missing TLS option (Section 5.5.1) and the
persistent creation of users (Section 5.5.2) before discussing
the use of default credentials (Section 5.5.3). While none of
these deviations are exploitable, they can facilitate follow-
up attacks.

5.5.1 Missing NETCONF via TLS Option

The RU performs a call-home procedure during start-up,
which leads to the DU establishing a NETCONF connection
to the RU. The M-Plane specification mandates TLS encryp-
tion as an alternative to SSH for establishing the NETCONF

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 109

connection [47]. However, we discovered that the NETCONF
via TLS option is missing in the AV2700. As a result, only
NETCONF via SSH is available during the initiation of the
call-home procedure. To use this deviation in combination
with a flaw affecting the SSH implementation, an adversary
will need C2 to restart the RU and trigger the start-up pro-
cedure. F1 - F4 would still be exploitable when using TLS
encryption.

5.5.2 Persistent Creation of Users

The second discrepancy occurs when creating a new user ac-
count with super-user privileges on the AV2700. The M-Plane
specification states that upon creating a new user account and
assigning it super-user privileges, the default root account on
the device should be deactivated, and the active NETCONF
connection should be disconnected [47]. However, we found
that after creating a new user account and assigning super-user
privileges on the AV2700, the device neither disconnects the
active NETCONF connection with the default account nor
deactivates the default root account. This behavior deviates
from the specification and can facilitate follow-up attacks,
e.g., for adversaries that manage to create a user via the debug
port (C2).

5.5.3 Default Credentials

The O-RAN Alliance has identified the use of default creden-
tials on RUs as a main security issue [44]. Considering the
prevalence of default password lists [38] and the associated
risks in network equipment [13], the failure to deactivate the
default account poses severe security risks. Adversaries can
gain access to deployed AV2700s by brute-forcing devices
with default password lists as long as the default super-user
remains active, which can be attacked by adjacent adversaries
with access to a connected Ethernet port (C1).

6 Discussion

This section discusses the requirements of our findings and
their impact on the operation of the O-RAN (Section 6.1).
We outline mitigation means for F1 - F4 (Section 6.2). We
discuss the security implications of our findings considering
technological trends related to indoor BS (Section 6.3), 5G
and beyond (Section 6.4), and the O-RAN ecosystem (Sec-
tion 6.5). Finally, we address limitations of our work, future
work (Section 6.6), and the responsible disclosure process
(Section 6.7).

6.1 Impact on the Cellular Network
In Section 3, we defined the goal of our presumed adversary
as full control of an RU running in an O-RAN. This section
summarizes the exploitation requirements of findings F1 - F4

(Section 6.1.1) and their impact (Section 6.1.2) on the cellular
network. Figure 7 depicts which capabilities are required to
exploit F1 - F4 and what level of control they enable. Finally,
we point out follow-up attacks (Section 6.1.3).

6.1.1 Requirements

Findings F1 - F4 are all exploitable via the RU’s Open Fron-
thaul interface. Thus, adversaries with access to an adjacent
Ethernet port connected to the RU can exploit them (C1). The
adversary is not required to have specific knowledge of any
credentials.

6.1.2 Impact

In the following, we discuss what adversaries can achieve with
F1 - F4 and how close that brings them to fully controlling an
RU running in O-RAN.

Reconfiguration With C1, adversaries can reconfigure the
running RU with F2. Note how F1 and F4 also enable recon-
figuration of the RU.

Denial of Service A DoS attack on the RU leads to users
losing access to the cellular network. An adversary that is lim-
ited to C1 can exploit F2 to achieve DoS by reconfiguration
of settings in the oru-shell: (1) data transmission can be
interrupted by modifying RF parameters, (2) access to the RU
can be hindered by configuring a VLAN tag unknown to the
network operator, or (3) the device can be rebooted repeat-
edly with the reboot option to disrupt availability. Note how,
with C2, C3, or C4, adversaries can trivially achieve DoS by
repeatedly restarting or shutting down the RU.

Full Access Findings F1 and F4 both grant the ability to
execute arbitrary code on the RU. Notably, both findings only
require C1 and allow RCE in the security context of the root
user. Thus, F1 and F4 give the adversary full control of the
RU. Assuming it is feasible to gain RCE with F3, that finding
also gives the adversary full control of the RU.

6.1.3 Follow-Up Attacks

Figure 1 depicts to which O-RAN components the RU is con-
nected. With full control over an RU, there are three potential
follow-up goals: (1) targeting users via their UEs, (2) attack-
ing the O-RAN DU on the Open Fronthaul CUSM-Plane,
or (3) attacking the O-RAN SMO on the Open Fronthaul
M-Plane. Adversaries can target users by injecting down-
link traffic to attack UEs. While no known attacks target-
ing users from an O-RAN RU exist, similar attacks exist for
LTE [12,34,51]. Lateral movement in the O-RAN is possible
towards the DU and the SMO. Adversaries can conduct the
Open Fronthaul C-Plane DoS attack against the DU described

110 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Physical
Access (ℂ2)

RU
Theft (ℂ3)

Ethernet
Access (ℂ1)

RU Re-
deploy. (ℂ4)

Full Control

DoS

Reconf.

Ethernet Port

Hardware Interaction

HDMI Debug Port

Power Socket

?

?

Command Injection (𝔽4)

Memory Corruption (𝔽3)

Missing access control (𝔽2)

Exposed TCF Agent (𝔽1)

Default Credentials

Default CredentialsPersistent User Creation

Missing TLS Option

RCE?

Figure 7: The Requirements and impact of our findings F1 - F4. From left to right, the adversary’s capabilities C1 - C4 determine
the level of access to the Radio Unit (RU). Our findings enable the adversary to achieve attacker goals, i.e., reconfiguration,
Denial-of-Service (DoS), or full control of the RU. While not required for the shown attacks, the Open Fronthaul standard
deviations facilitate further attacks. We also highlight angles for future work.

by Liao et al. [35]. They can also attempt to get in control
of a DU [6]. Adversaries can attack the SMO on the Open
Fronthaul M-Plane [58, 60].

6.2 Mitigating the Discovered Vulnerabilities
Mitigating F1 is straightforward by removing the exposed
TCF agent before deployment. To mitigate F2, we recom-
mend limiting internal services to local addresses to avoid
exposing them to external threats. Regarding F3, we recom-
mend performing explicit bound checking on all untrusted
user input and considering switching away from the program-
ming language C [48]. Vulnerability F4 is addressable by
sanitizing user input before passing it to functions that eval-
uate commands, such as the system() function. Limiting
the internal services to local addresses, as suggested for F2,
also restricts the exploitability of this issue but still enables a
low-privileged user to escalate their privileges.

Generally, we recommend applying a reasonable threat
model (Section 3) during the software design phase to limit
the external attack surface from an architectural point of
view. Furthermore, we identified several deviations from the
O-RAN and Open Fronthaul specifications (Section 5.5). Co-
herency to these standards, especially regarding security, en-
sures the implementation of the best practices, thus mitigating
vulnerabilities in general.

6.3 Indoor Base Stations
The high number of security-related issues emphasizes the
need for an updated threat model for indoor BSs. This shift
voids the assumption that only trusted entities can directly
communicate with the RU. Combined with a system archi-
tecture that exposes many services without authentication,

as described in Section 4.3, the AV2700 presents a vast at-
tack surface. Large parts of the AV2700’s internal code are
probably written in C, requiring high security awareness and
rigorous security testing [53]. Without such precautions, mem-
ory safety bugs that lead to vulnerabilities are very likely.

As we show in Section 5, the security weaknesses affect-
ing the AV2700 spread beyond memory corruption issues,
including missing access control for dangerous services and
an OS command injection. These problems can also occur in
software written in memory-safe languages. Therefore, it is
necessary to follow security best practices and apply a proper
threat model during the development phase, reflecting the re-
ality that adversaries might have physical access to the RU
when deployed as an indoor BS in a public space.

6.4 Technologies of 5G and Beyond

The intended application areas of 5G, namely enhanced Mo-
bile Broadband (eMBB), Ultra Reliable Low Latency Com-
munications (URLLC), and Massive Machine Type Commu-
nications (mMTC), incur high requirements on the RAN. 5G
facilitates novel technology, such as FPGAs for mmWave
beamforming to fulfill these requirements. However, using
novel technology in gNBs and O-RAN RUs introduces new
challenges for RAN vendors and mobile network operators
(MNOs), e.g., more complex hardware in indoor BSs (Sec-
tion 4.2) and other RAN components.

While F1 is not a vulnerability within the cellular network
itself, it is exploitable by an adjacent adversary to gain ac-
cess to the AV2700’s host system, from where escalation to
the AV2700 is trivial with root privileges. The exposed TCF
agent vulnerability (Section 5.1) is a direct cause of devel-
opers not removing the TCF agent from the AV2700 before

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 111

deployment. As FPGAs are included in O-RAN RUs to ful-
fill the requirements of 5G in the application areas, F1 is a
consequence of the novel technologies of 5G and beyond. Ad-
ditionally, with the TCF debugger enabled by default for the
widespread Zynq UltraScale+, F1 can likely be reproduced
on other RUs.

6.5 Complexity of the Open RAN Ecosystem

The O-RAN ecosystem is complex with its new open inter-
faces and introduced features. The different components are
highly interconnected through the various interfaces, and re-
search identified that adversaries can use the interconnectivity
to their advantage to escalate attacks [36, 39]. As detailed
in [6], establishing control of an RU provides an adversary
with the means to escalate attacks upwards, penetrating the
O-RAN through the DU and beyond, consequently impacting
the entire O-RAN ecosystem, including the CU, the SMO,
and the RICs. The security implications of this intrusion into
the O-RAN are critical as adversaries might access user- and
other sensitive data. They might manipulate the O-RAN to
transmit malicious packets and data to users, potentially affect-
ing user devices. Additionally, an adversary might bring down
the entire O-RAN with a DoS attack, leading to a large-scale
outage in 5G, classified as a critical infrastructure.

6.6 Limitations and Future Work

We did not fully evaluate the RU’s HDMI debug port. An
adversary with access to all interfaces (C2) might use the
RU’s debug port to perform a DoS attack or prepare follow-
up attacks that lead to RCE, e.g., creating a new super user. An
adversary capable of removing the RU (C3) can perform more
intrusive operations to achieve full control of the RU, e.g.,
firmware modifications or hardware fault injection. However,
if these attacks lead to RCE in the security context of root,
the adversary still needs to redeploy the RU into the running
O-RAN to achieve their goal, requiring C4.

We analyzed the AV2700 as an example of a proprietary
indoor O-RAN RU. We focused on the capabilities of an ad-
versary abusing physical access to an indoor RU, potentially
stealing, modifying, and redeploying the RU. As we did not
analyze an RU in a live O-RAN, future work might provide
valuable insights into how much CU-Plane traffic an adver-
sary with full control of the RU can access.

While we aimed to highlight general issues with indoor
O-RAN RUs, our evaluation considered only one product,
the AV2700. Future work might reproduce our findings on
other indoor RUs and assess to which extent our findings are
generalizable.

6.7 Responsible Disclosure

We privately reported F1 to Airspan on April 19, 2023. After
waiting for an acknowledgment or response, we sent a follow-
up email on February 13, 2024, with a revised deadline of
April 13, 2024, marking 360 days from the initial reporting.
On February 14, 2024, an Airspan executive responded to
our email, who acknowledged dismissing our initial email
as a phishing attempt. We were assured that the responsible
team at Airspan had been informed about our report and that
they would contact us regarding the vulnerability and next
steps. On February 21, 2024, we privately reported F2 - F4 to
Airspan. We set a deadline for May 21, 2024, marking 90 days
from the day of reporting, which complies with recommended
industry practice [29]. To the best of our knowledge, Airspan
is now working on patches for F1 - F4.

7 Conclusions

With this paper, we contribute to the RAN security of 5G and
beyond, especially regarding the deployment of indoor BSs.
We introduce a threat model for indoor BSs, considering they
are more easily accessible than outdoor BSs. Our security
analysis of the Airspan AirVelocity 2700 (AV2700) results
in multiple deviations from the O-RAN and Open Fronthaul
standards. We find four vulnerabilities on the AV2700 that we,
due to the lack of official scores, self-assign high or critical
CVSS scores (F1 - F4) and recommend mitigation means
for all of them. Our findings show that vulnerabilities in the
host system of a state-of-the-art indoor BS are exploitable
to Remote Code Executions (RCEs), which facilitate follow-
up attacks on the RAN. This highlights the importance of
securing not only the RAN-related implementations of a RAN
component but also the underlying host.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
helpful suggestions. This work had been co-funded by the
Federal Ministry of Education and Research of Germany in
the project Open6GHub (grant number: 16KIS014) and the
German Research Foundation (DFG) in the project CRUST
(grant number: 503199853).

References

[1] 3rd Generation Partnership Project (3GPP). Study on
CU-DU lower layer split for NR, Technical Report (TR)
38.816, version 15.0.0. Technical report, December
2017.

[2] 3rd Generation Partnership Project (3GPP). Study on
New Radio Access Technology: Radio Access Archi-

112 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

tecture and Interfaces, Technical Report (TR) 38.801,
version 14.0.0. Technical report, March 2017.

[3] 3rd Generation Partnership Project (3GPP). NR; NR
and NG-RAN Overall description; Stage-2, Technical
Specification (TS) 38.300, version 18.0.0. Technical
specification, December 2023.

[4] 3rd Generation Partnership Project (3GPP). NR; Physi-
cal Layer; General Description, Technical Specification
(TS) 38.201, version 18.0.0. Technical specification,
September 2023.

[5] 3rd Generation Partnership Project (3GPP). System ar-
chitecture for the 5G System (5GS), Technical Specifica-
tion (TS) 23.501, version 18.4.0. Technical specification,
December 2023.

[6] Aly Sabri Abdalla and Vuk Marojevic. End-to-End O-
RAN Security Architecture, Threat Surface, Coverage,
and the Case of the Open Fronthaul, 2023.

[7] Airspan Networks Inc. 5G Products. https://
airspan.com/5g-products/, 2024. Accessed: 2024-
03-10.

[8] ARM Ltd. Cortex-a53 – the most widely used low-
power processor. https://www.arm.com/products/
silicon-ip-cpu/cortex-a/cortex-a53, 2024. Ac-
cessed: 2024-03-10.

[9] Arm Ltd. Cortex-r5 – seamless, real-time embed-
ded processors. https://www.arm.com/products/
silicon-ip-cpu/cortex-r/cortex-r5, 2024. Ac-
cessed: 2024-03-10.

[10] Leonardo Bonati, Michele Polese, Salvatore D’Oro,
Stefano Basagni, and Tommaso Melodia. Open, Pro-
grammable, and Virtualized 5G Networks: State-of-
the-Art and the Road Ahead. Computer Networks,
182:107516, December 2020.

[11] BusyBox Developers. BusyBox. https://busybox.
net/. Accessed: 2024-03-04.

[12] Merlin Chlosta, David Rupprecht, Christina Pöpper, and
Thorsten Holz. 5g suci-catchers: Still catching them all?
In Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages
359–364, 2021.

[13] Min-kyu Choi, Rosslin John Robles, Chang-hwa Hong,
and Tai-hoon Kim. Wireless Network Security: Vulnera-
bilities, Threats and Countermeasures. International
Journal of Multimedia and Ubiquitous Engineering,
3(3):77–86, 2008.

[14] Jeffrey Cichonski, Joshua M Franklin, and Michael Bar-
tock. Guide to LTE Security.

[15] Charles Clancy and Scott G. Kelly. Control And Provi-
sioning of Wireless Access Points (CAPWAP) Threat
Analysis for IEEE 802.11 Deployments. Informational
RFC 5418, Internet Engineering Task Force.

[16] Daniel Dik and Michael Stübert Berger. Transport Se-
curity Considerations for the Open-RAN Fronthaul. In
2021 IEEE 4th 5G World Forum (5GWF), pages 253–
258, 2021.

[17] Daniel Dik and Michael Stübert Berger. Open-RAN
Fronthaul Transport Security Architecture and Imple-
mentation. IEEE Access, 11:46185–46203, 2023.

[18] Eclipse Foundation. Target Communication Framework
(TCF). https://wiki.eclipse.org/TCF. Accessed:
2024-02-15.

[19] Eclipse Foundation. TCF/RISC-V: Connect the TCF De-
bugger. https://wiki.eclipse.org/TCF/RISC-V#
Connect_the_TCF_Debugger, 2020. Accessed: 2024-
02-15.

[20] Enclustra FPGA Solutions. Mercury+ XU8
| Xilinx Zynq UltraScale+ MPSoC Module.
https://www.enclustra.com/en/products/
system-on-chip-modules/mercury-xu8/, 2024.
Accessed: 2024-03-10.

[21] Rob Enns, Martin Björklund, Andy Bierman, and Jürgen
Schönwälder. Network Configuration Protocol (NET-
CONF). RFC 6241, June 2011.

[22] European Telecommunications Standards Institute
(ETSI). 5G; Security architecture and procedures for
5G System (3GPP TS 33.501 version 17.12.0 Release
17). Technical specification, January 2024.

[23] Muhammad Najmul Islam Farooqui, Junaid Arshad, and
Muhammad Mubashir Khan. A Layered Approach to
Threat Modeling for 5G-Based Systems. 11(12):1819.

[24] Federal Office for Information Security (BSI). Open-
RAN Risk Analysis. Technical report, Federal Office
for Information Security, Germany, 2 2022. Accessed:
2024-03-10.

[25] Forum of Incident Response and Security Teams
(FIRST). Common Vulnerability Scoring System Ver-
sion 4.0 Calculator. https://www.first.org/cvss/
calculator/4.0, 2024. Accessed: 2024-03-10.

[26] Eclipse Foundation. Eclipse Mosquitto. https://
mosquitto.org/.

[27] Free Software Foundation, Inc. Source For-
tification (The GNU C Library). https:
//www.gnu.org/software/libc/manual/html_
node/Source-Fortification.html.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 113

https://airspan.com/5g-products/
https://airspan.com/5g-products/
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a53
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a53
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r5
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r5
https://busybox.net/
https://busybox.net/
https://wiki.eclipse.org/TCF
https://wiki.eclipse.org/TCF/RISC-V#Connect_the_TCF_Debugger
https://wiki.eclipse.org/TCF/RISC-V#Connect_the_TCF_Debugger
https://www.enclustra.com/en/products/system-on-chip-modules/mercury-xu8/
https://www.enclustra.com/en/products/system-on-chip-modules/mercury-xu8/
https://www.first.org/cvss/calculator/4.0
https://www.first.org/cvss/calculator/4.0
https://mosquitto.org/
https://mosquitto.org/
https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html
https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html
https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html

[28] Nico Golde, Kevin Redon, and Ravishankar Borgaonkar.
Weaponizing femtocells: The effect of rogue devices on
mobile telecommunications. In NDSS, 2012.

[29] Google. About google’s app security. https://about.
google/appsecurity/, 2024. Accessed: 2024-03-10.

[30] Joshua Groen, Salvatore DOro, Utku Demir, Leonardo
Bonati, Michele Polese, Tommaso Melodia, and Kaushik
Chowdhury. Implementing and Evaluating Security in
O-RAN: Interfaces, Intelligence, and Platforms, 2023.

[31] Sebastian Haas, Mattis Hasler, Friedrich Pauls, Stefan
Köpsell, Nils Asmussen, Michael Roitzsch, and Gerhard
Fettweis. Trustworthy computing for o-ran: Security in a
latency-sensitive environment. In 2022 IEEE Globecom
Workshops (GC Wkshps), pages 826–831. IEEE, 2022.

[32] Sean Heelan, Tom Melham, and Daniel Kroening. Auto-
matic Heap Layout Manipulation for Exploitation. pages
763–779.

[33] Felix Klement, Stefan Katzenbeisser, Vincent Ulitzsch,
Juliane Krämer, Slawomir Stanczak, Zoran Utkovski,
Igor Bjelakovic, and Gerhard Wunder. Open or not open:
Are conventional radio access networks more secure and
trustworthy than Open-RAN?, 2022.

[34] Gyuhong Lee, Jihoon Lee, Jinsung Lee, Youngbin Im,
Max Hollingsworth, Eric Wustrow, Dirk Grunwald, and
Sangtae Ha. This is your president speaking: Spoofing
alerts in 4g lte networks. In Proceedings of the 17th
Annual International Conference on Mobile Systems,
Applications, and Services, pages 404–416, 2019.

[35] Shu-Hua Liao, Chih-Wei Lin, Fransiscus Asisi Bimo,
and Ray-Guang Cheng. Development of C-Plane DoS
Attacker for O-RAN FHI. In Proceedings of the 28th
Annual International Conference on Mobile Computing
And Networking, page 850–852. Association for Com-
puting Machinery, 2022.

[36] Madhusanka Liyanage, An Braeken, Shahriar Shahabud-
din, and Pasika Ranaweera. Open RAN security: Chal-
lenges and opportunities. Journal of Network and Com-
puter Applications, 214:103621, 2023.

[37] Ahmed Redha Mahlous. Threat model and risk manage-
ment for a smart home iot system. Informatica, 47(1),
2023.

[38] Daniel Miessler, Jason Haddix, and g0tmi1k. Se-
cLists. https://github.com/danielmiessler/
SecLists, 2024. Accessed: 2024-03-07.

[39] Dudu Mimran, Ron Bitton, Yehonatan Kfir, Eitan Kle-
vansky, Oleg Brodt, Heiko Lehmann, Yuval Elovici, and
Asaf Shabtai. Evaluating the Security of Open Radio
Access Networks, 2022.

[40] David Muirhead, Muhammad Ali Imran, and Kamran
Arshad. Insights and approaches for low-complexity 5g
small-cell base-station design for indoor dense networks.
IEEE access, 3:1562–1572, 2015.

[41] O-RAN Working Group 1. O-RAN Architecture De-
scription. Technical Specification OAD-R003-v11.00,
O-RAN ALLIANCE, 2024. Available online at
https://www.o-ran.org/specifications.

[42] O-RAN Working Group 11. O-RAN Security Threat
Modeling and Risk Assessment. Technical Report TR.0-
R003-v02.00, O-RAN ALLIANCE, 2024.

[43] O-RAN Working Group 11. Security Requirements and
Controls Specifications. Technical Report TR.0-R003-
v08.00, O-RAN ALLIANCE, 2024.

[44] O-RAN Working Group 11. Study on O-RU Central-
ized User Management. Technical Report TR.0-R003-
v01.00, O-RAN ALLIANCE, 2024.

[45] O-RAN Working Group 11. Study on Security for
Shared O-RU. Technical Report TR.0-R003-v04.00,
O-RAN ALLIANCE, 2024.

[46] O-RAN Working Group 4. Control, User, and Synchro-
nization Plane Specification. Technical Specification
CUS.0-R003-v14.00, O-RAN ALLIANCE, 2023.

[47] O-RAN Working Group 4. Management Plane Specifi-
cation. Technical Report MP.0-R003-v14.00, O-RAN
ALLIANCE, 2024.

[48] Office of the National Cyber Director. Back to the
Building Blocks: A Path Toward Secure and Measurable
Software. Technical report, White House, Washington,
DC, 2 2024. Accessed: 2024-03-10.

[49] Mark Alan Overby. HDMI-muxed debug cable methods
and apparatuses, October 7 2014. US Patent 8,856,744.

[50] Mark Alan Overby. HDMI-muxed debug port methods
and apparatuses, April 7 2015. US Patent 9,003,369.

[51] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee,
Eunkyu Lee, Insu Yun, and Yongdae Kim. {DoLTEst}:
In-depth downlink negative testing framework for
{LTE} devices. In 31st USENIX Security Symposium
(USENIX Security 22), pages 1325–1342, 2022.

[52] Michele Polese, Leonardo Bonati, Salvatore D’oro, Ste-
fano Basagni, and Tommaso Melodia. Understanding
O-RAN: Architecture, Interfaces, Algorithms, Security,
and Research Challenges. IEEE Communications Sur-
veys & Tutorials, 2023.

114 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://about.google/appsecurity/
https://about.google/appsecurity/
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists

[53] Alex Rebert and Christoph Kern. Secure by Design:
Google’s Perspective on Memory Safety. Technical
report, March 2024.

[54] Danish Sattar, Ashraf Matrawy, Troy Bryant, and Marc
Kneppers. Threat Modeling in LTE Small Cell Net-
works. In 2018 IEEE Canadian Conference on Elec-
trical & Computer Engineering (CCECE), pages 1–5.
IEEE.

[55] Chih-Ting Shen, Yu-Yi Xiao, Yi-Wei Ma, Jiann-Liang
Chen, Cheng-Mou Chiang, Shiang-Jiun Chen, and Yu-
Chuan Pan. Security threat analysis and treatment strat-
egy for oran. In 2022 24th International Conference on
Advanced Communication Technology (ICACT), pages
417–422. IEEE, 2022.

[56] Small Cell Forum. 5G nFAPI Specifications.
https://scf.io/en/documents/225_5G_nFAPI_
specifications.php. Accessed: 2024-03-11.

[57] Small Cell Forum. Small Cell Forum. https://www.
smallcellforum.org/. Accessed: 2024-03-11.

[58] Kashyap Thimmaraju, Altaf Shaik, Sunniva Flueck,
Christian Werling, and Jean-Pierre Seifert. Security
testing the o-ran near-real time ric & a1 interface. In Pro-
ceedings of the 17th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec’24),
2024.

[59] Aju Mathew Thomas, Gowtham Akshaya Kumaran,
R Ramaguru, R Harish, and K Praveen. Evaluation
of wireless access point security and best practices for
mitigation. In 2021 5th International Conference on
Electrical, Electronics, Communication, Computer Tech-
nologies and Optimization Techniques (ICEECCOT),
pages 422–427. IEEE, 2021.

[60] Walter Tiberti, Eleonora Di Fina, Andrea Marotta, and
Dajana Cassioli. Impact of man-in-the-middle attacks
to the o-ran inter-controllers interface. In 2022 IEEE
Future Networks World Forum (FNWF), pages 367–372.
IEEE, 2022.

[61] Orange Tsai. BabyFirst Revenge v2 Chal-
lenge Writeup. https://github.com/
orangetw/My-CTF-Web-Challenges/blob/
325ab4e4b4888a7ca73092b8f9e4af70844a09e9/
README.md#babyfirst-revenge-v2. Accessed:
2024-02-21.

[62] Sichao Wen and Yuandan Dong. A Low-Profile Wide-
band Antenna With Monopolelike Radiation Character-
istics for 4G/5G Indoor Micro Base Station Applica-
tion. IEEE Antennas and Wireless Propagation Letters,
19(12):2305–2309, 2020.

[63] Xilinx Inc. PetaLinux Tools Documentation. Xilinx Inc.,
2019. Accessed: 2024-03-04.

[64] Xilinx, Inc. Zynq ultrascale+ mpsoc. https:
//www.xilinx.com/products/silicon-devices/
soc/zynq-ultrascale-mpsoc.html, 2024. Ac-
cessed: 2024-03-10.

[65] Bin Yang, Yue Hou, Yefeng Zhang, Shiying Feng, and
Yong Zhang. Security architecture of wireless private
networks for smart grid. Electrical Engineering and
Computer Science (EECS), 2:95–98, 2019.

[66] ZeroMQ authors. ZeroMQ. https://zeromq.org/.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 115

https://scf.io/en/documents/225_5G_nFAPI_specifications.php
https://scf.io/en/documents/225_5G_nFAPI_specifications.php
https://www.smallcellforum.org/
https://www.smallcellforum.org/
https://github.com/orangetw/My-CTF-Web-Challenges/blob/325ab4e4b4888a7ca73092b8f9e4af70844a09e9/README.md#babyfirst-revenge-v2
https://github.com/orangetw/My-CTF-Web-Challenges/blob/325ab4e4b4888a7ca73092b8f9e4af70844a09e9/README.md#babyfirst-revenge-v2
https://github.com/orangetw/My-CTF-Web-Challenges/blob/325ab4e4b4888a7ca73092b8f9e4af70844a09e9/README.md#babyfirst-revenge-v2
https://github.com/orangetw/My-CTF-Web-Challenges/blob/325ab4e4b4888a7ca73092b8f9e4af70844a09e9/README.md#babyfirst-revenge-v2
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://zeromq.org/

RIPencapsulation: Defeating IP Encapsulation on TI MSP Devices

Prakhar Sah
Virginia Tech

sprakhar@vt.edu

Matthew Hicks
Virginia Tech

mdhicks2@vt.edu

Abstract
Internet of Things (IoT) devices sit at the intersection of

unwieldy software complexity and unprecedented attacker
access. This unique position comes with a daunting security
challenge: how can we protect both proprietary code and
confidential data on a device that the attacker has unfettered
access to? Trusted Execution Environments (TEEs) promise
to solve this challenge through hardware-based separation of
trusted and untrusted computation and data. While TEEs do
an adequate job of protecting secrets on desktop-class devices,
we reveal that trade-offs made in two of the most widely-used
commercial IoT devices undermine their security.

This paper uncovers two fundamental weaknesses in IP
Encapsulation (IPE), the TEE deployed by Texas Instruments
for MSP430 and MSP432 devices. We observe that lack of
call site enforcement and residual state after unexpected TEE
exits enable an attacker to reveal all proprietary code and se-
cret data within the IPE. We design and implement an attack
called RIPencapsulation, which systematically executes por-
tions of code within the IPE and uses the partial state revealed
through the register file to exfiltrate secret data and to identify
gadget instructions. The attack then uses gadget instructions
to reveal all proprietary code within the IPE. Experiments
with commodity devices and a production compiler show
that—even after following all manufacturer secure coding
practices—RIPencapsulation reveals, within minutes, both
the code and keys from third-party cryptographic software, as
well as allowing unrestricted writes to TEE memory.

1 Introduction

The global IoT industry is projected to become a trillion-dollar
industry by 2027 [2]. IoT devices are widely deployed in both
safety- and mission-critical roles in government, healthcare,
transportation, manufacturing, defense, and telecommunica-
tions industries. Thus, these devices are a treasure trove of
sensitive information. Data security concerns are a major ob-
stacle to the growth of the IoT sensor market as data breaches

continue to rise with the advancement of technology. In addi-
tion to data security, the growing software complexity of IoT
devices and proliferation of Artificial Intelligence mandate
code security, i.e., the protection of proprietary algorithms
and models. Failing to protect proprietary code and secret
data puts both consumers and companies at risk.

“Trying to design information security solutions without
due consideration of the complex human nature may prove
to be an Achilles heel” [9]. Cryptographic algorithms like
AES and RSA provide confidentiality of data, but the key
still ends up in device memory. This leaves keys vulnerable
to exfiltration by an attacker with physical access. Unfortu-
nately, physical access is the common case for IoT devices.
To address the threat of co-resident attackers, manufacturers
provide a Trusted Execution Environment (TEE). TEEs bi-
furcate hardware (either physically or virtually) into security
domains, where code and data in the high-security domain
are protected from the low-security domain. For IoT-class
devices, Texas Instruments provides a TEE called IP Encapsu-
lation (IPE), which physically partitions device memory into
a protected region and an unprotected region.

Texas Instruments is the world’s second-largest manufac-
turer of microcontrollers [7]. Their MSP family of devices
consists of over 2000 unique devices [3] making them one of
the most widely deployed microcontrollers [4, 5], . MSP430s
are 16-bit industrial-grade microcontrollers with low power
consumption at a low cost. The MSP432 line of microcon-
trollers extends the capabilities of the MSP430 with a 32-bit,
ARM-based architecture. Both devices have TEE support in
the form of IPE, making IPE the most widely deployed TEE.

While the community continues to probe the security of
TEEs provided by higher-end devices, the security of IoT-
class TEEs remains under-explored. This paper fills that gap
by analyzing the security of TI’s IPE. IPE protects code and
data within the IPE zone from all non-IPE zone read and
write accesses [37, 45, 48]. IPE is enforced by the Memory
Protection Unit (MPU) for MSP430 and the System Con-
troller (SYSCTL) module for MSP432, which restricts direct
external IPE zone accesses by checking the origin of mem-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 117

ory accesses. In addition, the MPU/SYSCTL also restricts all
JTAG/DMA accesses to the IPE zone. Thus, only memory
accesses from within the IPE are allowed to the IPE zone,
making it ideal for storing secret data (e.g., keys) and propri-
etary code (e.g., AI models). Our exploration of IPE security
reveals that—despite following the TI-recommended secure
programming practices—the state-of-art compilers produce
assemblies that leak information from and allow unrestricted
writes to the IPE zone via the unprotected register file. These
weaknesses render IP encapsulation insecure.

IPE has two weaknesses that undermine security by en-
abling arbitrary read and write access to secure memory:

• IPE allows all code outside the IPE zone to branch to
arbitrary instructions within the IPE zone.

• When execution leaves the IPE zone unexpectedly (e.g.,
via an interrupt) the contents of the register file remain.

We construct an attack leveraging these weakness called
RIPencapsulation, which exfiltrates all code and data pro-
tected by the IPE—within minutes. Inspired by SGX-
Step [49] and Interrupt-oriented Bugdoor Programming [43],
but extending them to the IoT domain, RIPencapsulation com-
bines interrupt-based control flow attack patterns, with data-
oriented attack patterns, and side-channel attack patterns to
break IPE. The result of RIPencapsulation is unrestricted
read, write, and execute access to IPE-protected memory.

We implement and evaluate RIPencapsulation on TI
MSP430 and MSP432 devices. Our evaluation shows that
RIPencapsulation reveals the entire contents of the IPE zone
with third-party implementations of AES, SHA256, and RSA,
using a variety of optimization settings on a production com-
piler. RIPencapsulation exfiltrates all keys and code from both
devices, automatically, within minutes—even when following
all of TI’s secure coding best-practices.

This paper makes the following technical contributions:

• Create a side channel: We design and implement an
interrupt-based side channel that reveals the state within
the IPE zone of TI MSP devices (§4, §5, §6).

• Reconstruct firmware: We use partial state, timing, and
size information to reconstruct the IP-encapsulated as-
sembly (§4.2, §5.2).

• Demonstrate generality: We show the problem is per-
vasive across TI MSP devices, memory types, crypto-
graphic implementations, and compiler optimizations
(§7, §7.6).

• Modify firmware: We uncover interrupt-based data-
oriented gadgets to modify the IP-encapsulated code
and data (§7.7).

• Discuss mitigation: We qualitatively analyze various
mitigation techniques with respect to their impact on an
IoT device (§8).

• Open-source RIPencapsulation. We open-source all
attack and evaluation code [8].

Figure 1: Block diagram illustrating how the MPU enforces
IP Encapsulation on MSP430 devices.

Responsible disclosure. We have disclosed RIPencapsula-
tion and the threat it poses to the security guarantees of IP
Encapsulation on MSP-class devices to Texas Instruments.

2 Background

This section covers topics underpinning RIPencapsulation.

2.1 Trusted Execution Environment
A Trusted Execution Environment (TEE) is a secure process-
ing area that provides isolated execution and secure storage of
code and data inside a tamper-resistant module. TEEs include
process isolation, the integrity of applications running inside
the TEE, and the confidentiality of data associated with it.
TEEs achieve this by using a memory protection mechanism
restricting access to the security-critical software module [39].

Intel Software Guard Extensions (SGX) and AMD Se-
cure Encrypted Virtualization (SEV) are multi-tenant systems
running with operating systems and full-fledged commodity
desktop/server-class systems. They use hardware memory-
based encryption to isolate sensitive code and data. This type
of deployment scenario is not available in low-end microcon-
troller devices like the MSPs due to the hardware overhead of
the encryption engine and the run time overhead of encryption
in an environment with single-cycle main memory access.

ARM TrustZone is a microcontroller-focused TEE that
splits the physical memory into secure and normal regions,
with specifically assigned computational units like Secure
Attribution Unit (SAU), ensuring safe context switches be-
tween secure and normal processes, or lightweight remote
attestation schemes like SMART [21] and VRASED [35],
which provide user trust with minimal HW/SW modifications.
SANCUS [34] is another secure architecture that provides

118 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

isolated execution and privacy of code and data in low-level
networked embedded systems.

The only TEE for the low-end devices common to large-
scale IoT deployments is TI’s Intellectual Property Encapsu-
lation (IPE). IPE protects the encapsulated memory region
from all direct non-IPE accesses, whether it be from on-chip
execution or off-chip via the debugger, i.e., only program code
executed from the IPE region itself has access privileges to
IPE code and data. Figure 1 illustrates the IPE implementa-
tion for MSP430 devices: the Memory Protection Unit (MPU)
verifies IPE region accesses by snooping the Memory Ad-
dress Bus (MAB) and the program counter to check whether
the access request is made by code in the IPE zone. Any
unauthorized access to the IPE zone causes the MPU to drive
the Memory Data Bus (MDB) with 0x3FFF. To execute code
stored inside the IPE segment, the program must call func-
tions within the IPE zone. The MSP432’s IPE mechanism is
slightly different technically, but works in a similar manner
and has the same flaws as the MSP430 IPE (§4).

Existing attacks demonstrate ways to undermine deployed
TEEs. CLKscrew [44] exploits software-exposed energy man-
agement mechanisms to introduce faults in the secure part of
the memory, exfiltrating IP from TrustZone. Volt Boot [32] is
another attack that demonstrates the vulnerability of on-chip
volatile memories due to the physical separation common
to modern system-on-chip power distribution networks. Re-
cent research reveals vulnerabilities in TEEs like ARM Trust-
Zone [15] and AMD SEV [30, 31], calling into question the
reliability of these protection mechanisms. Our work adds
to the TEE attack literature with an attack on TI’s IPE.

2.2 Code-reuse Attacks
Attackers turn to code reuse attacks when injecting their own
code is prevented. Instead of injecting new code, the attacker
constructs malicious functionality by chaining existing code
snippets, called “gadgets” found in the target program. These
gadgets are short sequences of instructions, typically ending
with a “return” instruction. By crafting a chain of gadgets and
manipulating the program’s control flow, the attacker is able
to execute arbitrary commands. Many techniques exist in the
literature that utilize various aspects of the memory control
plane [11–13, 16, 40] and data plane [18, 25] to create Turing-
complete gadgets for malicious purposes. We take inspiration
from such techniques, replacing a ret with a carefully crafted
interrupt and leveraging data-oriented attack principles.

2.3 Context Switches and Call Site Verification
Context switching is the process of transitioning the execu-
tion from the untrusted zone to the secure/trusted zone and
vice versa. When a context switch occurs, the current state of
the regular execution environment, including registers, mem-
ory contents, and program counter is saved, and the system

transitions between zones. Secure context switching in TEEs
is crucial for ensuring the isolation of trusted code and data
from the rest of the system as any data that remains serves as
a side channel to untrusted software.

In addition to context clearing, a TEE must enforce call
site verification to ensure that untrusted code interfaces with
trusted code in acceptable ways. When a program interacts
with the TEE, it makes calls to procedures within the enclave.
These calls are known as “call sites”. Call site verification
verifies that the callee is a function allowed to be called from
untrusted code. This prevents attackers from hijacking the con-
trol flow and executing arbitrary gadgets within the enclave.
We show that call site verification is a necessary component
of any secure TEE.

3 Threat Model

The defender’s code is bug-free. The defender follows TI’s
secure coding practices: (1) they clear IPE state on exit and
(2) disable interrupts upon IPE entry. The defender uses com-
modity cryptographic algorithms and compilers.

We assume the attacker has the capability to run any code
in the untrusted world, this can either come from co-resident
software or from having physical access [9]. This means the
attacker can configure the timer and interrupt service routines.
We assume the attacker’s software has a way to communicate
with the attacker; The attacker wishes to have arbitrary read,
write, and execute access to IPE-protected code and data. Note
that this level of access is in-keeping with how TI expects
users to interface with the IPE, i.e., the IPE is a place for
protected, third-party code that untrusted user software can
use as a library.

4 RIPencapsulation Design

RIPencapsulation is an interrupt-based side-channel memory
exfiltration attack on TI MSP IP-Encapsulated (IPE) memory.
As Figure 2 illustrates, the attack consists of three phases.
After the first two phases of the attack, we are able to reverse
engineer 80% of the IPE-protected code. If the attacker’s
goal is only to get the keys from commodity cryptographic
implementations, this generally suffices, as we prove in §7.
However, completing all three phases enables the attacker to
exfiltrate 100% of IPE-protected memory.

4.1 Creating a Side Channel (Phase 1)
The fundamental weakness in the design of IPE is that it does
not protect the register file when context switches outside the
IPE zone. This first phase exploits this weakness as a side
channel that reveals the internal state of the IPE zone. The
naive approach is to single-step IPE code using a debugger,
but the MPU/SYSCTL monitors the memory address bus and

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 119

Figure 2: High-level IPE attack flow.

prevents JTAG or DMA from accessing the IPE-protected
memory zone. This prevents breakpoints from working inside
the IPE zone. While we observe that it is still possible to send
HALT signals while in the IPE zone, it only provides timing
granularity of 250 ms—not single-instruction precision.

The ability to process signals indicates that, in general, in-
terrupts are processed while executing in the IPE zone. Thus,
we can leverage a more precise interrupt source for single-
instruction precision: the timer. Timer module interrupts have
the capability to interrupt a program at single-cycle granular-
ity (i.e., sub-instruction level).

Figure 2 shows the flow of the RIPencapsulation attack.
In 1 , attacker-controlled code sets up the timer module to
interrupt the processor at a counter value of one clock cycle
into the IPE code. Then the attacker code jumps directly to the
instruction after the instructions which disables external in-
terrupts.1 In 2 , the victim IPE code executes until the timer
module interrupts it and passes control to the attacker’s ISR.
Note that on an interrupt, any currently executing instruction
is completed, and the PC of the next instruction, along with
the SR, is pushed onto the stack. The context of the IPE code
at the time of the interrupt remains intact.

Inside the ISR, 3 we copy the register states to attacker-
controlled memory. This includes all the general-purpose
registers as well as the stack pointer. In 4 , the memory
space available on MSP430/MSP432 is limited, with memory
sizes around 256KB. So saving the register states of the entire

1TI’s secure coding practice recommends disabling interrupts while exe-
cuting in the IPE zone. We leverage the lack of call site verification to bypass
any interrupt disabling code. It is also possible to use external interrupts or
even a power reset in place of timer interrupts.

IPE-analysis process on the target MSP microcontroller is
not feasible and we use its UART interface to transmit the
exfiltrated register state to a workstation for analysis.2 In 5 ,
the attacker’s ISR resets the PC, SP, and SR registers to restore
the program state to attacker-controlled code. The attacker
code increments the timer counter value by one cycle and
calls the victim code again. We repeat Phase 1 until the
state-change due to all IPE code is captured. The end result is
similar to single-stepping through the IPE code.

4.2 IPE State Dump Post-processing (Phase 2)

Phase 2 consists of post-processing the register state dumps
and does not require access to the device. The goal is to
decode the IPE assembly, extracting as much information
as possible from the state dumps. In 6 we Look at the
changes in PC deduce instruction boundaries. Comparing its
PC with the PC of the next instruction, we are able to infer the
size of the completed instruction unless it is a control-flow
discontinuity. The frequency of successively repeating PCs in
the state dumps provides instruction cycle count.

In the MSP430 instruction set architecture, the instruction
size and cycles depend only on the operands and not the op-
eration. An MSP430 instruction has broadly two types of
operands, register or memory, with the possibility of combin-
ing these two for the source and destination operands. Iden-
tifying the operation is straightforward when both operands
are direct register values. In such cases, the critical piece of
information is the change in values of the general-purpose
registers (GPRs) and how those changes correlate to the pre-
vious values of the registers. For instance, an ADD instruction
with two register operands causes a difference in the value
of the destination operand. By doing so, we decode the op-
eration as well as the operands. However, we need to probe
memory-to-register or register-to-memory instructions further
in order to decipher them, as we detail in §5.2. We also ob-
serve that memory-to-memory operations are indecipherable
just by looking at the register file, as at least one of the GPRs
must change for identification.3

Status bit changes are also helpful in resolving the instruc-
tion guesses. A carry bit set implies that the result of the op-
eration produces a carry. Zero or negative bit changes help
us infer whether the result of an operation is zero or negative.
The overflow bit signifies an overflow in the signed-variable
range [46]. It also helps resolve certain operations, e.g., an
AND instruction resets the overflow bit. These distinctions
are most beneficial when the destination is not a register.

After reverse engineering, we are able to decode all the reg-
ister and register-indirect addressing mode operations, when

2We also experimentally verify that it is possible to use the debugger to
transmit the exfiltrated register state—albeit 22x slower than the UART.

3The ARM instruction set of the MSP432 only allows for register-to-
register state-changing operations, which increases the power of Phase 1.

120 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

both operands are in one of those addressing modes.4 7 The
next step in post-processing depends on whether the attacker
aims to obtain the key or exfiltrate the entire IPE memory.

4.3 IPE Memory Access Gadgets (Phase 3)

A ROP gadget is a security exploit that allows an attacker
to execute code in the presence of code protection mecha-
nisms [16, 38]. For TI’s IPE, there is no context switch gate-
way between calls from untrusted code to trusted code. We
observe that an attacker has the capability to branch/jump to
any instruction inside the IPE code without breaching the IPE
security. Taking inspiration from ROP, we devise an interrupt-
and data-oriented exploit for memory access purposes, which
we call Interrupt-Oriented Programming (IOP). Interrupt-
oriented Bugdoor Programming (IOBP) [43] first introduced
the idea of IOP in the context of complete read/write access
locked microcontrollers. However, these IOBP gadgets are
rare in real-world firmware. The fundamental idea of our IOP
is that if we setup the registers for a specific IPE instruction,
branch directly to that IPE instruction, wait for it to complete
execution, interrupt execution before the following instruction
executes, and look at the results in the attacker’s ISR, we get
a Turing-complete set required for return-oriented program-
ming [16, 38]. Register-indirect addressing mode instructions
in the IPE code that directly modify the value of a destination
register are ideal candidates for memory exfiltration as these
instructions enable the attacker to read an IPE memory loca-
tion by modifying the memory address value in the source
register, followed by a readout of the value returned in the
destination register. The same is true for register-based mem-
ory store instructions. Henceforth, we refer to this class of
instructions as IOP gadgets.

8 The first step of arbitrary IPE memory access is to find

an IOP gadget. 9 Next, the attacker injects code into the
non-IPE memory that sets up the timer module with a counter
value, allowing the execution of the targeted instruction to
complete. The malicious function also writes the desired IPE
segment base address to the source register of the instruction.
Then the program jumps to the IOP gadget inside the IPE
zone. After execution of the gadget instruction(s), the timer
module interrupts IPE execution, invoking the attacker’s ISR.
In the case of exfiltration, the ISR sends the value of the
destination register to the attacker workstation and restores
the PC, SP, and SR of the program to the attacker’s control
code. For memory writes, the host uploads a new malicious
value. Repeating this process, the attacker is able read and
write the entire IPE-protected memory.

4An attacker may leverage the lack of call-site verification to control
register values and memory addresses to further disambiguate instructions as
part of Phase 1, but none of our attacks required it.

Platform MSP430FR5994 MSP432P401R

ISA MSP430 CPUX ARMv7-M
NV Memory Type FRAM Flash
NV Memory Size 256 KB 256 KB

Max Clock Frequency 16 MHz 48 MHz
IP Encapsulation Yes Yes
UART Interface Yes Yes
Timer Module Yes Yes

Table 1: RIPencapsulation target platforms.

Algorithm 1 Interrupt-based side-channel routine for exfil-
trating IPE process register states

1: ...Set timer ISR routine...
2: i← 0
3: T IMER_COUNT ← 0
4: while i ̸= DESIRED_DUMPS do
5: T IMER_COUNT ← T IMER_COUNT +1
6: ...Set timer and UART parameters...
7: ...Start timer counter...
8: ...Enable interrupts...
9: CALL IPE_Function()

10: // Secure process gets interrupted
11: ...Copy all core registers to unprotected memory...
12: ...Copy saved state to UART TX Buffer...
13: i← i+1
14: ...Reset SP, SR and PC registers...
15: end while

5 RIPencapsulation Implementation

We implement and evaluate RIPencapsulation on Texas In-
struments MSP430FR5994 and MSP432P401R launchpads.
Table 1 details the devices’ relevant specifications. Since the
MSP430 and MSP432 are based on different instruction sets,
there are some implementation differences in RIPencapsula-
tion on the two microcontrollers; §6 covers theses differences.

5.1 Capturing IPE Register State

RIPencapsulation’s interrupt-based side-channel procedure
transfers the single-cycle register state dumps to the attacker’s
machine. Algorithm 1 provides the details of RIPencapsula-
tion’s side channel routine. MSP430FR5994 comes with two
asynchronous general-purpose timer modules, each with four
operating modes, and supports multiple captures/compares.5

The three operating modes besides Stop mode are – Up,
Continuous, and Up/down; they have similar behavior: the
timer counts to a value before overflowing and restarting the

5We use the timer module instead of the watchdog timer because it has
finer-grain control over timer interval ranges and supports interrupt intervals
as low as one clock cycle.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 121

Source
Operand

Destination Operand

Rm PC x(Rm) TONI &TONI

Rn ✓ ✓ ✓ × ×
@Rn ✓ ✓ ✓ × ×

@Rn+ ✓ ✓ ✓ × ×
#N - - - × ×

x(Rn) ✓ ✓ ✓ × ×
EDE × × × × ×

&EDE × × × × ×

Table 2: MSP430 decoded instructions. EDE and TONI are
generic labels and have no special meaning. Certain instruc-
tions cannot be guessed accurately as there is ambiguity when
the source operand is an immediate value or label (-).

count. It generates interrupts when the timer counter over-
flows or reaches the capture/compare register value, de-
pending on the operating mode.

After setting up the timer parameters, we start the timer and
enable interrupts. Then we branch to the IPE code, where the
timer interrupts it, invoking the interrupt service routine (ISR).
Inside the ISR, we copy the latent IPE state from the register
file and sent it to the workstation via the UART. Next, the ISR
restores PC, SP, and SR to the attacker’s state machine code,
where we reset the timer parameters and restart the counter
with the incremented TIMER_COUNT value so that the device
goes one cycle deeper into the IPE code.

5.2 Reverse Engineering and Heuristics
MSP430 consist of the 27 implemented instructions of the
MSP430 CPU [46]. Besides this, some MSP430 devices also
support additional CPUX instructions that are used when a
greater than 16-bit address space is required. The instruc-
tions are categorized into three types based on the operand
sizes: byte, word, and 20-bit. The MSP430 instructions sup-
port seven different addressing modes. Table 2 summarizes
the various source and destination addressing modes that the
MSP430 instruction set architecture supports and highlights
the instructions RIPencapsulation is able to guess correctly.
RIPencapsulation successfully decodes the instructions that
use register/indexed/indirect register mode source and desti-
nation operands. It can also decipher the indirect autoincre-
ment mode instructions, where the source operand is @Rn+.
In contrast to the indirect register mode instructions, these
instructions increment the source register value by 1, 2, or 4
depending on whether the operand size is byte, word, or 20-bit
respectively. It is important to note that these four types of
instructions constitute the bulk of the assembly in our bench-
marks. We are unable to decipher instructions with symbolic
or absolute addressing mode source or destination operands

as they are IP encapsulated and cannot be directly modified to
attacker-controlled non-IPE address locations for disambigua-
tion. Also, we do not consider guesses for instructions with
immediate mode source operand and register/indexed/indirect
register mode destination operand in our evaluation of de-
coded assembly instructions, as it is ambiguous whether the
source operand is an immediate value or a value stored in
some IPE symbol or absolute address.

Algorithm 2 Sorting algorithm for register mode instructions
1: i← 0
2: while i ̸= TOTAL_DUMPS−1 do
3: if PC[i+1]−PC[i] ̸= 0 then
4: if Rm[i+1]−Rm[i] ̸= 0 then
5: Rdest ← Rm
6: end if
7: if Rdest [i+1]← f (Rdest [i],Rn[i]) then
8: Rsource← Rn
9: OPERAT ION = f

10: end if
11: end if
12: i← i+1
13: end while

Algorithm 2 details the sorting algorithm for register mode
instructions where the source and destination operands are
register contents. For indexed or indirect register mode in-
structions, the source or destination operand contains a reg-
ister value used as a pointer to the actual operand value. Al-
gorithm 3 highlights the procedure for identifying these in-
structions. Before branching to the suspected instruction, the
attacker sets all the general-purpose registers (GPRs) to con-
trolled non-IPE memory addresses. Based on the addressing
mode, the suspected instruction will modify either the corre-
sponding destination register or the memory address value it
points to. Observing which register or memory address value
changes, we guess the destination operand and its addressing
mode (register/indexed/indirect). Analyzing the new value
at the destination location and comparing it with the older
GPR values, we are able to figure out the source operand, its
addressing mode, and the operation performed. For instance,
a "MOV @R10, R15" loads the value at the memory address
pointed by R10 to R15. For indexed instructions, we perform
multiple tests with different memory address inputs to get a
complete resolution, as we also need to identify the offset to
the address value stored in the register operand. Besides this,
we also perform multiple tests to disambiguate unintended
clashes between operations. For instance, XOR between 0xFE
and 0x00 produces the same output as MOV with 0xFE.

Single operand instructions such as PUSH, POP, CALL, and
RETI modify the stack and have unique effects on the stack
pointer, giving away their identity. We also perform heuristic
analysis on the obtained register dumps to clarify the victim
program assembly state better. Figure 3 illustrates the register

122 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 3: Register state plot of a decrementing loop-counter showing the change of R12 register with the PC.

Algorithm 3 Routine for identifying indexed and indirect
mode instructions

1: ...Set timer ISR routine...
2: i← 0
3: T IMER_COUNT ←CYCLES_REQUIRED
4: ADDR← SUSPECT ED_INST RUCT ION
5: while i ̸= NUMER_OF_T EST S do
6: ...Set timer and UART parameters...
7: ...Start timer counter...
8: ...Enable interrupts...
9: ...Set all GPRs to controlled memory addresses...

10: JUMP ADDR
11: // Secure process gets interrupted
12: ...Copy all core registers to unprotected memory...
13: ...Copy saved state to UART TX Buffer...
14: i← i+1
15: ...Reset SP, SR and PC registers...
16: end while

state plot of a decrementing loop-counter program. Here the
R12 register holds the counter value decremented at the end
of each loop. The return of the program counter to the lower
memory address signifies JUMPing back to the start of the loop.
We interpret PC value discontinuities which do not modify the
SP as JUMP instructions.

5.3 IPE Memory Exfiltration

Instructions which use indexed/indirect register mode
source operand are ideal for exfiltrating the IPE memory.
However, any indexed/indirect register value also works as
we modify the memory address pointed to by that register

Algorithm 4 MSP430 IP exfiltration routine using IOP gadget
1: ...Set timer ISR routine...
2: i← 0
3: T IMER_COUNT ←CYCLES_REQUIRED
4: ADDR← IPE_START −OPERAND_SIZE
5: while i ̸= DESIRED_DUMPS do
6: ...Set timer and UART parameters...
7: ...Start timer counter...
8: ...Enable interrupts...
9: ADDR← ADDR+OPERAND_SIZE

10: Rsource← ADDR
11: JUMP IOP_Gadget
12: // Secure process gets interrupted
13: ...Copy Rdest value to unprotected memory...
14: ...Copy saved state to UART TX Buffer...
15: i← i+1
16: ...Reset SP, SR and PC registers...
17: end while

to some attacker-controlled memory location. After the at-
tacker identifies an IOP gadget, they inject malicious code
that writes the IPE segment base address to the source reg-
ister of the victim instruction and branches to it. Following
the timer interrupt, the ISR transmits the saved destination
operand containing the IPE memory value over the UART.
The malicious code then increments the victim address before
the ISR transmits the next destination operand value to the
attacker’s machine. Algorithm 4 details RIPencapsulation’s
MSP430 IP exfiltration routine using the IOP gadget.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 123

6 RIPencapsulation on MSP432

We also test the efficacy of RIPencapsulation on MSP432 with
the Cortex-M4 Flash-based microcontroller MSP432P401R.
This device has a different ISA, different system-on-chip, and
different non-volatile memory, so by showing that RIPencap-
sulation works for the MSP432, we show that the flaws in
TI’s IPE are fundamental.

6.1 CPU Halts Inside IPE Zone

MSP432 IP Encapsulation has some key differences in its
implementation, besides the fact that it is only configurable
using the bootloader (due to Flash vs. FRAM differences).
MSP432 IPE is more secure in that it disables all kinds of
CPU halts inside the IPE zone. The SYSCTL security control
monitors all debug accesses from the DAP (debug) port inside
the IPE zone. In fact, SYSCTL does not permit any CPU
halts inside the IPE zone, including breakpoint addresses
pointing inside the IPE memory (unlike MSP430 IPE). Even
with this precaution, we find that we are able to trigger timer
interrupts inside the IPE zone. Thus, like for the MSP430,
we use timer interrupts to build our attack, however, there are
some differences in the interrupt handler routine.

6.2 Return from Interrupt Handler

The setup procedure for timer interrupts is the same as on
the MSP430. However, the working of interrupts is slightly
different. On the MSP432, all interrupts and exceptions are
handled by the Nested Vectored Interrupt Controller (NVIC).
When the NVIC detects that an interrupt signal is HIGH, it
changes the state of the interrupt to pending. Interrupts remain
pending until the processor enters the interrupt service routine
(ISR), upon which the NVIC changes the interrupt status to
active. When the interrupt is serviced by the ISR, the pro-
cessor loads an EXC_RETURN value stored in the link register
(LR) to the program counter (PC). In our test code using timer
interrupts, an EXC_RETURN value of 0xFFFFFFE9 is loaded
into PC, which returns to the original thread using the state
from the main stack pointer (MSP). On return from the ISR,
the NVIC changes the interrupt status from active to inactive.
As such, when we try to replicate RIPencapsulation on the
MSP432 by jumping to the malicious code, like we do on the
MSP430, the interrupt status remains active, and the NVIC
does not allow re-entry into the ISR even when the timer inter-
rupt becomes pending again. To resolve this, we exit the ISR
using the EXC_RETURN value. So, instead of jumping directly
to the malicious code, we write the malicious return state
on the MSP. This way, when the EXC_RETURN value is loaded
into the PC, the NVIC changes the interrupt status to inactive
and the processor returns to the malicious code instead of
the original thread, where we reset the timer interrupts and

Algorithm 5 MSP432 IP exfiltration routine using IOP gadget
1: ...Set timer ISR routine...
2: i← 0
3: T IMER_COUNT ←CYCLES_REQUIRED
4: ADDR← IPE_START −OPERAND_SIZE
5: while i ̸= DESIRED_DUMPS do
6: ...Set timer and UART parameters...
7: ...Start timer counter...
8: ...Enable interrupts...
9: Rsource_STORE← 0X695A

10: Rdest_STORE← SY S_SECDATA_UNLOCK
11: Rdest_BRANCH← LOAD_INST RUCT ION_ADDR
12: ADDR← ADDR+OPERAND_SIZE
13: Rsource_LOAD← ADDR
14: JUMP IOP_Gadget
15: // Secure process gets interrupted
16: ...Stop timer and clear interrupt flags...
17: ...Copy Rdest_LOAD value to unprotected memory...
18: ...Copy saved state to UART TX Buffer...
19: i← i+1
20: ...Write malicious return address to MSP...
21: end while

increment the timer counter for single-step execution of the
victim IPE code.

6.3 Clearing Interrupt Flags
Even though the program control returns to the malicious
code upon completion of the ISR, as we desire, we observe
that the program immediately re-enters the ISR, not executing
any victim code. We discover that this is happening because
the interrupt signal stays asserted even after completion of the
ISR. The NVIC detects the asserted signal and immediately
changes the interrupt status to pending, leading to re-entry
inside the ISR. Clearing the interrupt flags de-asserts the
interrupt signal and the NVIC waits for the next timer interrupt
upon completion of the ISR.

6.4 Unlocking Read Access
Exfiltrating the data from the MSP432 IPE region is

not so straightforward. The attacker must unlock data ac-
cess each time the control goes inside the IPE zone. If we
try to jump to an arbitrary load instruction inside the IPE
zone without unlocking the data access first, the processor
throws an exception. Writing 0x695A to the memory-mapped
SYS_SECDATA_UNLOCK register unlocks the data access for
the IPE region writing to that register (since MSP432 allows
the creation of up to four isolated IPE regions). To bypass this,
we need to construct a more sophisticated read IOP gadget.
Algorithm 5 details RIPencapsulation’s MSP432 IP exfiltra-
tion routine using the IOP gadget. In our implementation, we

124 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Optimization Instructions Reveal key Contains IOP
Level decoded bits? Gadget?

-O0 60.5% ✓ ✓
-Og 66.6% ✓ ✓
-O1 68.4% ✓ ✓
-O2 68.4% ✓ ✓
-O3 68.4% ✓ ✓
-Os 67.9% ✓ ✓

-Ofast 68.4% ✓ ✓

Table 3: Test cases with different compiler optimizations for
AES (tiny AES). The second column depicts the percentage
of assembly instructions we are able to reverse engineer after
Phase 2.

jump inside the IPE zone to a store instruction to write the
unlock value to the memory-mapped SYS_SECDATA_UNLOCK
register followed by an indirect register branch instruction to
branch to the actual load instruction which we then use to
exfiltrate the IPE firmware. The attacker is capable of lever-
aging other sophisticated IOP gadgets to perform this read
exploit.

7 Evaluation

We evaluate RIPencapsulation against four commodity cryp-
tographic algorithms, namely AES (tiny AES), SHA256
(saddi), SHA256 (gladman), and RSA (codebase). We se-
lect these specific benchmarks in order to evaluate RIPencap-
sulation across different forms of cryptographic algorithms
like symmetric-key and public-key cryptography and cryp-
tographic hashing. We compile all benchmarks using the
open-source MSP430 GCC toolchain developed by Texas
Instruments [47], testing them against a range of optimization
levels. Our evaluation answers the following questions:

• Are cryptographic implementations generally suscepti-
ble to the RIPencapsulation attack?

• What effect does the compiler optimization level have
on the vulnerability of these cryptographic implementa-
tions?

• How long does it take to carry out the RIPencapsulation
attack?

• Is IPE vulnerable across device types?

7.1 AES
Our static analysis results show that the AES implementation
leaks key bits to the registers in its KeyExpansion function.
At optimization levels -O1 and above, the KeyExpansion
function is embedded inside the AES_init_ctx function. All
the instructions leaking the key bits are of the form MOV.B
@Rn, Rm. The destination registers in these instructions leak

Optimization Instructions Reveal ‘pt’ Contains IOP
Level decoded bits? Gadget?

-O0 59.4% ✓ ✓
-Og 56.7% ✓ ✓
-O1 53.9% ✓ ✓
-O2 49.7% ✓ ✓
-O3 50.1% ✓ ✓
-Os 53% ✓ ✓

-Ofast 50.1% ✓ ✓

Table 4: Test cases with different compiler optimizations for
SHA256 (saddi). The second column depicts the percentage
of assembly instructions we are able to reverse engineer after
Phase 2.

the last four bytes of the secret key and all the remaining
round keys. Reverse engineering the AES secret key using
the round keys is a deterministic process, and literature exists
describing the same [19]. We take the second-round key and
the last four bytes of the secret key to obtain the original
128-bit key using the following formula:

If i%4 ̸= 0,

ωi−4 = ωi⊕ (ωi−1)

Else,

ωi−4 = ωi⊕ sbox(shi f t(ωi−1)),

followed by XOR of ωi−4’s 1st byte with Rcon[j]

Here ωi is the ith word in the complete AES key. sbox(x)
represents the byte substitution using the S-Box lookup table,
shi f t(x) is a cyclical shift of the bytes of ωi, and Rcon[j] is
the round constant for round j, whose key we reverse engineer
here. This would be the first round in our case. It is also worth
mentioning that the -O0 optimization level assembly reveals
the secret key location in the stack. Assemblies produced
at all optimization levels contain an instruction of the form
MOV.B @Rn, Rm. We use them as IOP gadgets to exfiltrate
the AES IPE code and data. Table 3 summarizes the results
for our AES-128 implementation.

7.2 SHA256
Table 4 highlights the results of the RIPencapsulation attack
on saddi SHA256 implementation. Not only do all the assem-
blies leak the plaintext location to the registers, but also all the
plaintext bits. The plaintext bits are leaked in the SHA256Guts
function, which is embedded inside the sha256_update func-
tion at optimization levels -O1 and above. The instructions
containing the leaking registers are word instructions, and

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 125

Optimization Instructions Reveal ‘pt’ Contains IOP
Level decoded bits? Gadget?

-O0 59.2% ✓ ✓
-Og 60.9% ✓ ✓
-O1 58.3% ✓ ✓
-O2 60.4% ✓ ✓
-O3 60.7% ✓ ✓
-Os 57.7% ✓ ✓

-Ofast 60.7% ✓ ✓

Table 5: Test cases with different compiler optimizations for
SHA256 (gladman). The second column depicts the percent-
age of assembly instructions we are able to reverse engineer
after Phase 2.

Optimization Instructions Reveal key Contains IOP
Level decoded bits? Gadget?

-O0 58.3% ✓ ✓
-Og 58.4% ✓ ✓
-O1 57.3% ✓ ✓
-O2 54.3% ✓ ✓
-O3 54.3% ✓ ✓
-Os 60.8% ✓* ✓

-Ofast 54.3% ✓ ✓

Table 6: Test cases with different compiler optimizations for
RSA (codebase). The second column depicts the percentage
of assembly instructions we are able to reverse engineer after
Phase 2. *Readout from the stack is required for some bits
of the private key.

the plaintext bytes are present in reverse order within each
word as the memory model that MSP430FR5994 uses is little
endian. All our SHA256 assemblies contain instructions of
the form MOV.W x(Rn), Rm. We use them as IOP gadgets to
exfiltrate our SHA256 IPE code and data.

We also evaluate RIPencapsulation on the gladman
SHA256 implementation. Table 5 summarizes its evaluation
results. All assemblies of this SHA256 implementation leak
the plaintext bits to the registers inside the sha_end1 function.
The compiled code also contains a prologue instruction inside
the calling function for SHA256, which performs a SUBA op-
eration on the stack pointer. We bypass this instruction and, as
such, include it in our calling routine for the IP-encapsulated
SHA256 function. Assemblies produced at all optimization
levels contain IOP gadgets that look like MOV.W @Rn, Rm.

7.3 RSA
The codebase RSA implementation is the smallest code of
all the benchmarks evaluated in this paper. Table 6 summa-

rizes the evaluation results for our RSA implementation. As-
semblies produced at optimization levels -O0, -Og, and -O1
store the private key location in the stack and leak the private
key bits to the registers inside the modexp function, which
is called by the rsaDecrypt function. Level -O2, -O3, and
-Ofast leak both the private key location and the key itself
to the general-purpose registers inside the rsaDecrypt func-
tion. The -Os assembly stores the private key location in
the stack and only partially leaks the private key bits to the
registers inside the modexp function. The assembly directly
leaks the first two words to the registers but accesses the next
two words in the BIS.W x(SP), R12 instruction, which per-
forms an OR between the two operands. Since OR is lossy, we
cannot reverse-engineer the operands from the result of the
operation. So, we need to read out the last two words of the
private key from the stack. The -Os optimization assembly
contains an IOP gadget of the form MOV.W @SP, R12, that is
used to exfiltrate the private key bits from the stack. The -O0
level produces assembly with a prologue consisting of a PUSH
operation on the stack followed by a SUBA operation on the
stack pointer. All other assemblies of RSA contain only the
SUBA operation on the stack pointer in the calling function.

7.4 Attacking Real Firmware

-Opt O0 Og O1 O2 O3 Os Ofast

IOP Gadget? ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 7: Test cases with different compiler optimizations for
a flight controller GPS/GPRS tracker.

While cryptographic algorithms are a natural target in
TEEs, we demonstrate the generalizability of our exploit
on real-world firmware. To this end, we use an existing
GPS/GPRS tracker application from a drone flight con-
troller [6]. We verify that this application is vulnerable to
RIPencapsulation attacks as it contains several indirect load
and store instructions which serve as our IOP gadgets. Table 7
shows that assemblies produced at all optimization levels con-
tain IOP gadgets. Indirect load instructions serve as read IOP
gadgets which enable the exfiltration of all the IPE protected
code and data. We also verify the presence of indirect store
instructions in the IPE code which serve as write IOP gadgets.
Such write IOP gadgets give the attacker the ability to plant
bugs in the GPS/GPRS tracker code.

7.5 Attack Time

IPE exfiltration rate is characterized by the delay in transmit-
ting the data packets to the external device over the UART
communication channel. At a baud rate of 115200 and clock

126 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

frequency of 1 MHz, it takes 10 seconds on average to ob-
tain the register states leaking the second round key of the
tiny AES encryption process. Saddi SHA256 directly leaks
the plaintext bits to the register states in under 75 seconds
for the -O0 optimization level, whereas -Ofast optimized
code leaks the plaintext in 23 seconds. Although the entire
gladman SHA256 register state exfiltration process takes the
longest time due to its large code size (2x in size compared to
saddi SHA256 and 4x compared to codebase RSA), it leaks
the plaintext bits to the registers in roughly the same amount
of time as saddi, ranging from 30 to 70 seconds, with the -O0
level assembly being the most time-consuming. Codebase
RSA is the simplest benchmark of all and leaks the private
key to the registers within 5 seconds. However, since -Os
optimized RSA code requires exfiltration of some key bits
from the stack, Phase 3 is necessary and the attacker must
use an IOP gadget for exfiltrating the private key. In general,
we are able to receive 10,000 dumps over the UART channel
in under 2 minutes. The time taken to execute Phase 2 of the
attack depends on the attacker’s approach to analyzing the
exfiltrated register state. To accelerate Phase 2, we automate
the reverse engineering process on our workstation.

7.6 MSP432 Results
We were able to replicate all of the attacks from the MSP430
on the MSP432. Even though the MSP432 is a newer ISA
with a more security-oriented system-on-chip, the RIPencap-
sulation is easier on the MSP432 due to its Thumb architec-
ture set, which predominantly uses register mode operations.
Thus, the reverse engineering capability of RIPencapsulation
on MSP432 increases to 80% without Phase 3.

7.7 Write Exploit
Besides leaking the IPE memory to the outside world, spe-
cific IOP gadgets are also able to write to the IPE region,
giving the attacker the power to modify the IPE code and
possibly get access control over it that way. This breaks
the integrity and authenticity guarantees of code and data
inside the IPE region. Register direct/indirect addressing
mode instructions in the IPE code with register indirect
destination addressing are ideal candidates for such an ex-
ploit as they allow deploying a payload to any desired IPE
memory location. For the MSP430 instruction set these in-
structions look like MOV Rn, x(Rm), MOV @Rn, x(Rm), MOV
x(Rn), x(Rm), MOV Rn, x(SP) and many more variations
of the same. We find that all our MSP430 benchmarks contain
one of these instructions across all compiler optimizations.
Meanwhile, the MSP432 uses Flash for its non-volatile mem-
ory hence we need the Flash Controller for writes. However,
MSP432 IPE only allows storing code and constants in its
IPE region and the Flash Controller is disabled inside the IPE
zone.

8 Mitigation Strategies

We find two fundamental shortcomings in Texas Instruments’s
(TI’s) IP Encapsulation (IPE) design, which make it vulnera-
ble to RIPencapsulation. First, it does not clear the IPE state
on context switches to non-IPE execution. This enables the
attacker to invoke an Interrupt Service Routine (ISR) outside
the IPE zone but retain access to the latent state of IPE execu-
tion through the register file. Secondly, IPE has no call site
verification. This allows the attacker to jump anywhere inside
the IPE zone, opening the door to control- and data-oriented
attacks. Even though TI recommends the IP author to disable
interrupts from non-IPE code as a secure coding practice, we
show that this is futile as attackers can bypass any protections
in the IPE zone by jumping to the instruction right after. Thus,
a defense must address both the fundamental IPE flaws.

“The privacy of register and on-chip caches should be
protected by the trusted computing base from software at-
tacks" [42]. In the AEGIS Architecture [42], a secure context
manager (SCM) stores all the process’s register values in the
SCM table on interrupt and clears the register states before in-
voking the ISR so that the ISR cannot access the internal state
of the secure process. The SCM restores the register states
from the SCM table on return from the ISR. Clercq et al. [20]
provide a hybrid implementation of AEGIS for MSP430 de-
vices that improves SANCUS [34]. When extended to include
clearing the residual state present in the shared memory re-
gion of SRAM (e.g., the stack), AEGIS-based system should
address the problem of latent IPE state upon unexpected IPE
exits—at the cost of hardware modification.

The lack of valid call site verification allows the attacker
to orchestrate data-oriented control flow attacks. Almost 90%
of exploit-based software attacks use some form of Return-
Oriented Programming (ROP) [27]. Address Space Layout
Randomization (ASLR) is a well-known class of code secu-
rity techniques [22, 26, 28, 52, 53] that randomize the memory
address of a program’s sections in order to reduce the chances
of code reuse exploits that rely on knowing the exact location
of process objects. Not only does ASLR entail a heavy over-
head, but it also supposes a higher level of ability to intrude
into the code and introspect its insecure uses. The facilities
available on MSP430 and MSP432 devices do not lend them-
selves to an efficient implementation of such a high overhead
approach.

A better defense for control- and data-oriented attacks is a
call gateway veneer. In the embedded space, ARM TustZone
enforces this gateway veneer by introducing a Non-Secure
Callable (NSC) memory region. All calls from a normal pro-
gram to a secure function must go through the gateway veneer
residing in the NSC memory. Calls to invalid entry points in-
side the secure code cause a hardware exception which always
traps into a secure state. Fault injection [44] and short-term
data remanence [32] attacks break the security guarantees
of ARM TrustZone by pausing the trusted execution in a

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 127

controlled manner to reveal its internal state.
We believe that ARM TrustZone, combined with fault

attack protection, in conjunction with AEGIS-style secure
context-switching represents the best solution to defend IoT-
class devices against RIPencapsulation. Given the many trade-
offs at play for ultra-constrained devices like MSPs, we be-
lieve that the design, implementation, and evaluation of such
a defense is important future work that this paper motivates.

9 Related Work

Trusted Execution Environments (TEEs) are process isolation
and secure storage solutions that are finding their way into
IoT-class embedded devices. Recent work indicates a rise in
the trend of secure process preemption or exception-based
exploits, which infer the program’s internal state by studying
their effects on the unprotected areas of the compromised
device. In light of this trend and given RIPencapsulation is a
TEE attack, we cover attacks against other TEEs on devices
ranging from desktop-class to embedded devices.

9.1 Interrupt-based Attacks
SGX-Step [49] is an interrupt-based side-channel attack on
Intel Software Guard eXtensions (SGX), which builds on
previous kernel-level SGX exploits that preempt the enclave
execution to leak information from page tables (PTE) [51,54]
or branch prediction units [29]. SGX-Step exploits the Ad-
vanced Programmable Interrupt Controller (APIC) timer to
interrupt the secure process at several-instruction granular-
ity in order to gain fine-grained control of the side channels,
improving the temporal resolution of previous enclave pre-
emption attacks [24, 29, 51, 54]. Nemesis [50] extends the
SGX-Step by using an interrupt-based side channel to leak
instruction-level information from TEE execution. Nemesis
requires precisely timed interrupts to capture per-instruction
latency differences.

RIPencapsulation extends the idea of SGX-Step and Neme-
sis to IoT class devices. RIPencapsulation provides single-
cycle granularity and uncovers 100% of TEE-protected mem-
ory by combining interrupt-based attacks with data-oriented
attack patterns. RIPencapsulation also demonstrates an ex-
ploit to modify the TEE-protected code and data for its target
device class. Note that, the compiler-based defenses that re-
duce the effectiveness of SGX-Step, apply to heavyweight
TEEs and rely on detecting high rates of page faults or in-
terrupts by leveraging the x86 Transitional Synchronization
eXtensions (TSX) and as such do not apply to the IoT-class
devices targeted by RIPencapsulation [17, 41].

The Page-Fault Weird Machine [10] has a similar high-level
idea to Interrupt-Oriented Programming (IOP) for using inter-
rupted execution with pre-existing gadgets in the device to get
useful computation. However, RIPencapsulation’s IOP differs
in the context of gadget aims, target device class, and security

violation. We use gadgets on the firmware level (instruction
set architecture) as opposed to microarchitecture gadgets. Our
target class devices are bare-metal resource-constrained mi-
crocontrollers as opposed to x86 full-fledged desktop class
devices (for example our device class does not have virtual
memory). Finally, we use our gadgets to create read/write
exploits and break the security of TEEs on our target devices.

Interrupt-oriented Bugdoor Programming (IOBP) [43] is
conceptually the same as RIPencapsulation’s IOP. The differ-
ence lies in the adversarial setting. IOBP exploits require
some a priori knowledge to find useful IOBP gadgets in
read/write access blocked microcontrollers. We too consider
our protected firmware (IPE protected library) to be read/write
access blocked, however a part of the memory is unlocked
to read/write accesses. This is a realistic threat model for
IP theft/imitation in cases such as flight controllers, where
a competitor (potential adversary) uses the licensed security
critical library (flight controller) APIs in their development
code. When IOP is used in such a context, a) we do not re-
quire a priori knowledge of the IPE firmware, as we can use
IOP gadgets to dump CPU states and reverse engineer par-
tial information about the underlying code, enough to detect
read/write IOP gadgets and b) find more usefully exploitable
IOP gadgets for protected state extraction/modification.

9.2 Debugger-based Attacks

Shedding too much Light on a Microcontroller’s Firmware
Protection [36] analyzes the security of protected Flash mem-
ory on STM32 microcontrollers. The paper uses fine-grain
CPU resets and a vulnerability in the Flash protection logic
protocol to extract the entire firmware by accessing iterative
addresses of the firmware via the debugger and capturing
latent Flash data in unprotected SRAM. While this attack
requires optical fault injection and chemical etching to ma-
nipulate particular Flash bits, RIPencapsulation can leverage
their controlled CPU resets in the event that timer interrupts
are not available.

Brosch [14] presents a firmware dumping technique for an
ARM Cortex-M0 SoC that uses the debugger to manipulate
the CPU register values at single-step intervals. By single-
stepping through the program code and observing the CPU
register changes, they find load instructions to exfiltrate the
protected memory. Their attack is based on the debugger’s
single-stepping capability inside protected memory, which
is prevented by TI’s IPE implementation. RIPencapsulation
side-steps TI’s protection through a combination of interrupts
and data-oriented attacks, achieving single-step IPE execu-
tion. Additionally, RIPencapsulation presents a write exploit,
breaking the integrity and authenticity of firmware inside the
protected memory.

128 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

9.3 Blind Attacks

Code reuse attacks require varying degrees of information
on the target. Blind attacks aim to create exploits when nei-
ther the source nor binary code is available. Half-Blind at-
tacks [23] presents a stack overflow/ROP gadget attack to gain
privileged access in the bootstrap loader (BSL) of an MSP430
device, which can then be used to extract the firmware image.
Hacking Blind [11] is a more generic and advanced version
of half-blind attack which is fully blind and presents tech-
niques to find and chain multiple, different gadgets. While
these attacks do not work with TI’s IPE protection, they serve
as inspiration for attacking unknown binaries with RIPencap-
sulation.

9.4 Other attacks on TEEs

CipherLeaks [31] is a ciphertext side-channel attack on
AMD’s Secure Encrypted Virtualization (SEV) TEE. SEV
protects Virtual Machines (VM) from an untrusted hyper-
visor by using hardware-enforced memory encryption. On
domain switch between the guest and host VM, SEV stores
the encrypted register states in the Virtual Machine Save Area
(VMSA). The CipherLeaks attack model assumes that the
attacker has read access to the VMSA but no write access.
CipherLeaks uses the hypervisor to monitor specific offsets
of the VMSA to infer changes of any 16-bit plaintext. Non-
Automatic VM Exits (NAE) expose some plaintext register
values to the hypervisor. In essence, the attacker triggers an
NAE to collect a dictionary of plaintext-ciphertext pairs for
these registers stored in the VMSA. Cipherleaks then uses this
plaintext-ciphertext dictionary to crack the entire OpenSSL
RSA key in 410 rounds with 100% accuracy. In order to patch
this vulnerability, AMD added randomization in stored regis-
ter values when encrypting and saving them into the VMSA
during VMEXITs [1]. This fix is available in the AMD SEV-
SNP TEE. Unfortunately, encrypting the register file is not
a complete defense against RIPencapsulation, as the ability
to enter the IPE zone at arbitrary points allows the attack to
create IPE zone altering and exfiltration gadgets.

CLKscrew [44] is an energy management-based exploit
that manipulates the voltage and frequency of the processor
to induce faults. Dynamic Voltage and Frequency Scaling
(DVFS) is an energy management scheme, ubiquitous on
commodity devices, that trades off processing speed for en-
ergy savings. CLKscrew is able to break the confidentiality
and integrity of ARM TrustZone using software-only con-
trol of the regulators. In essence, the attacker increases the
frequency of the processor beyond the limits dictated by the
operating voltage to induce instability and halt the TrustZone
process from the normal world. Performing Differential Fault
Analysis on the correct and faulty decrypted plaintext pair, the
attacker is able to infer the AES key. We envision an exploit
that combines the Interrupt-Oriented Programming described

in this paper with CLKScrew to get very fine-grained control
over fault injections inside the TEE.

During preparation of the camera-ready version of this
paper, we discovered a paper citing a previous version of
this paper that leverages our arbitrary read/write/execute ac-
cess to IPE-protected memory to strengthen their attack on
IPE [33]. While the practical variant of their attack relies
heavily on RIPencapsulation, they provide their own unique
capabilities worth noting. Their main contribution is an attack
primitive that they refer to as controlled call corruption
which exploits a microarchitecture bug in the IPE access con-
trol mechanism. If an adversary sets the SP to some protected
memory address, followed by a call to the IPE zone, the
return address is pushed to the stack pointer location, subvert-
ing the IPE access control check. Their defensive landscape
analysis agrees with ours that a hybrid solution is required for
a comprehensive defense.

10 Conclusion

Texas Instruments MSP IP Encapsulation (IPE) aims to pro-
vide confidentiality of data stored inside the IP-encapsulated
memory zone; this includes proprietary code and keys. RIPen-
capsulation breaks this guarantee by leveraging two funda-
mental drawbacks in MSP430 IPE design: residual state on
context switches and lack of call site verification. We exploit
these flaws to create an interrupt-based side channel to gain
cycle-accurate control IPE execution and exfiltrate all IPE
secrets. The evaluation shows that this attack works using
production tools and settings of popular open-source crypto-
graphic implementations.

This paper shows that Trusted Execution Environment
(TEE) designers must pay careful attention to unexpected
TEE entries and exits. Without guarding the entries to IPE
code, attackers can bypass defenses and create gadget-like in-
struction sequences. Without cleaning up residual state shared
across security domains on every possible exit, attackers have
access to secret-revealing side-channel information. These
requirements extend beyond any single TEE implementation,
serving as necessary conditions for ensuring code and data
confidentiality by all TEEs.

Acknowledgments

The project depicted is sponsored by the Defense Advanced
Research Projects Agency. The content of the information
does not necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred.
Approved for public release; distribution is unlimited. This
material is based upon work supported by the National Sci-
ence Foundation under Grant No. 2240744.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 129

References

[1] AMD Secure Encryption Virtualization (SEV) In-
formation Disclosure. https://www.amd.com/
en/resources/product-security/bulletin/
amd-sb-1013.html. Accessed: 2023-4-14.

[2] IoT market size, trends and global forecast to 2032.
https://www.thebusinessresearchcompany.com/
report/iot-global-market-report. Accessed:
2023-4-13.

[3] MSP430 microcontrollers. https://www.ti.
com/microcontrollers-mcus-processors/
msp430-microcontrollers/overview.html.
Accessed: 2023-4-13.

[4] Embedded Survey: The Current State of Embed-
ded Development. https://www.embedded.com/
embedded-survey/, September 2016. Accessed: 2023-
7-18.

[5] 2019 Embedded Markets Study, 2019.

[6] GPS/GPRS tracker. https://github.com/
wudidashao/tracker, 2019.

[7] Microcontroller (MCU) Market Anal-
ysis. https://www.utmel.com/
blog/categories/microcontrollers/
microcontroller-mcu-market-analysis, February
2022. Accessed: 2023-2-3.

[8] RIPencapsulation Code. https://github.com/
FoRTE-Research/RIPencapsulation, 2023.

[9] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul An-
uar, Abdullah Gani, Ejaz Ahmed, Muhammad Shiraz,
Steven Furnell, Amir Hayat, and Muhammad Khurram
Khan. Man-at-the-end attacks: Analysis, taxonomy, hu-
man aspects, motivation and future directions. Journal
of Network and Computer Applications, 48:44–57, 2015.

[10] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and
Sean W Smith. The Page-Fault Weird Machine: Lessons
in Instruction-less Computation. In 7th USENIX Work-
shop on Offensive Technologies (WOOT 13), 2013.

[11] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David
Mazières, and Dan Boneh. Hacking blind. In 2014
IEEE Symposium on Security and Privacy, pages 227–
242. IEEE, 2014.

[12] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th
ACM symposium on information, computer and commu-
nications security, pages 30–40, 2011.

[13] Erik Bosman and Herbert Bos. Framing signals-a return
to portable shellcode. In 2014 IEEE Symposium on
Security and Privacy, pages 243–258. IEEE, 2014.

[14] Kris Brosch. Firmware dumping technique for an ARM
Cortex-M0 SoC. https://blog.includesecurity.
com/2015/11/, November 2015. Accessed: 2023-7-27.

[15] David Cerdeira, Nuno Santos, Pedro Fonseca, and San-
dro Pinto. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted tee systems. In 2020
IEEE Symposium on Security and Privacy (SP), pages
1416–1432. IEEE, 2020.

[16] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM
conference on Computer and communications security,
pages 559–572, 2010.

[17] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter,
and Yinqian Zhang. Detecting privileged side-channel
attacks in shielded execution with Déjá Vu. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 7–18, 2017.

[18] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar,
and Ravishankar K Iyer. Non-control-data attacks are
realistic threats. In USENIX security symposium, vol-
ume 5, page 146, 2005.

[19] William R Cordwell. Aes key recovery from round
keys. Technical report, Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2008.

[20] Ruan De Clercq, Frank Piessens, Dries Schellekens, and
Ingrid Verbauwhede. Secure interrupts on low-end mi-
crocontrollers. In 2014 IEEE 25th International Confer-
ence on Application-Specific Systems, Architectures and
Processors, pages 147–152. IEEE, 2014.

[21] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. Smart: secure and minimal archi-
tecture for (establishing dynamic) root of trust. In Ndss,
volume 12, pages 1–15, 2012.

[22] Stephanie Forrest, Anil Somayaji, and David H Ackley.
Building diverse computer systems. In Proceedings.
The Sixth Workshop on Hot Topics in Operating Systems
(Cat. No. 97TB100133), pages 67–72. IEEE, 1997.

[23] Travis Goodspeed and Aurélien Francillon. Half-blind
attacks: mask ROM bootloaders are dangerous. In Pro-
ceedings of the 3rd USENIX conference on Offensive
technologies. USENIX Association, pages 6–6, 2009.

130 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1013.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1013.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1013.html
https://www.thebusinessresearchcompany.com/report/iot-global-market-report
https://www.thebusinessresearchcompany.com/report/iot-global-market-report
https://www.ti.com/microcontrollers-mcus-processors/msp430-microcontrollers/overview.html
https://www.ti.com/microcontrollers-mcus-processors/msp430-microcontrollers/overview.html
https://www.ti.com/microcontrollers-mcus-processors/msp430-microcontrollers/overview.html
https://www.embedded.com/embedded-survey/
https://www.embedded.com/embedded-survey/
https://github.com/wudidashao/tracker
https://github.com/wudidashao/tracker
https://www.utmel.com/blog/categories/microcontrollers/microcontroller-mcu-market-analysis
https://www.utmel.com/blog/categories/microcontrollers/microcontroller-mcu-market-analysis
https://www.utmel.com/blog/categories/microcontrollers/microcontroller-mcu-market-analysis
https://github.com/FoRTE-Research/RIPencapsulation
https://github.com/FoRTE-Research/RIPencapsulation
https://blog.includesecurity.com/2015/11/
https://blog.includesecurity.com/2015/11/

[24] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In USENIX Annual Technical Conference, vol-
ume 17, 2017.

[25] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 969–986. IEEE, 2016.

[26] Vivek Iyer, Amit Kanitkar, Partha Dasgupta, and Raghu-
nathan Srinivasan. Preventing overflow attacks by mem-
ory randomization. In 2010 IEEE 21st International
Symposium on Software Reliability Engineering, pages
339–347. IEEE, 2010.

[27] Ayman Jarrous. Anti-ROP: A moving target
defense. https://securityintelligence.com/
anti-rop-a-moving-target-defense/, September
2016. Accessed: 2023-4-14.

[28] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun
Xu, and Peng Ning. Address space layout permutation
(aslp): Towards fine-grained randomization of commod-
ity software. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 339–348.
IEEE, 2006.

[29] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In USENIX Security Symposium, volume 19,
pages 16–18, 2017.

[30] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yinqian Zhang. A
systematic look at ciphertext side channels on amd sev-
snp. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 337–351. IEEE, 2022.

[31] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. Cipherleaks: Breaking constant-
time cryptography on amd sev via the ciphertext side
channel. In USENIX Security Symposium, pages 717–
732, 2021.

[32] Jubayer Mahmod and Matthew Hicks. Sram has no chill:
exploiting power domain separation to steal on-chip
secrets. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1043–1055,
2022.

[33] Cas Magnus Marton Bognar, Frank Piessens, and
Jo Van Bulck. Intellectual Property Exposure: Subvert-
ing and Securing Intellectual Property Encapsulation in

Texas Instruments Microcontrollers. In 33rd USENIX
Security Symposium, 2024.

[34] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul
Strackx, Anthony Van Herrewege, Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede, and Frank Piessens.
Sancus: Low-cost trustworthy extensible networked de-
vices with a zero-software trusted computing base. In
22nd USENIX Security Symposium (USENIX Security
13), pages 479–498, 2013.

[35] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep
Rattanavipanon, Michael Steiner, and Gene Tsudik.
{VRASED}: A verified {Hardware/Software}{Co-
Design} for remote attestation. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1429–1446,
2019.

[36] Johannes Obermaier and Stefan Tatschner. Shedding too
much light on a microcontroller’s firmware protection.
In 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[37] Katie Pier. MSP Code Protection Features. Texas In-
struments, December 2015.

[38] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Ste-
fan Savage. Return-oriented programming: Systems,
languages, and applications. ACM Transactions on In-
formation and System Security (TISSEC), 15(1):1–34,
2012.

[39] Mohamed Sabt, Mohammed Achemlal, and Abdelmad-
jid Bouabdallah. Trusted execution environment:
what it is, and what it is not. In 2015 IEEE Trust-
com/BigDataSE/Ispa, volume 1, pages 57–64. IEEE,
2015.

[40] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561,
2007.

[41] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-SGX: Eradicating controlled-channel attacks
against enclave programs. In NDSS, 2017.

[42] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten
Van Dijk, and Srinivas Devadas. Aegis: Architecture
for tamper-evident and tamper-resistant processing. In
ACM International Conference on Supercomputing 25th
Anniversary Volume, pages 357–368, 2003.

[43] Samuel Junjie Tan, Sergey Bratus, and Travis Good-
speed. Interrupt-oriented bugdoor programming: A
minimalist approach to bugdooring embedded systems
firmware. In Proceedings of the 30th Annual Computer
Security Applications Conference, pages 116–125, 2014.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 131

https://securityintelligence.com/anti-rop-a-moving-target-defense/
https://securityintelligence.com/anti-rop-a-moving-target-defense/

[44] Adrian Tang, Simha Sethumadhavan, and Salvatore J
Stolfo. Clkscrew: Exposing the perils of security-
oblivious energy management. In USENIX Security
Symposium, volume 2, pages 1057–1074, 2017.

[45] Texas Instruments. MSP432P4xx Family Technical Ref-
erence Manual, December 2016. Rev. E.

[46] Texas Instruments. CPUX, March 2018. Rev. F.

[47] Texas Instruments. MSP430 GCC Toolchain, June 2020.
Rev. F.

[48] Texas Instruments. MSP430FR58xx, MSP430FR59xx,
and MSP430FR6xx Family User’s Guide, April 2020.
Rev. P.

[49] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A practical attack framework for precise enclave
execution control. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, pages 1–6,
2017.

[50] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary cpu interrupt logic. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 178–195, 2018.

[51] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In Proceedings of the 26th USENIX
Security Symposium, pages 1041–1056. USENIX Asso-
ciation, 2017.

[52] David Williams-King, Graham Gobieski, Kent Williams-
King, James P Blake, Xinhao Yuan, Patrick Colp,
Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. Shuffler: Fast and deployable con-
tinuous code re-randomization. In OSDI, volume 10,
pages 3026877–3026906, 2016.

[53] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K Iyer.
Transparent runtime randomization for security. In 22nd
International Symposium on Reliable Distributed Sys-
tems, 2003. Proceedings., pages 260–269. IEEE, 2003.

[54] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In 2015 IEEE Sympo-
sium on Security and Privacy, pages 640–656. IEEE,
2015.

132 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Reverse Engineering the Eufy Ecosystem: A Deep Dive into Security Vulnerabilities
and Proprietary Protocols

Victor Goeman
victor.goeman@kuleuven.be

DistriNet, KU Leuven
3001 Leuven, Belgium

Dairo de Ruck
dairo.deruck@kuleuven.be

DistriNet, KU Leuven
3001 Leuven, Belgium

Tom Cordemans
tom.cordemans@kuleuven.be

DistriNet, KU Leuven
3001 Leuven, Belgium

Jorn Lapon
jorn.lapon@kuleuven.be

DistriNet, KU Leuven
3001 Leuven, Belgium

Vincent Naessens
vincent.naessens@kuleuven.be

DistriNet, KU Leuven
3001 Leuven, Belgium

Abstract
The security of Internet-of-Things (IoT) is a growing concern,
with IP cameras like those from Eufy promising robust secu-
rity through military-grade encryption. While Eufy’s claims
are strong, independent verification of these claims is crucial
to confirm the integrity and resilience of its systems against
potential vulnerabilities and extend the lessons learned to the
broader IoT landscape, ensuring practices keep pace with
technological advancements.

We unveiled the inner workings and security measures in
the Eufy ecosystem through reverse engineering, particularly
focusing on its smart doorbell and Homebase, and evaluated
the proprietary peer-to-peer protocol and encryption methods.

This paper offers a comprehensive analysis of the Eufy
ecosystem, offering insights into the broader implications of
IoT device security. Our investigation revealed critical vul-
nerabilities within the ecosystem, which were responsibly
disclosed and confirmed by Eufy. The vulnerabilities could
compromise end-user privacy by allowing unauthorized ac-
cess to the end users’ private network within seconds. A key
tool in our research was dAngr, a symbolic debugger we de-
veloped to facilitate the reconstruction of encryption keys
in intricate cross-architecture binaries, thus enabling a more
efficient reverse engineering process.

The research revealed vulnerabilities in Eufy’s ecosystem,
leading to serious privacy and security concerns, and suggests
effective countermeasures, stressing the need for continued
vigilance in IoT device security.

1 Introduction

Smart doorbells have experienced a remarkable surge in sales,
reaching a market value of USD 16.2 Billion in 2023, and
are expected to grow at an annual rate of 33.4% from 2023
to 2030 [1]. To give an idea of their popularity, Amazon sold
more than 400.000 smart doorbell devices and accessories
during the pandemic [34]. Smart doorbells empower end users
to monitor and interact with people at their doorstep remotely,

enhancing both convenience and physical security. However,
this surge in popularity has brought concerns regarding se-
curity, safety and privacy to the forefront, forcing doorbell
manufacturers to invest in bolstering their security measures.

Eufy [12], a rapidly emerging player, is a part of Anker
Innovations. Anker is one of the leading electronics brands
in America. Founded in 2016, Eufy is already among the ten
most popular IP Camera brands in 2022 [23],

Eufy distinguishes itself with its emphasis on security, of-
fering secure local storage (as it eliminates the need for cloud
storage subscriptions), as well as promising military-grade
encryption and end-to-end encryption [13].

In this work, we present an in-depth security analysis of the
Eufy ecosystem which was studied for more than 9 months.
Our research is based on the Eufy Homebase 2 in combina-
tion with the Eufy video doorbell 2K. However, our findings
extend beyond those devices, affecting a whole array of Eufy
devices (including its IP Cameras). Our security analysis
includes several techniques including network analysis, sym-
bolic execution, static and dynamic analysis of the firmware
and reverse engineering. This combined effort of analysis
methods enabled us to dissect the complete ecosystem. We
exposed a series of critical vulnerabilities across various areas
of the ecosystem, encompassing the peer-to-peer protocol,
authentication, networking, encryption and the pairing pro-
cess. These vulnerabilities pose a substantial threat to the
ecosystem’s confidentiality, integrity and availability.

We present a major attack on the Eufy Homebase, exploit-
ing distinct vulnerabilities, and endangering the network and
privacy of all end users using the Eufy ecosystem. The only
requirement of the attack is being in proximity (i.e., up to
miles away using specialized hardware) of an Eufy device
and the attack takes no longer than 20 seconds. No network
connection is required. The result of the attack is unrestricted
access to the end user’s home network. Prompt and thorough
remediation of these vulnerabilities was of the utmost impor-
tance considering the gravity and scale of the attack.

Furthermore, we present dAngr, a debugger built upon the
symbolic execution engine angr [40]. It simplifies and en-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 133

hances the manual analysis of cross-architecture binaries,
abstracting away the complexities of the symbolic execution
engine. dAngr was used to reconstruct the media AES en-
cryption keys allowing us to recover all video and media
sent from the Homebase. Additionally, the ease with which
the encryption keys for proprietary peer-to-peer communica-
tion can be recovered undermines the assertion of providing
military-grade encryption.

To address these vulnerabilities and shortcomings, we pro-
pose countermeasures and best practices for each specific
issue within the Eufy ecosystem. Following responsible dis-
closure, Eufy has acknowledged the identified vulnerabilities,
and we have provided input to mitigate the various vulnera-
bilities.
Outline. In the remainder of this paper, we start an overview
of the Eufy Ecosystem in Section 2. Section 3 presents the
attacker model and methods used for the attacks performed
in Section 5. Countermeasures are presented in Section 6
followed by Section 7 with general insights and recommenda-
tions. Related work is discussed in Section 8, and we conclude
with Section 9.

2 The Eufy Ecosystem

The Eufy ecosystem encompasses several components. First,
the smart devices, including the smart- doorbells, lights, cam-
eras, vacuums, entry sensors and more, are connected through
a closed and dedicated wireless Eufy network with the Eufy
Homebase, a central component of the Eufy ecosystem. This
core element of the ecosystem acts as a local hub for the
management of connected smart devices and handles encryp-
tion, networking, firmware updates, and connects to the cloud
through the end users’ wired local network. The end user
can interact with the Homebase using a mobile App which
connects to the Homebase (either through the cloud or via the
local network). Alternatively, the Eufy web application can
connect to the Homebase through the cloud. The Eufy ecosys-
tem studied in this work is depicted in Figure 1. During our
study, we focus on two Eufy devices, namely the Homebase 2
and the video doorbell 2K. However, our findings go beyond
these devices, affecting the complete Eufy ecosystem.
Before explaining the details of the various findings and vul-
nerabilities, we provide essential context for understanding
and interpreting the subsequent findings and vulnerabilities
related to the Eufy ecosystem.

2.1 Video Streaming and Communication

Commands and video streams are transferred at various points
in the ecosystem. Commands consistently use a proprietary
peer-to-peer protocol (P2P). Video streams use the P2P proto-
col or other protocols depending on the network location and
application retrieving the stream.

2.1.1 Doorbell Communication

The doorbell solely communicates with the Homebase, and
this communication occurs over a dedicated hidden Eufy Wi-
Fi network. The traffic is secured at the data link layer using
wireless communication security. Authentication to this net-
work is established using WPA2-PSK, a pre-shared key of
eight characters generated during the initial setup of the Eufy
Homebase. This wireless network’s SSID follows a pattern
consisting of the string "OCEAN_XXXXXX" where XXXXXX
represents the last 24 bits of the Homebase’s MAC address.

Pairing mechanism. The pairing mechanism, as depicted
in Figure 2, leverages soundwaves as an out-of-band channel
to pass sensitive information to the doorbell. The Eufy App
instructs the end user to bring the doorbell in close proximity
to the Homebase. Next, the Homebase emits a soundwave
carrying both SSID and WPA2-PSK of the dedicated Eufy
network. The doorbell retrieves the information contained in
the soundwave and connects to the Eufy wireless network.
The Homebase and doorbell are subsequently connected via a
wireless network protected with a pre-shared key. Afterwards,
the Homebase and doorbell exchange their P2P connection
information (serial number, licenses, etc.) through the Eufy
network, and store this information in flash memory, complet-
ing device pairing. Finally, the Homebase and doorbell can
exchange commands and pass the camera feed.

Streams and messages. Within this wireless network, var-
ious streams and messages are transmitted in the clear. P2P
commands allow, for instance, to notify the end user when
someone rings the doorbell, or to control the camera of the
doorbell. We identified a UDP stream containing a continuous
stream of JFIF video data and a smaller TCP stream contain-
ing JFIF image data. JFIF can be considered as a successor
of the original JPEG format [16].

Once the doorbell and the Homebase are paired, both JFIF
streams are persistent, even when the user is not watching
the feed. Upon reaching the Homebase, the feed undergoes
analysis by a motion detection and facial recognition module.
Upon detecting movement, the Homebase promptly notifies
the user and subsequently encrypts and stores the video and
images locally. Optionally, the user may choose to backup the
encrypted media in the cloud.

2.1.2 Communication with the End User

Eufy employs several methods to communicate with the end
user depending on the location and application in use. While
commands are always sent encrypted over the P2P protocol
using a symmetric P2P AES key, the protocols used for trans-
mitting video and images between the Homebase and the
end user differ. Figure 3 illustrates the scenarios, which are
discussed below in more detail.

134 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

ISP

TAP
Homebase

DoorbellBSSID: OCEAN_XXXXXX
with WPA2-PSK

Indoor adversary Outdoor adversary

 Local network of the end user Dedicated network of the EUFY ecosystem

Internal
End User

External
End User

Figure 1: Eufy ecosystem

Mobile App. The first scenario, depicted at the bottom of
Figure 3, occurs when the end user uses the mobile App to
view the stream. The Homebase employs the proprietary peer-
to-peer protocol (P2P) over UDP to communicate the media
to the App. The JFIF stream is encrypted with a symmetric
P2P AES key. When the end user uses the mobile App to view
the stream while connected to the end user’s home network
(i.e., not using the Internet), communication between both
devices is direct. When, on the other hand, the user wants to
connect remotely (i.e., a direct connection to the Homebase is
infeasible), communication between both devices is relayed
through a custom cloud server.

Web viewer. When the end user uses the web viewer (see at
the top of Figure 3) independent of the user’s location, media
is sent using Web Real-Time Communication (WebRTC) [2],
an open-source web-based application technology. It is pri-

Homebase
OCEAN_XXXXXX Doorbell

Sound wave (SSID,WPA2-PSK)

Connect (SSID,WPA2-PSK)

DHCP

Exchange P2P connection information

Connection established

Figure 2: Pairing process

marily used for establishing real-time, peer-to-peer commu-
nication. It is always encrypted using vetted algorithms (e.g.,
DTLS, SRTP [7, 39]) and leverages standard protocols for
NAT Traversal (ICE, STUN and TURN [18, 33, 38]) using
another cloud server.

The more secure WebRTC is only used in the communi-
cation between the Homebase and the web application. The
mobile App always relies on the proprietary P2P protocol
to propagate the media stream, and as we will discuss in
Section 5.4, these AES keys are insecure, endangering the
confidentiality of the ecosystem.

2.2 Homebase Firmware

To understand the functioning of the Homebase, its firmware
was thoroughly analyzed. The platform uses a MIPS architec-
ture, running a custom Linux built with Buildroot [3]. Multi-
ple binaries developed by Eufy are present on the firmware.
The main binary called home_security handles all major
functionalities of the Homebase. This binary has multiple
instances running concurrently.

3 Attack Vectors & Methods

Our analysis involved various techniques to analyze the Eufy
ecosystem. Studying the device from distinct angles allows
for a comprehensive analysis of the ecosystem. Our research
encompasses three methods of analysis: network analysis,
firmware analysis and symbolic analysis. While we conducted
an in-depth analysis of the smart doorbell and Homebase, the
mobile App and web viewer were only used during network
analysis.
Attacker model: In our analysis, we consider two types of
adversaries, as illustrated in Figure 1:

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 135

UDP JFIF Stream

TCP JFIF Stream

P2P Commands

Smartphone
Eufy App

HomebaseEufy
Doorbell

Eufy Web
Viewer

Encryted P2P Commands

Encrypted WebRTC Stream

Encrypted UDP JFIF Stream

Figure 3: Video streaming in the Eufy ecosystem

1. The outdoor adversary operates within reach of the wire-
less Eufy network but is not connected to either the Eufy
or the end user’s home network.

2. The indoor adversary has access to the home network,
including the Homebase. It allows interception and ma-
nipulation of communication between the Homebase
and other devices in the home network, including the
Internet gateway.

Network analysis. The initial phase of our investigation
involves the analysis of the network traffic within the Eufy
ecosystem. The objective is to uncover the ecosystem’s func-
tionality, employed protocols, interactions with external en-
tities, and identification of cleartext communication. This
process involves capturing and analyzing the communication
between the Homebase and the home gateway along with
testing man-in-the-middle attacks (MITM) from an indoor
adversary’s perspective. From an outdoor adversary’s stand-
point, the Eufy wireless communication is analyzed using a
WiFi dongle.

Firmware analysis - reverse engineering. The process
of firmware analysis involves disassembling the devices and
scrutinizing debug ports and other hardware peripherals that
may facilitate firmware extraction. Upon successful extrac-
tion, the firmware undergoes a series of tests, encompass-
ing both automated and manual analysis. Initially, automated
analysis of the firmware is conducted using EMBA, an open-
source firmware analyzer [24].

Following the automated analysis, an exhaustive manual
analysis is performed, selecting proprietary, custom-built bi-
naries for in-depth inspection. To facilitate this reverse en-
gineering step, we employ Ghidra, an open-source reverse
engineering tool [11]. Leveraging the Ghidra decompiler to
provide insights into the program logic, focusing on areas
such as the proprietary peer-to-peer protocol, authentication

mechanisms, encryption and decryption processes, and cloud
communications.

Selective execution. During our analysis of the key genera-
tion mechanism employed for encrypting media, challenges
arose during the decompilation of the embedded MIPS binary.
Ghidra faced difficulties in generating proper decompiled
code for the more intricate functions. While other decom-
pilers may have better support for these types of embedded
binaries, we opted for a distinctive approach. We aimed to
execute the embedded code to recreate the media keys. How-
ever, executing binaries of an embedded device presents its
own set of challenges. In the upcoming Section, we introduce
the use of dAngr to execute a specific function with chosen
inputs and retrieve the media encryption key.

4 Selective and Platform Independent Execu-
tion with dAngr

Running a selected function in an embedded binary allows for
several opportunities for testing and analysis. Potential ben-
efits include analysis of the behaviour of the function under
various conditions, testing for vulnerabilities, and automated
testing procedures. In this Section, we discuss existing tech-
niques’ benefits and issues and introduce a novel technique.

4.1 Existing Approaches
Selective execution of embedded functions. The aim of
selective execution is to execute a function in a binary of an
embedded device, leveraging known inputs to reconstruct, for
instance, AES encryption keys. Several techniques exist, each
with specific shortcomings. The most challenging approach
would be to reconstruct a binary by extracting code using
objdump. However, this approach is complex and may face
difficulties, particularly when dealing with global static vari-
ables. A simpler approach involves using a debugger such

136 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

as radare2 or gdb to execute the required function with the
chosen inputs [31]. While with radare2 this may still be
complex, requiring the correct memory and register settings,
calling a function with chosen arguments in gdb is straight-
forward.

Unfortunately, a major disadvantage of these solutions is
platform dependency. Both binary reconstruction and debug-
gers require a matching platform and dependencies (e.g.,
libc) to execute the function.

Platform-dependent execution. Most solutions require ei-
ther full or partial execution of the binary, necessitating a
platform and libraries that match the binary. This requirement
poses challenges, particularly for binaries from IoT devices
that may use less common platforms. Executing, for instance,
a MIPS binary on a standard platform is not straightforward.

To overcome the challenges some solutions propose to
run a debugger on the physical device. However, access to
such a device may not always be feasible. Another approach
involves using a hardware platform with a matching archi-
tecture, but this requires a bootable binary that simulates all
peripheral initialization and hardware communication, which
can be complex and time-consuming. Likewise, emulating the
hardware platform using, for instance, QEMU, in which either
the binary or the full device may be emulated [29], suffers
from this same issue.

An alternative approach is to perform binary lifting into
an intermediate representation (IR) and either recompile to
another platform or perform virtual execution (interpretation)
of the IR code. However, both approaches suffer from issues
with simulating actual devices.

Our approach. To address the shortcomings of the existing
solutions, we combine both Selective execution and Platform-
agnostic execution using dAngr, a debugger for angr (see
Section 4.2). Platform independence is achieved through the
execution of VEX IR. Furthermore, to overcome the configu-
ration and hardware initialization challenges, we use selective
execution to simulate only the necessary functionality to exe-
cute the selected functions.

Table 1 summarizes the main points of comparison between
the traditional methods for selective and platform-independent
execution of embedded functions versus our approach using
dAngr. The dAngr approach combines the advantages of both
supporting selective execution and being platform agnostic,
offering a more streamlined and versatile solution for testing
and analyzing embedded devices.

4.2 dAngr: a Debugger for angr

To support our research, we developed dAngr, a debugger
built on top of angr. angr is a symbolic execution engine
implemented in Python. angr handles the complexities of

binary lifting and interpretation, while the debugger inter-
faces (a command line, and JSON interface) simplify its use,
requiring minimal knowledge about the underlying engine.

While for our attack we use dAngr for concrete execution
(i.e., with concrete inputs instead of symbolic inputs), it also
supports symbolic execution. The debugger contains common
debugging commands such as adding, removing, enabling/dis-
abling breakpoints, stepping and running. Note that since we
use angr as an interpreter, stepping occurs per basic block
instead of per instruction as in other debuggers. Similar to
other debuggers, the run command performs execution until
the next breakpoint or the end of the binary. However, in the
case of symbolic execution, the debugger may stop if a fork-
ing state is reached, allowing the user to choose the branch to
take.

Moreover, dAngr supports setting and retrieving registers
or memory at specified addresses. Instead of starting the ex-
ecution upon the binary’s entry point, it is possible to relay
the start of the execution to a selected address. Combining
memory and registry control with starting execution at a cho-
sen address enables selective execution of a function in the
binary.

However, this approach still requires some in-depth knowl-
edge of the platform e.g., to specify the function ar-
guments using the correct registers and calling conven-
tion. To simplify executing functions and make our tool
more accessible, we support three additional commands:
set_function_prototype, to specify the function proto-
type, set_function_call to set the debugger to the function
address and correctly set the arguments, and get_return_value
to retrieve the return value with the type as specified in the
prototype. Listing 1 shows an example of the commands to
execute a function with specified arguments.

Listing 1: dAngr example commands for calling a function
func with arguments� �
> set_function_prototype int func(char*, int)
> set_function_call func({"abc",2)
> run
> get_return_value� �

In addition, testers can pass hooks to the debugger to re-
place or implement specific functions called inside the exe-
cuted code. This feature was used to debug the binary and
attest certain parameters.

This novel approach simplifies the execution process and
aligns seamlessly with our goal of recovering the key genera-
tion algorithm, allowing the execution of a specific function
with concrete inputs without the need for an exhaustive and
complex setup.
dAngr is made open-source and available on GitHub 1.

1https://github.com/angr-debugging/dAngr

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 137

https://github.com/angr-debugging/dAngr

Table 1: Comparison of Execution Approaches

Attribute/Approach Existing Techniques dAngr Approach
Selective Execution Requires binary reconstruction or

debugger (e.g., radare2, gdb)
Enables execution of specific func-
tions with chosen inputs

Platform Independence Highly dependent, requiring match-
ing platform and libraries

Utilizes VEX IR for platform inde-
pendence

Complexity of Setup Complex, may involve binary recon-
struction or setting memory and reg-
isters

Simplifies simulation, avoiding deep
knowledge of platform specifics

Simulation of Hardware/Peripheral Setup Requires accurate simulation or em-
ulation for execution

Only simulates the necessary func-
tionality for executing selected func-
tions

Suitability for Testing and Analysis Limited by platform dependency
and setup complexity

Enhanced by ease of executing spe-
cific functions and platform indepen-
dence

Approach to Execution Direct execution on hardware or
through emulation/simulation

Virtual execution of intermediate
representation (IR) code

5 Attacking and Identifying Vulnerabilities in
the Ecosystem

After analyzing the Eufy doorbell and Homebase, we uncov-
ered several flaws that undermine the security of the system.
In the following, we introduce the steps taken during the
analysis of the Eufy Homebase and smart doorbell.

5.1 Firmware Acquisition

To gain access to the Eufy ecosystem, our first step involves
acquiring the firmware.

Homebase. For the Homebase, the firmware acquisition
process commences with the disassembly of the device, reveal-
ing UART debug ports. Connecting a USB-to-TTL reader to
these ports, we discovered a password-protected UART shell.
However, during the boot process, a temporary recovery shell
can be accessed without authentication. Within this recovery
shell, we analyzed the filesystem, unveiling the password of
the root user. This password coincided with the WPA2-PSK
securing the dedicated Eufy network, highlighting a vulner-
ability in password reuse. These particular flaws had been
previously identified by other researchers conducting security
analysis on the Eufy ecosystem [5]. By using this password,
we gain entry to the password-protected UART shell, thereby
accessing the system. Consequently, the firmware is obtained
through a firmware dump in this shell.

Doorbell. Unlike the Homebase, the doorbell lacks obvious
UART ports. However, upon carefully analyzing the hardware
of the doorbell, SPI NOR flash is detected. Reading this NOR
flash chip is accomplished using an SPI reader. Specifically,

we used a CH314a flash programmer to acquire the firmware
of the doorbell [22].

While the doorbell primarily handles only essential func-
tions, such as capturing and sending media to the Homebase,
the Homebase manages more intricate operations such as
media processing, encryption and authentication. Hence, the
majority of the security analysis is concentrated on the Home-
base. Notably, an automated analysis of the firmware using
EMBA did not uncover any significant vulnerabilities.

5.2 Cracking the WPA2-PSK

To understand the construction of the WPA2-PSK key, we
located, through reverse engineering, the responsible func-
tions in the home_security binary found in the Homebase
firmware.

The WPA2-PSK of the Homebase has a fixed length of
eight characters, comprising both lowercase letters, uppercase
letters, plus, slash and numbers (64 possible values), yielding a
theoretical entropy of approximately 48 bits. This is already a
weak key strength to protect wireless network communication.
Nevertheless, as shown in Table 2, brute-forcing a key with
only commodity hardware may take several years.

However, weaknesses in the key generation process lower
the entropy of the WPA2-PSK even further. The WPA2-PSK
has a one-to-one mapping with a non-secret variable (i.e., the
serial number), making it susceptible to exploitation. Learning
or brute-forcing the serial number compromises the security
of the dedicated Eufy network.

The serial number can be discovered in at least three distinct
ways: it is printed on the device casing, it can be intercepted
in the LAN or WAN network when using the App, and it can
be brute forced.

The WPA2-PSK is derived by (1) computing the MD5 hash

138 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

T8010P 000 0000000
(1) (2) (3)

Figure 4: Serial number format

of this serial number, (2) encoding the result using Base64,
and (3) taking the first eight bytes.

WPA2-PSK = B64(MD5(serial))[0 : 7]

An example of a key generation is shown below:

SN = T 8010P23224107B0
MD5(SN) = c4732772b06902 f e671689e f 92946675

B64(MD5(SN)) = Y zQ3MzI3NzJiMDY 5MDJmZTY...

WPA2-PSK = B64(MD5(SN))[0 : 7]
= Y zQ3MzI3

To brute force the WPA2-PSK by guessing serial numbers,
we can take advantage of the structure of the serial num-
ber. Upon scrutinizing the serial numbers of over 30 distinct
Homebases found online, a pattern emerges. Figure 4 shows
the various parts of the serial number: (1) device-type identi-
fiers, (2) batch identifiers and (3) device-specific identifiers.

The device-type identifiers are uniform across distinct
Homebases. The only difference we detect is the character fol-
lowing the device-type identifiers (i.e., T8010), which may be
either "P" or "N". For the batch identifiers, we consistently ob-
serve numbers ranging from zero to three. The device-specific
identifiers consist of seven hex numbers. However, extrapo-
lating the entire range based on only 30 analyzed devices
may lead to inaccuracies. Therefore, we adopt a pragmatic
approach, considering both a best-case (BC) scenario, where
only batch identifiers are considered to be in the range of zero
to three, and a worst-case (WC) scenario, where batch iden-
tifiers consist of all possible hexadecimal values. While the
former, using our commodity hardware takes approximately
11 hours, the latter may need 30 days.

Upon further investigation of the WPA2-PSK key genera-
tion process, we discovered an even worse vulnerability al-
lowing the recovery of the WPA2-PSK in only 20 seconds.

A closer look at the code revealed that only the first six char-
acters of the MD5 hash affect the WPA2-PSK: by definition
of Base64 encoding, the first eight characters of the Base64
encoded string only depend on the first six characters of the
MD5 hash. To make things worse, the MD5 hash function
outputs hexadecimal characters. Hence, the WPA2-PSK is
based on only six hexadecimal characters (16 possible values
each). The example above simplifies to the following:

Possibilities Entropy (Bits) Time to crack*
WPA2PSK 648 = 2.18∗1015 48 17 years

Serial number (WC) 2∗163 ∗167 = 2.2∗1012 41 30 days
Serial number (BC) 2∗43 ∗167 = 34∗109 35 11 hours

Shortened MD5 166 = 16.8∗106 24 20 seconds

Table 2: Entropy of distinct WPA2-PSK phases
* (Using our commodity hardware testing @ ± 800K keys/sec)

SN = T 8010P23224107B0
MD5(SN) = c4732772b06902 f e671689e f ...

MD5(SN)[0 : 5] = c47327
B64(MD5(SN)[0 : 5]) = Y zQ3MzI3

= WPA2-PSK

This vulnerable key derivation process diminishes the
WPA2-PSK’s entropy to a mere 24 bits. This low entropy
allows the creation of a custom password list containing all
±16.8 million potential eight-character passwords for Eufy’s
dedicated networks. By exploiting this vulnerability, an at-
tacker can leverage a dictionary attack on the WPA2-PSK.

Exploit: Executing a brute force attack on a dedicated Eufy
network protected with a WPA2-PSK involves cracking the
four-way handshake between the client and access point (i.e.,
the Homebase). To obtain this handshake, a de-authentication
attack on the doorbell is executed [17]. Simultaneously de-
authenticating the doorbell and monitoring the wireless net-
work enables us to capture the handshake. Such attacks are
common for leveraging an offline attack on WPA and WPA2
security protocols. While brute-forcing WPA3 is more chal-
lenging, the key’s limited entropy of only 24 bits makes a
brute-force attack feasible, even in the case of WPA3.

The Aircrack-ng tool suite is employed for this pur-
pose [26]. Subsequently, the captured handshake is cracked
offline using Hashcat [30], a password-cracking tool, and our
custom password list. Using commodity GPU hardware 2,
Hashcat successfully cracks the WPA handshake within 20
seconds.
The vulnerability in the WPA2-PSK generation has been as-
signed CVE-2023-37822.

5.3 Lack of Network Security

Insecure communication. Armed with the password list
crafted earlier, the previously deemed secure dedicated Eufy
network now faces a significant threat. Engaging in wardriv-
ing for hidden wireless networks with an SSID starting with
"OCEAN_", we gain unrestricted access to the network of

2We reach about 800k tests per second using the AMD Ryzen 9 5950X,
NVIDIA RTX 3080 10GB, 64GB DDR4 3600Mhz

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 139

any Eufy Homebase 2 ecosystem. Furthermore, all commu-
nication, including commands, video streams and images,
is sent unprotected, in cleartext on this dedicated network.
Compromising the confidentiality and integrity of the Eufy
ecosystem.

Lack of isolation. Despite the insecure communication, the
most critical networking flaw of the Homebase lies in its use
as a pivot. The lack of isolation between the dedicated net-
work and the end user’s home network through the Homebase
is a significant vulnerability. Acting as a proxy, the Homebase
permits traffic to flow from the dedicated Eufy network to the
end user’s home network without any restrictions. Since the
end user lacks visibility into the dedicated Eufy network, a ma-
licious actor joining this network could go unnoticed. In such
a scenario, the complete private network of the user becomes
accessible to the outdoor attacker, turning the Eufy ecosys-
tem into an easy and stealthy entry point for adversaries into
the private networks of end users. When combined with the
vulnerabilities discussed earlier, the potential consequences
of this flaw become enormous.

5.4 Breaking the Encryption Schemes

Eufy states to ensure the users’ privacy and promises military-
grade encryption. This Section delves into the subsequent
measures taken by Eufy to achieve these goals and how we
compromised them.

AES encryption in Eufy’s ecosystem. Eufy predominantly
uses the weaker ECB version of the AES encryption as
its cryptographic foundation for data protection. Within the
ecosystem, two distinct symmetric AES encryption keys play
pivotal roles in safeguarding user information: the P2P AES
encryption key dedicated to securing P2P communication
(commands and messages), and the media key used to encrypt
media (images and videos for both storage and communica-
tion). Both the Homebase and client applications reconstruct
the AES keys using obscure key generation processes.
Before discussing the distinct key generation methods, it is
imperative to introduce the so-called PPCS identifier (also
denoted as PPCS_ID). Next to the serial number, this device-
specific identifier is stored in flash memory. It consists of
three distinct parts separated by dashes, among others, used
to derive encryption keys. The 20-character string contains
three parts: the first part consists of uppercase characters that
identify the device type, the second part is made up of unique
numbers related to the device, and the third part contains
uppercase characters. It takes the following format:

AAAAAAA−000000−BBBBB

5.4.1 Breaking Encrypted P2P Traffic

Encrypted P2P traffic exchanged between the Homebase and
the mobile App (local or remote) uses AES ECB encryption.
The AES key is created containing device-specific informa-
tion as follows:

Key = PPCS_ID[0 : 15]+ serial[9 : 15]

Here, the key is a combination of the first 16 characters of
the PPCS identifier, and the last seven characters of the serial
number. It is crucial to note that all parameters used in the
key derivation process can be observed in the network traffic
between the Homebase and the App (local or remote). This
information is transmitted in plain text. Given that all key
material is pre-shared over the same network, the encryption
of the P2P traffic brings no additional security.

5.4.2 Generating the Media Encryption Key

In the encryption of media, Eufy adopts a more intricate
method for generating the AES encryption keys. Although the
encryption of videos and images slightly differ (i.e., storage
format), the encryption key is the same. This Section focuses
on the encryption process of images to demonstrate how the
Eufy ecosystem secures its media.

Encrypted image format. Before delving into the encryp-
tion process of an image, it is essential to understand the
format of an encrypted image. An encrypted image is a file
that starts with a plaintext Eufy header containing the serial
number of the Homebase (serial) and a random value (rand).
Both are used in recovering the encryption key. The format
of the Eufy header is represented as follows:

eu f ysecurity :< serial >: 01 < rand >:

The cleartext Eufy header is succeeded by 256 encrypted
bytes, being the encrypted JFIF header. Subsequently, this
encrypted header is followed by the remainder of the unen-
crypted JFIF image. Since only the JFIF header is encrypted,
leaving the rest of the image unencrypted, there is a potential
for information leakage.

Media AES encryption key generation algorithm. The
reconstruction of the media encryption key is more com-
plex. Since the Homebase binaries do not contain code to
decrypt media, we focus on the encryption process. The pri-
mary function responsible for encrypting images is denoted
jpg_encrypt. This function first constructs the encryption
key using create_pic_code_v1, and next, encrypts the im-
age.

The generation of the media key entails three steps, de-
picted in pseudocode in Algorithm 1. First, a Homebase
unique baseCode is created based on the serial number and

140 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Algorithm 1 Critical key generation functions in the
create_pic_code_v1 algorithm (pseudo code)

1: function GETHOMEBASECODE(serial,PPCS_ID)
2: s f x = getPPCSSuffix(PPCS_ID) ▷ See Alg. 2
3: baseCode = concat(serial[0 : l],str(s f x))
4: return baseCode
5: end function
6: function GETRANDSEED(PPCS_ID)
7: s f x = getPPCSSuffix(PPCS_ID)
8: rndStr = ”01”||str(random())||str(1000− s f x)
9: seed = Obfuscate1(MD5(rndStr))

10: return (seed,rand)
11: end function
12: function CREATEIMAGEKEY(baseCode,seed)
13: h = SHA256(”01”+baseCode+ seed)
14: encKey = Obfuscate2(h)
15: return encKey
16: end function

PPCS identifier. Next, a seed is generated from the same
PPCS identifier along with a freshly generated random integer.
Finally, the encryption key is derived from the combination
of baseCode and the seed.

Both genHomebaseCode and genRandSeed use PPCS_ID
to compute a suffix s f x. Then, the baseCode is constructed
by concatenating a substring of the serial (where the length
l depends on the last byte) with this suffix. Similarly, the
seed is computed by concatenating the random integer with
a value derived from the suffix (i.e., 1000− s f x). The resul-
tant string is then hashed, followed by an obfuscation step.
This obfuscation is essentially transforming bytes. Finally, in
createImageKey, the baseCode and the seed are hashed and
again obfuscated with a custom deterministic algorithm. It is
evident that each of these steps, including the obfuscations, is
reproducible given the serial, PPCS_ID and rand are known.

5.5 Reconstructing the Media Encryption Key
Using dAngr

As outlined earlier, the intricacies involved in the encryption
key derivation pose significant challenges to manual reverse
engineering. The first attempts were ineffective due to the
complexity and inaccuracies found in the decompiled Ghidra
code. Specifically, the Ghidra decompiler encountered diffi-
culties with certain sections of the MIPS code, resulting in
unreliable decompiled output.

As discussed in Section 4.1, we adopt a novel ap-
proach to recover the encryption keys. We leverage dAngr
for a concrete and platform agnostic execution of the
create_pic_code_v1 function required to reconstruct the
key. Listing 2 shows the commands passed to dAngr to recon-
struct encryption keys given the correct inputs.

Since the binary only contains the encryption part, we use

this function to reconstruct the keys. However, in this case,
during the actual key generation, a fresh random value is
generated to create a unique key for each image. To be able
to decrypt an encrypted image, we need to reconstruct the
key given a specific random (included in the Eufy header in
the encrypted image). Therefore, we take advantage of the
hooking functionality of dAngr to replace the call to generate
a random (i.e., random) with a stub that returns the random
number included in the encrypted image.

Listing 2: dAngr commands to reconstruct a media encryption
key� �
> load_hooks hooks.py
> set_function_prototype void

create_pic_code_v1(char*, int, char*,
char*, char *)

> set_function_call create_pic_code_v1('
T8010P123DEADBEA ', 0x10, 'ZYXABCD
-456789-TSRQP', '0'*10, '0'*32)

> run
> get_string_memory 0x5000� �

In Listing 2, a function is set up and configured with the
correct parameters. The first argument is the serial number,
the third is the PPCS_ID and the final two parameters are
character arrays of 10, respectively 32 characters for the re-
turned random value and the encryption key. The first 16
characters of the latter hold the actual key. To read out the
key, we need to access the memory of the last parameter of
which the address (0x5000) is printed during debugging.

To decrypt a given image, we extract the serial and rand,
and together with the PPCS_ID, we can easily recover the
encryption key. The PPCS identifier can be intercepted from
the network traffic between the Homebase and the mobile
App.

Alternatively, we can eliminate the dependency on the
PPCS_ID. After further investigation, we successfully recov-
ered the algorithm to generate the s f x suffix derived from the
PPCS identifier (see Algorithm 2).

Algorithm 2 getPPCSSuffix(PPCS_ID)

1: s = PPCS_ID[0 : 15].split(′−′)[1]
2: s f x = int(s[0])+int(s[1])+int(s[3])+int(s[5])
3: if s f x < 5 then
4: s f x = s f x∗2
5: end if
6: return s f x

This function calculates the sum of four of the six digits
in the middle part of the PPCS identifier. Next, the result is
doubled when the sum is smaller than five, further diminishing
the already limited entropy. Thus, instead of monitoring the
network traffic and waiting for the PPCS_ID to leak, we can
opt for a brute-force approach on the parts of the PPCS_ID
being used.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 141

We simply hook the getPPCSSuffix function and gener-
ate the 480 potential s f x values output by getPPCSSuffix.
We can easily verify the correctness of a key based on the
presence of the magic bytes (i.e., 0xFFD8 for JFIF images)
in the decrypted JFIF header. Once we find a match, we also
have a valid s f x which can be used to decrypt further images.

Using this brute-force approach, we can decrypt any en-
crypted image without requiring any additional information
beyond the encrypted image itself.

The media key derivation process is clearly flawed, en-
abling an indoor attacker or the cloud server to decrypt all
media. It is important to note that other researchers indepen-
dently uncovered the encryption mechanism while reverse
engineering the mobile App [6]. Their motivation primar-
ily focused on facilitating access to the ecosystem through
open-source tools. In contrast, our objective was to identify
weaknesses in their encryption process. Notably, we achieved
this goal, even generating Eufy keys leveraging the lack of
entropy without requiring the device identifiers.

6 Countermeasures

Considering the vulnerabilities outlined in the previous sec-
tion, defining countermeasures for fortifying the Eufy ecosys-
tem is crucial. For each vulnerability, we propose countermea-
sures:

• Password reuse: Avoid reusing the WPA2-PSK. To pro-
tect the UART boot sequence, the debug port should be
disabled.

• Password has one-to-one mapping: Ensure passwords
do not have a one-to-one mapping with public variables.
These variables should be kept secret. Alternatively, pass-
words should be randomly chosen using a secure random
generator.

• Low entropy password: Although rectifying low-entropy
passwords presents a challenge. A solution would be
to discreetly transmit a new high-entropy WPA2-PSK
to each paired device after updating each Eufy device.
This must be done before changing the Wireless network,
allowing background updates without user interaction or
breaking the connection with the smart devices.

• Lack of isolation: Prevent attackers from pivoting be-
tween networks by implementing Linux iptables func-
tionality on the Homebase. The Homebase should act
solely as an Internet gateway restricting traffic to flow
between isolated networks. If necessary, only essential
ports should be forwarded.

• Cleartext traffic: Augment WPA2-PSK as a protection
mechanism with additional protection. Encrypt network
communication using established protocols such as TLS

to introduce an extra layer of security and end-to-end
encryption. This should be implemented for all commu-
nication, including P2P traffic.

• Bad encryption keys: Enhance the key derivation pro-
cess, by adopting standard and secure key derivation and
encryption schemes. Refrain from using proprietary DIY
algorithms and AES ECB mode. Furthermore, a proper
key management solution must be implemented such that
keys must not be derived from non-secret information
such as serial numbers.

Additionally, instead of only encrypting the media head-
ers, the entire payload should be encrypted.

7 General Insights & Recommendations

Conducting an in-depth security analysis has provided valu-
able insights into the Eufy ecosystem, unveiling both its vul-
nerabilities and strengths. Several key lessons can be learned
from this comprehensive examination.

To evaluate the impact of our research, we initially assessed
the alignment of the Eufy Homebase and doorbell with the
OWASP IoT Top 10 [28] before and after our investigation.
Initially, the Eufy ecosystem showcased strong compliance
with the OWASP IoT Top 10, boasting standardized AES en-
cryption and secure WPA2-PSK-protected network communi-
cation. Only an unprotected UART recovery shell and having
open UART debug ports were left unaddressed. However, as
revealed in our analysis, critical flaws in data encryption, net-
work architecture weaknesses and the use of weak guessable
passwords are uncovered. Consequently, Eufy’s standing on
the Top 10 shifted after our in-depth analysis, now failing in
several key areas.

Our analysis revealed that in IoT, particularly in the realm
of consumer IoT, security is still often treated as an af-
terthought, especially in teams lacking security expertise. This
often results in reliance on security by obscurity and do-it-
yourself (DIY) solutions.

For instance, our work revealed several weak key gener-
ation methods. Notably seeking compliance with security
standards such as EN 303 645 (ETSI Consumer IoT) may not
have been sufficient to prevent the flaws discovered in this
study. The recommendation stemming from these insights
is clear: IoT manufacturers should invest in comprehensive
IoT security training. They must adopt industry-standard, vet-
ted protocols to comply with established security standards.
Rather than resorting to custom solutions, strict adherence to
best practices is crucial.

Enforcing unique keys per device has become mandatory
for compliance with prominent security standards. In turn,
security compliance will be required to enter markets world-
wide. For instance, embedded devices can only be sold on
the EU market after having received a CE label, and demon-
strating security compliance will be part of the certifying

142 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

process from August 2024. The aforementioned requirement
– i.e. unique device keys – is imposed by the realistic attacker
model in which a malicious stakeholder with physical access
to one IoT device cannot undermine the whole ecosystem.
Well-established mechanisms and protocols exist and many
standards point to very concrete tactics (without enforcing a
specific solution or technology).

However, many developers still develop proprietary solu-
tions instead of relying on widely recognised mechanisms.
The major reason is the often recurring complex tension be-
tween security and manageability. To decrease the key man-
agement burden, obscure mechanisms are often constructed
in which keys are unique per device but can still be derived
by having knowledge of the device firmware. This implies
that an attacker with physical access to an IoT device no
longer directly undermines the security of the whole ecosys-
tem (as keys are no longer shared across devices) but can
indirectly derive the keys of other devices by inspecting the
device firmware. This is possible if an attacker has physical
access to one device and can rely on firmware inspection tools
which are becoming easily accessible. To tackle this evolution,
standards and even legislation should become stricter in the
sense that they do not only impose requirements concerning
general characteristics of the device but also on feasible and
non-feasible mechanisms to enforce it. Although this may
restrict the degrees of freedom at design and development
time and may result in more advanced key management (ulti-
mately resulting in a more expensive lifecycle), it will result
in improved security.

The community, particularly in consumer IoT, would bene-
fit from the availability of reference architectures and proof
of concepts that depict commonly encountered use cases and
scenarios. These should encompass essential aspects such
as the proper use of STUN, TURN and ICE services for re-
mote access; secure pairing of smart devices, gateways and
mobile devices; correct use and implementation of public
key infrastructure; secure update procedures; and the secure
use of cloud services and API’s. Such resources would de-
ter developers from resorting to DIY strategies and obscure
solutions.

Securing IoT devices is undoubtedly a substantial endeavor,
requiring expertise across various domains, including embed-
ded hardware and software, network security, cloud communi-
cation, and mobile or web development. The commitment to
strong security practices is essential for the sustained integrity
of IoT ecosystems.

8 Related Work

We discuss in this Section relevant and previous research and
studies that influenced our approach to analyzing the Eufy
ecosystem.

State of the art of IoT security. Costin et al. performed the
first large-scale analysis on IoT devices [10], examining over
683 firmware images, unveiling vulnerabilities on 123 distinct
products. Another large-scale analysis is done by Neshenko
et al. [25], they focus on discovered IoT vulnerabilities and
classify the various vulnerabilities and weaknesses inherent to
IoT devices. Performing new large-scale analyses has become
increasingly challenging, due to a recent trend where manufac-
turers strive to maintain the secrecy of their device’s firmware.
This approach may result in fostering security through obscu-
rity, which fails to deter attackers equipped with sufficient
resources.

In a more targeted study, Schwartz et al. analyze the secu-
rity of 16 popular IoT devices leveraging reverse engineering
techniques [41]. Their systematic application of reverse engi-
neering techniques uncovered distinct vulnerabilities, empha-
sizing the importance of this method in identifying security
weaknesses. Obermaier et al. focus on cloud-based video
surveillance systems, analyzing four distinct IP Cameras [27]
through a combination of network and firmware analysis. This
approach led to the uncovering of various vulnerabilities re-
lated to authentication, proprietary encryption algorithms and
weak certificate validation. Rondon et al. delved into the secu-
rity of E-IoT systems scrutinizing proprietary protocols used
in E-IoT settings [36]. Collectively, these studies indicate the
urgent need for enhanced security measures in IoT devices.

WPA attacks. The landscape of wireless security, partic-
ularly in the context of Wi-Fi networks, has been a subject
of extensive research and exploration. Lorente et al. scru-
tinized WPA2 password-generation algorithms in Wireless
routers and discovered that many routers used weak password-
generation algorithms [21]. Reversing the algorithms, Lorente
et al. discovered that in most algorithms known parameters
were used as input and that they had a simple deterministic
password-generation process. One of the vulnerabilities we
uncovered is similar to this work. However, we go further
than discovering a one-to-one mapping, identifying multiple
weaknesses in Eufy’s password generation algorithm.

Reversing engineering. Several studies discuss methodolo-
gies for discovering and analyzing vulnerabilities [14, 19, 20,
42]. In this related work, reverse engineering is considered
an efficient but exhaustive method for analyzing embedded
devices. Techniques for more efficient reverse engineering
and methodologies for performing a complete device analysis
are discussed. Thomas et al. present a framework to reduce
the upfront effort in analyzing and reverse engineering using
static and dynamic analysis techniques [45].

In case studies, Casagrande et al. applied reverse engineer-
ing methodologies to unveil vulnerabilities in the Xiaomi
ecosystem. Their work exposed issues in both the pairing pro-
cess and in applications developed by Xiaomi [8, 9]. In their
work, they reverse-engineered the Xiaomi companion App

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 143

and the Bluetooth Low-Energy communication. The reverse
engineering led to the uncovering of various vulnerabilities in
the pairing process of the Xiaomi Fitness tracking system and
the Xiaomi E-scooters. The vulnerabilities they discovered
are cleartext keys, unauthenticated pairing and modifying the
password without authentication. Ullrich et al. reversed the
Neato vacuum and discovered an attack leveraging weak se-
cret keys and a buffer overflow via the cloud to break the
Neato ecosystem [46]. Giese et al. reverse engineer using
hardware hacking the Amazon Echo Dot and perform IoT
forensics to uncover bad practices that lead to personal data
leakage [15]. Other examples of high-impact attacks uncov-
ered by reverse engineering are the Zigbee worm exploiting
Philips Hue lamps [37], and breaking glucose monitoring
systems thanks to weak proprietary protocols [35]. In our
research, we employ a similar methodology to uncover vul-
nerabilities, focusing on reversing the binaries, networking,
and internal operations of the Eufy ecosystem. Contrary to the
above work, we present a novel approach leveraging a new
cross-platform debugger to assist manual reverse engineering
in embedded devices.

Symbolic execution. Yadegari et al. and Banescu et al. em-
phasize symbolic execution as a potent mechanism to cir-
cumvent obfuscation techniques [4, 48]. Symbolic execution
proves invaluable in identifying weaknesses and vulnerabil-
ities. Nevertheless, symbolic execution faces its own set of
challenges, notably in the analysis of cryptographic functions,
which is inherently complex. Vanhoef et al. demonstrate that
simulating cryptographic primitives during symbolic execu-
tion can be done to find weaknesses in cryptographic func-
tions [47]. Ramos et al. develop an under-constrained sym-
bolic execution framework to analyze individual functions
rather than whole programs, bypassing several weaknesses of
symbolic execution engines [32]. Contrary to prior work, this
work leverages the binary lifting and interpretation provided
by angr to make debugging platform-independent. While our
attack only requires concrete execution, our debugger also
supports symbolic execution.

Case studies including the Eufy doorbell. P. Moore an-
alyzed the web interface of the Eufy doorbell [44]. Moore
proved that Eufy uploads images to the cloud without autho-
rization. Moore also discovered that the video stream of the
Eufy doorbell was sent unencrypted. These vulnerabilities
were confirmed and patched by Eufy, ensuring that now all
video and images are end-to-end encrypted.

M.A. Stanislav examined various security frameworks to
determine the overall security posture of internet-connected
devices [43]. An analysis was performed on 40 internet-
connected cameras. This analysis includes information gather-
ing, disassembling the device, analyzing the various interfaces
of the device, and more. Eufy is one of the cameras being

analyzed, and comes out as one of the more mature brands,
having overall good security and conforming to best practices.

The open-source community also reverse-engineered the
Eufy App and reconstructed the P2P protocol. Allowing them
to replace the App or web interface, and connect it to a home
automation system [6]. The project primarily focuses on a
specific aspect of the P2P protocol related to communica-
tion between App and Homebase. However, the P2P protocol
within the ecosystem extends further than App Homebase
communication, the communication between the Homebase
and other Eufy devices is a critical part of the P2P protocol.
To build upon and expand the existing research of the Eufy
ecosystem, we dissect the firmware of the Eufy devices and
the Eufy ecosystem internals, while actively seeking vulnera-
bilities and weaknesses.

9 Conclusion

The reverse engineering and analysis of the Eufy ecosystem
provided insights into the intricate workings of its devices.
This investigation uncovered multiple weaknesses, highlight-
ing critical areas of one of the top players in the IP Camera
domain. The core of our work involved the analysis of the
proprietary peer-to-peer protocol, dissecting the encryption
mechanisms, and understanding the internal network’s be-
haviour through a combination of reverse engineering, binary
interpretation, and network traffic analysis.

We introduce a novel approach for key reconstruction in
embedded devices. We developed dAngr a symbolic debug-
ger that augments manual reverse engineering. By leverag-
ing angr, a symbolic execution engine that implements bi-
nary lifting and interpretation of the lifted code, our tool en-
ables platform-agnostic execution of specific functions, al-
lowing us to execute isolated cryptography functions in an
embedded cross-architecture binary without a complex or
time-consuming process. We demonstrate our novel approach
by reconstructing the AES keys for media encryption in the
Eufy ecosystem.

Our findings culminated in an attack on the Eufy ecosystem
requiring no network connectivity. The sole prerequisite is
proximity to the Homebase’s dedicated network. Leveraging
two vulnerabilities uncovered during our analysis, the attack
serves as a potential entry point into the end user’s private
home network. The ease and severity of this attack deem it
highly critical. We proposed appropriate countermeasures for
each identified flaw.
Eufy has confirmed the vulnerabilities and initiated security
patches, further bolstering their security.

144 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Responsible disclosure. In June 2023, we responsibly dis-
closed all newly identified vulnerabilities to Eufy. The com-
prehensive disclosure process was conducted through Anker’s
channels. In addition to providing a detailed write-up of the
vulnerabilities, we included recommendations for effectively
mitigating these issues. A condensed version of the recom-
mended mitigations can be found in Section 6.

References

[1] MarkNtel Advisors. Smart Doorbell Mar-
ket Achieves USD 16.2 Billion 2023, Braces
for 16.7% CAGR Elevate Until 2030. https:
//www.marknteladvisors.com/research-library/
smart-doorbell-market.html, 2024.

[2] Harald T. Alvestrand. Transports for WebRTC.
RFC 8835. https://www.rfc-editor.org/info/
rfc8835, January 2021.

[3] Buildroot Association. Buildroot. https://
buildroot.org/docs.html, 2024.

[4] Sebastian Banescu, Christian Collberg, Vijay Ganesh,
Zack Newsham, and Alexander Pretschner. Code ob-
fuscation against symbolic execution attacks. In Pro-
ceedings of the 32nd Annual Conference on Computer
Security Applications, pages 189–200. ACM.

[5] Gerhard Hechenberger Bernhard Gründling and Steffen
Robertz. Sec consult - the eufycam long-term obser-
vation. https://sec-consult.com/blog/detail/
the-eufycam-long-term-observation/, 2024.

[6] Patrick Broetto. eufy-security-client. https://
github.com/bropat/eufy-security-client, 2024.

[7] Elisabetta Carrara, Karl Norrman, David McGrew, Mats
Naslund, and Mark Baugher. The Secure Real-time
Transport Protocol (SRTP). RFC 3711. https://
www.rfc-editor.org/info/rfc3711, March 2004.

[8] Marco Casagrande, Riccardo Cestaro, Eleonora Losiouk,
Mauro Conti, and Daniele Antonioli. E-spoofer: Attack-
ing and defending xiaomi electric scooter ecosystem. In
Proceedings of the 16th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages
85–95. ACM, 2023.

[9] Marco Casagrande, Eleonora Losiouk, Mauro Conti,
Mathias Payer, and Daniele Antonioli. Breakmi: Re-
versing, exploiting and fixing xiaomi fitness tracking
ecosystem. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2022(3):330–366, Jun.
2022.

[10] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. A large-scale analysis of the security
of embedded firmwares. SEC’14, page 95–110, USA,
2014. USENIX Association.

[11] NSA’s Research Directorate. Ghidra. https://
ghidra-sre.org/, 2024.

[12] Eufy. Eufy. https://us.eufy.com/, 2024.

[13] Eufy. Privacy Commitment. https://us.eufy.com/
pages/privacy-commitment, 2024.

[14] Aurélien Francillon, Sam L. Thomas, and Andrei Costin.
Finding software bugs in embedded devices. In Gildas
Avoine and Julio Hernandez-Castro, editors, Security of
Ubiquitous Computing Systems: Selected Topics, pages
183–197. Springer International Publishing.

[15] Dennis Giese and Guevara Noubir. Amazon echo dot or
the reverberating secrets of IoT devices. In Proceedings
of the 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 13–24. ACM.

[16] Eric Hamilton. JPEG File Interchange Format Ver-
sion 1.02. https://www.w3.org/Graphics/JPEG/
jfif3.pdf, 1992.

[17] Stefan Savage John Bellardo. 802.11 denial-of-service
attacks:real vulnerabilities and practical solutions. page
95–110, USA, 2003. USENIX Association.

[18] Ari Keränen, Christer Holmberg, and Jonathan Rosen-
berg. Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traver-
sal. RFC 8445. https://www.rfc-editor.org/info/
rfc8445, July 2018.

[19] Xixing Li, Qiang Wei, Zehui Wu, and Wei Guo. A
comprehensive survey of vulnerability detection method
towards linux-based IoT devices. In Proceedings of
the 2023 2nd International Conference on Networks,
Communications and Information Technology, pages
35–41. ACM.

[20] Muqing Liu, Yuanyuan Zhang, Juanru Li, Junliang Shu,
and Dawu Gu. Security analysis of vendor customized
code in firmware of embedded device. In Robert Deng,
Jian Weng, Kui Ren, and Vinod Yegneswaran, editors,
Security and Privacy in Communication Networks, Lec-
ture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering,
pages 722–739. Springer International Publishing.

[21] Eduardo Novella Lorente, Carlo Meijer, and Roel Ver-
dult. Scrutinizing WPA2 password generating algo-
rithms in wireless routers. In 9th USENIX Workshop on
Offensive Technologies (WOOT 15), Washington, D.C.,
August 2015. USENIX Association.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 145

https://www.marknteladvisors.com/research-library/smart-doorbell-market.html
https://www.marknteladvisors.com/research-library/smart-doorbell-market.html
https://www.marknteladvisors.com/research-library/smart-doorbell-market.html
https://www.rfc-editor.org/info/rfc8835
https://www.rfc-editor.org/info/rfc8835
https://buildroot.org/docs.html
https://buildroot.org/docs.html
https://sec-consult.com/blog/detail/the-eufycam-long-term-observation/
https://sec-consult.com/blog/detail/the-eufycam-long-term-observation/
https://github.com/bropat/eufy-security-client
https://github.com/bropat/eufy-security-client
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc3711
https://ghidra-sre.org/
https://ghidra-sre.org/
https://us.eufy.com/
https://us.eufy.com/pages/privacy-commitment
https://us.eufy.com/pages/privacy-commitment
https://www.w3.org/Graphics/JPEG/jfif3.pdf
https://www.w3.org/Graphics/JPEG/jfif3.pdf
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445

[22] mantech. EEPROM CH341A 24 25 Series Flash BIOS
USB Programmer. https://www.mantech.co.za/
Datasheets/Products/CH341B-Programer.pdf,
2024.

[23] MarkWideResearch. Smart Doorbell Market Anal-
ysis. https://markwideresearch.com/smart-
doorbell-market/, 2024.

[24] Michael Messner. EMBA. https://github.com/e-m-
b-a/emba, 2022.

[25] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno,
Georges Kaddoum, and Nasir Ghani. Demystifying iot
security: An exhaustive survey on iot vulnerabilities
and a first empirical look on internet-scale iot exploita-
tions. IEEE Communications Surveys and Tutorials,
21(3):2702–2733, 2019.

[26] The Aircrack ng Project. Aircrack-ng. https://
www.aircrack-ng.org/, 2024.

[27] Johannes Obermaier and Martin Hutle. Analyzing the
security and privacy of cloud-based video surveillance
systems. In Proceedings of the 2nd ACM International
Workshop on IoT Privacy, Trust, and Security, IoTPTS
’16, page 22–28, New York, NY, USA, 2016. Association
for Computing Machinery.

[28] OWASP. Owasp iot top 10.
https://wiki.owasp.org/index.php/
OWASP_Internet_of_Things_Project#tab=
IoT_Top_10, 2024.

[29] Qemu project. QEMU. https://www.qemu.org/,
2024.

[30] The Hahscat Project. Hashcat. https://hashcat.net/
hashcat/, 2023.

[31] radare org. Radare2. https://rada.re/n/
index.html, 2024.

[32] David A. Ramos and Dawson Engler. Under-
Constrained symbolic execution: Correctness checking
for real code. In 24th USENIX Security Symposium
(USENIX Security 15), pages 49–64, Washington, D.C.,
August 2015. USENIX Association.

[33] Tirumaleswar Reddy.K, Alan Johnston, Philip Matthews,
and Jonathan Rosenberg. Traversal Using Relays around
NAT (TURN): Relay Extensions to Session Traver-
sal Utilities for NAT (STUN). RFC 8656. https://
www.rfc-editor.org/info/rfc8656, February 2020.

[34] Grand View Research. Smart Doorbell Mar-
ket Size, Share and Trends Analysis Report By
Product Type (Wired Doorbell, Wireless Door-
bell), By End-user (Residential, Commercial), By

Region, And Segment Forecasts, 2023 - 2030.
https://www.grandviewresearch.com/industry-
analysis/smart-doorbell-market-report, 2024.

[35] Luca Reverberi and David Oswald. Breaking (and fix-
ing) a widely used continuous glucose monitoring sys-
tem. In 11th USENIX Workshop on Offensive Tech-
nologies (WOOT 17), Vancouver, BC, August 2017.
USENIX Association.

[36] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Ke-
mal Akkaya, and A. Selcuk Uluagac. LightningStrike:
(in)secure practices of e-IoT systems in the wild. In
Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages
106–116. ACM.

[37] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or
Weingarten. IoT goes nuclear: Creating a ZigBee chain
reaction. IEEE Security and Privacy, pages 54–62.

[38] Jonathan Rosenberg, Christian Huitema, Rohan Mahy,
and Joel Weinberger. STUN - Simple Traversal of User
Datagram Protocol (UDP) Through Network Address
Translators (NATs). RFC 3489. https://www.rfc-
editor.org/info/rfc3489, March 2003.

[39] Henning Schulzrinne, Anup Rao, Rob Lanphier,
Magnus Westerlund, and Martin Stiemerling. Real-
Time Streaming Protocol Version 2.0. RFC 7826.
https://www.rfc-editor.org/info/rfc7826,
December 2016.

[40] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
IEEE Symposium on Security and Privacy, 2016.

[41] Omer Shwartz, Yael Mathov, Michael Bohadana, Yu-
val Elovici, and Yossi Oren. Opening pandora’s box:
Effective techniques for reverse engineering IoT de-
vices. In Thomas Eisenbarth and Yannick Teglia, editors,
Smart Card Research and Advanced Applications, vol-
ume 10728, pages 1–21. Springer International Publish-
ing. Series Title: Lecture Notes in Computer Science.

[42] Omer Shwartz, Yael Mathov, Michael Bohadana, Yu-
val Elovici, and Yossi Oren. Reverse engineering IoT
devices: Effective techniques and methods. 5(6):4965–
4976. Conference Name: IEEE Internet of Things Jour-
nal.

[43] Mark A. Stanislav. Multi-dimensional Security Integrity
Analysis Of Broad Market Internet-connected Cameras.
PhD thesis, Dakota State University, 2022.

146 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.mantech.co.za/Datasheets/Products/CH341B-Programer.pdf
https://www.mantech.co.za/Datasheets/Products/CH341B-Programer.pdf
https://markwideresearch.com/smart-doorbell-market/
https://markwideresearch.com/smart-doorbell-market/
https://github.com/e-m-b-a/emba
https://github.com/e-m-b-a/emba
https://www.aircrack-ng.org/
https://www.aircrack-ng.org/
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://www.qemu.org/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://rada.re/n/index.html
https://rada.re/n/index.html
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8656
https://www.grandviewresearch.com/industry-analysis/smart-doorbell-market-report
https://www.grandviewresearch.com/industry-analysis/smart-doorbell-market-report
https://www.rfc-editor.org/info/rfc3489
https://www.rfc-editor.org/info/rfc3489
https://www.rfc-editor.org/info/rfc7826

[44] Nicholas Sutrich. Security researcher says
Eufy has a big security problem. https:
//www.androidcentral.com/accessories/smart-
home/security-researcher-says-eufy-has-a-
big-security-problem, 2022.

[45] Sam L. Thomas, Jan Van den Herrewegen, Georgios
Vasilakis, Zitai Chen, Mihai Ordean, and Flavio D.
Garcia. Cutting through the complexity of reverse
engineering embedded devices. IACR Transactions
on Cryptographic Hardware and Embedded Systems,
2021:360–389, Jul. 2021.

[46] Fabian Ullrich, Jiska Classen, Johannes Eger, and
Matthias Hollick. Vacuums in the cloud: Analyzing
security in a hardened IoT ecosystem. In 13th USENIX
Workshop on Offensive Technologies (WOOT 19), Santa
Clara, CA, August 2019. USENIX Association.

[47] Mathy Vanhoef and Frank Piessens. Symbolic execution
of security protocol implementations: Handling crypto-
graphic primitives. In 12th USENIX Workshop on Offen-
sive Technologies (WOOT 18), Baltimore, MD, August
2018. USENIX Association.

[48] Babak Yadegari and Saumya Debray. Symbolic execu-
tion of obfuscated code. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 732–744. ACM.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 147

https://www.androidcentral.com/accessories/smart-home/security-researcher-says-eufy-has-a-big-security-problem
https://www.androidcentral.com/accessories/smart-home/security-researcher-says-eufy-has-a-big-security-problem
https://www.androidcentral.com/accessories/smart-home/security-researcher-says-eufy-has-a-big-security-problem
https://www.androidcentral.com/accessories/smart-home/security-researcher-says-eufy-has-a-big-security-problem

SoK: Where’s the “up”?! A Comprehensive (bottom-up) Study on the Security of
Arm Cortex-M Systems

Xi Tan
CactiLab, University at Buffalo

Zheyuan Ma
CactiLab, University at Buffalo

Sandro Pinto
Universidade do Minho

Le Guan
University of Georgia

Ning Zhang
Washington University in St. Louis

Jun Xu
University of Utah

Zhiqiang Lin
Ohio State University

Hongxin Hu
University at Buffalo

Ziming Zhao
CactiLab, University at Buffalo

Abstract
Arm Cortex-M processors are the most widely used 32-bit
microcontrollers among embedded and Internet-of-Things
devices. Despite the widespread usage, there has been little
effort in summarizing their hardware security features, char-
acterizing the limitations and vulnerabilities of their hardware
and software stack, and systematizing the research on secur-
ing these systems. The goals and contributions of this paper
are multi-fold. First, we analyze the hardware security limita-
tions and issues of Cortex-M systems. Second, we conducted
a deep study of the software stack designed for Cortex-M and
revealed its limitations, which is accompanied by an empirical
analysis of 1,797 real-world firmware. Third, we categorize
the reported bugs in Cortex-M software systems. Finally, we
systematize the efforts that aim at securing Cortex-M systems
and evaluate them in terms of the protections they offer, run-
time performance, required hardware features, etc. Based on
the insights, we develop a set of recommendations for the
research community and MCU software developers.

1 Introduction

Microcontroller units (MCUs) are small computers designed
for embedded and Internet of Things (IoT) applications in
contrast to microprocessors used in smartphones, personal
computers, and servers. They operate at frequencies ranging
from several kHz to several hundred MHz. The sizes of their
ROMs and RAMs are small and usually fall into the range
of several hundred bytes to several megabytes. Even though
MCUs are general-purpose computers, they are commonly
employed for running specialized software and firmware tai-
lored to specific applications.

The Arm Cortex-M family, which has three major archi-
tectures and 12 processors as of 2023, is the most popular
32-bit MCU architecture without a memory management unit
(MMU) on the market. More than 80 hardware vendors have
licensed Cortex-M cores [1]. 4.4 billion Cortex-M MCUs
were shipped in the 4th quarter of 2020 alone [2], and it is es-

timated that Cortex-M MCUs account for almost 100 billion
deployed embedded and IoT devices in 2021 [3].

Given the sheer volume of deployed Cortex-M systems,
one would anticipate that the security of their hardware and
software stack has been thoroughly studied and systematized.
Unfortunately, this is not the case. To bridge the knowledge
gap that hinders the users and researchers, we seek to answer
the following questions regarding their security states:
• Q1 - What are the security features, limitations, and issues

at the Cortex-M microarchitecture, instruction set architec-
ture (ISA), and beyond? The answer helps understand the
constraints in securing software on Cortex-M.
To address this question, we analyze the hardware security

limitations of Cortex-M by comparing its offerings with mi-
croprocessors. Our main observation (§3) is that Cortex-M
processors lack support for memory virtualization and pro-
vide only basic memory protection mechanisms. Additionally,
their other security features, e.g., TrustZone, are streamlined
compared to their Cortex-A counterparts and introduce new
vulnerabilities.
• Q2 - What are the security mechanisms and flaws of Cortex-

M based software systems? The answer helps understand the
status of Cortex-M software security in real-world systems.
To answer this question, we compile a dataset of 1,797 real-

world Cortex-M firmware samples, including 1,003 newly col-
lected ones, and perform by far the largest empirical analysis
on the adoption of security mechanisms on real-world Cortex-
M systems. In particular, we summarize the software archi-
tectures found in these samples and other research projects.
We develop binary analysis tools to verify if the collected
samples leverage the security mechanisms that have been
widely deployed on microprocessor-based systems, e.g., priv-
ilege separation and stack canaries. We uncovered that (§4)
despite extensive research on more secure architectures for
microcontroller-based systems, these advancements are rarely
implemented in real-world firmware. Moreover, the hardware
security features offered by Cortex-M processors are seldom
utilized in the majority of the assessed firmware; hence, where
is the “up”?!. Furthermore, existing compiler-based mitiga-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 149

Section 6: Security Research
Privilege Separation
and Compartment.

Virtualization and
Multi-world Systems

Defense Memory
Corruption Attacks

Defeat Software-based
Code Disclosure

Remote
Attestation

Firmware
Update

Vulnerability
Discovery

 Section 5: Software Implementation Issues

Section 4: Software Architectural Issues

Section 3: Hardware Limitations and Issues
Hardware Limitations Hardware Issues

Limitations of Memory
Protection Mechanisms

Inherited Limitations from
TrustZone-A

Vendor-Agnostic
Microarchitecture Issues

Vendor-Agnostic
ISA Issues

Vendor-Specific
Hardware Issues

Software
Architecture

Architectural Issues
Introduce Lack of Privilege

Management
Lack of Memory

Protections

Overcome

Validation Bugs Functional Bugs Extrinsic Bugs
Exacerbate

Section 2: Methodology
Collecting and Analyzing

Firmware
Collecting and Analyzing

Bug Reports
Systematizing

Scientific Publications
Analyzing Hardware Primitives and

Offerings

Address

Section 7: Recommendation and Future Direction
Recommendations to DevelopersRecommendations to Research Community

Mitigating Micro.
and ISA Issues

Safe
Programming

Figure 1: Overview of the organization and contributions of this paper

tions designed for process-based operating systems (e.g., stack
canaries) prove ineffective when operating within a single
physical address space.

• Q3 - What are the nature and severity of the publicly dis-
closed vulnerabilities in the Cortex-M based software sys-
tems? The answer helps find out software bugs that are
more likely to be exploited in such systems.

To tackle this question, we analyze 310 Cortex-M related
software bug reports spanning nearly six years, from 2017
until 2023. Our analysis includes systems developed by nine
hardware vendors, e.g., Nordic and NXP, and seven real-time
operating systems (RTOS), e.g., FreeRTOS. We further cat-
egorize the software implementation issues into validation,
functional, and extrinsic bugs, a taxonomy adopted in a recent
work studying the vulnerabilities in Cortex-A systems [4].
Our insights (§5) include that these systems not only exhibit
memory corruption vulnerabilities but also display weak-
nesses in their protocol and cryptographic implementations.

• Q4 - What defenses for Cortex-M systems have been ex-
plored in the literature, and what are their limitations?
Together with the previous answers, this helps shed light
on new research directions to secure Cortex-M systems.

To address this question, we create a taxonomy and com-
parative evaluation of over 50 papers spanning nearly nine
years. Our evaluation framework considers the defenses each
solution offers, the hardware units it relies on, and their run-
time overhead in terms of memory size, performance, etc.
Our major observations (§6) include the research community
not only shifts the exact same defenses from microprocessor-
based systems on Cortex-M systems, e.g., enforcing isolation
and confinement, stack integrity, and control flow integrity,
but also develops solutions intrinsically linked to the MCU
characteristics, e.g., peripheral-oriented fuzzing.

Based on the insights, we develop a set of recommendations
for the research community and MCU software developers
(§7). Figure 1 provides an overview of the organization and
contributions of this paper. We have open-sourced our source

code, dataset, and supplementary materials 1.

2 Methodology

2.1 Adversarial Model
In general, we consider the security limitations and issues
of the microarchitecture, ISA, and above. In particular, we
assume an adversary can perform (i) microarchitecture side-
channel attacks, e.g., bus interconnect; (ii) glitching, e.g., volt-
age fault injection; (iii) remote attacks via a network; (iv)
nearby wireless attacks via BLE, ZigBee, etc.; (v) local at-
tacks through peripherals and debug ports; and (vi) software
side-channel attacks. On systems without TrustZone-M, we
consider an adversary with one or more of the following ob-
jectives: (i) to obtain secrets from the flash, e.g., intellectual
property (IP) theft and RAM; (ii) to tamper sensitive data;
(iii) code execution and privilege escalation, e.g., control-flow
hijacking. On systems with TrustZone-M, we assume all com-
ponents in the non-secure state are untrusted and consider an
adversary with all aforementioned goals as well as compro-
mising the secure state.

2.2 Analyzing Hardware Offerings
We provide a detailed analysis of the hardware security lim-
itations and issues. Due to the page limit, a detailed walk-
through of the Cortex-M architecture is not included in this
paper. Interested readers please refer to our supplementary
materials, which consolidate information from various official
sources [5–14]. To aid in research for the community, we have
developed an open-source code suite, demonstrating the use
of Cortex-M security features.

2.3 Collecting and Analyzing Firmware
Collecting Firmware. The process of collecting and decod-
ing Cortex-M firmware was far from straightforward and re-

1https://github.com/CactiLab/SoK-Cortex-M

150 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 1: Manufacturer distribution of the compiled real-world
firmware dataset. Italic represents newly collected sample
that were not publicly released before.
HW Vendor Nordic

[15]
Other
Nordic

TI
[15] Telink Dialog NXP Cypress ST

[16] Total

Firmware 768 690 22 192 53 1 67 4 1,797
Devices 513 - 20 120 36 1 - - 689

sulted in the accumulation of significant amounts of unusable
data. We used three approaches to collect firmware: (i) we
filtered Cortex-M firmware from publicly available embed-
ded system datasets [15, 17–21]; (ii) adopting an analogous
methodology as described in [15], we developed scripts to
analyze/unpack mobile apps and extract potential Cortex-M
firmware. Using this approach, we collected 4,693 potential
samples from six silicon vendors. These samples are in vari-
ous formats, e.g., S-record for NXP, cyacd format for Cypress,
and proprietary format of Qualcomm; (iii) we crawled web-
sites for 25 silicon and device vendors known for embedded
and IoT devices. This effort resulted in 1,687 potential sam-
ples, but none of them turned out to be Cortex-M firmware.
This aligns with the findings in FirmXRay [15], which noted
that vendors seldom make their firmware available online.

As shown in Table 1, our firmware collection endeavor
ended up with 1,797 unique Cortex-M firmware from seven
hardware vendors. Among these, the FirmXRay dataset in-
cludes 790 firmware samples, representing 533 distinct de-
vices from two vendors (768 from Nordic [22] and 22
from Texas Instruments [23]). Additionally, the HEAPSTER
dataset [16] encompasses four Cortex-M binaries from STMi-
croelectronics (ST) [24]. Furthermore, we have gathered
1,003 firmware from other vendors, including Nordic (690),
Telink [25] (192 firmware for 120 unique devices), Dia-
log [26] (53 firmware for 36 devices), NXP [27] (1), and
Cypress [28] (67). These samples have not been publicly
shared before. The firmware in our collection is in raw binary
format, lacking symbolic information.

Analyzing Firmware. We used FirmXRay [15] to recog-
nize the base address of each firmware. Scripts were then
developed to identify the Cortex-M vector table and perform
recursive disassembly with Ghidra [29]. We also applied
scripts to filter a portion of firmware samples that contain
device information, ensuring that they are from distinct de-
vices. We conducted an analysis of the disassembled samples
using the following heuristics: (i) to identify if firmware uses
any RTOS, we performed binary function recognition [30]
and string searches for ten popular RTOSs; (ii) for firmware
that uses an RTOS, we analyzed if task stack overflow checks
are performed. To this end, we checked if the task stack over-
flow handling functions, e.g., osRtxKernelErrorNotify()
with the parameter osRtxErrorStackOverflow in CMSIS
RTOS2 [31], are called by other functions in the firmware;
(iii) we analyzed if and how the CONTROL register is changed
and how the SVC instruction is used to determine privilege
separation and stack usages; (iv) to check if there are stack

canaries, we analyzed function prologues and epilogues for
specific instruction patterns derived from canary-protected
functions generated by three compilers. In addition, we
searched if the firmware has the hard-coded libc error mes-
sage “*** stack smashing detected ***” and whether
the function printing out this message is called by other func-
tions, which is a practice used before [32].

2.4 Collecting and Analyzing Bug Reports
We retrieved over 500 hardware and software bug reports
related to Cortex-M systems from 2017 to 2023 [33], which
shows a growing trend. Besides “Arm", we included in our
list of keywords the names of top hardware vendors [34], pop-
ular RTOSs [35], and embedded SSL libraries, e.g., Mbed
TLS [36] and wolfSSL [37]). We manually confirmed the
bug reports indeed affect Cortex-M systems, including veri-
fying the affected chips and inspecting the source code. Two
researchers worked together to categorize each bug into a
relevant subclass, which was verified by a third researcher.

2.5 Systematizing Scientific Publications
We collected over 30 papers on Cortex-M security from top
conferences2. In addition, we supplement our list of surveyed
papers with another over 20 articles that are highly relevant
to the topic but published in other venues. Note that our sys-
tematization focuses on the works explicitly designed for
and implemented on Cortex-M. Nevertheless, we discuss re-
lated works that were designed for or implemented on other
architectures but may be applied to Cortex-M in §6.10.

2.6 Threats to Validity
Our analysis of firmware may be subject to biases and im-
precision due to the limited number of firmware. There is a
risk of over-representing systems from specific vendors. Most
firmware in our dataset (57.3%) are raw binaries and lack
detailed device and architecture information, making it dif-
ficult to confirm their intended use cases and resulting in a
potential bias in analyzing similar firmware samples. Addi-
tionally, the lack of proof-of-concept exploits and vague CVE
descriptions introduces imprecisions in the classification of
vulnerabilities. Furthermore, our analysis focuses on publicly
disclosed vulnerabilities. Undiscovered vulnerabilities could
unveil additional fundamental issues in Cortex-M systems.

3 Hardware Limitations and Issues

3.1 Hardware Limitations
Hardware limitations are missing or constrained hardware se-
curity features, which are typically non-patchable. Compared

2https://csrankings.org/

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 151

with Cortex-A, Cortex-M features distinct design elements,
particularly in its memory protection mechanisms and the
TrustZone extension (TrustZone-M versus TrustZone-A).

Limitations of Memory Protection Mechanisms

L01. No memory virtualization: No hardware-supported
memory virtualization is available on Cortex-M due to the
absence of a memory management unit (MMU). Instead, soft-
ware modules share the same physical address space. Such
lack of memory virtualization also implies a small address
space (4GB), which presents challenges to effective address
space layout randomization (ASLR) due to low entropy.

L02. No input-output memory management unit: Besides
MMU, input-output memory management unit (IOMMU) or
its equivalents, i.e., IOMPU, that provide memory protection
from malicious direct memory access (DMA)-capable periph-
erals are also missing on Cortex-M. Some hardware vendors
implement their own IOMPU, i.e., the resource domain con-
troller on NXP i.MX RT [38, 39], but they are only found in
some of the latest devices.

L03. A small number of MPU regions and limited sizes:
Cortex-M only supports a small number of memory protection
unit (MPU) regions, and the size of regions must be a multiple
of 32 bytes. Compared to the page-based memory access
control on microprocessors, the granularity of MPU-based is
coarse-grained, and it is insufficient to implement fine-grained
isolation that requires a large number of regions.

L04. A small number of secure/non-secure memory re-
gions: The number of regions supported by secure attribute
unit (SAU) is small, e.g., up to 8 regions on Cortex-M33,
resulting in limited design choices in splitting the secure
and non-secure address space. To alleviate this issue, sili-
con vendors use the implementation defined attribution unit
(IDAU),which supports up to 256 regions, to create more par-
titions. However, if more than 256 partitions are needed or
the device has many peripherals, this may not be enough [40].

Inherited Limitations from TrustZone-A

L05. No intrinsic encryption to protect the secure state
memory: TrustZone-M does not encrypt the secure state
memory. Consequently, cold boot attacks [41] can dump the
secure state memory. There could also be information leak-
age when a memory protection controller (MPC) assigns a
memory region from the secure state to the non-secure state
at run-time, which we will discuss in I05.

L06. Lack of intrinsic support for multiple trusted execu-
tion environments: TrustZone-M only provides one isolated
execution environment in which the trusted firmware executes,
resulting in a large software trusted computing base (TCB).
For instance, TF-M [42] has over 117K lines of code.

L07. Lack of hardware-based remote attestation in
TrustZone-M: Same as Cortex-A [4], Cortex-M TrustZone
lacks a hardware-based integrity reporting mechanism, so it

cannot provide a hardware-based remote attestation as Intel
software guard extensions (SGX) does. For example, the Arm
platform security architecture (PSA) introduces a weakened
software-based attestation method [43, 44].

Insights
• The Cortex-M architecture offers weaker memory man-

agement interfaces than popular microprocessors, creating
challenges to enforce memory isolation and security.

• TrustZone-M inherits hardware limitations of TrustZone-
A and introduces more constraints.

3.2 Hardware Issues
Hardware issues discuss vulnerable hardware components
and hardware-supported operations.

Vendor-Agnostic Microarchitecture Issues

I01. Vulnerable to microarchitectural side-channel at-
tacks: Although most Cortex-M processors lack a cache
or branch predictor at the microarchitectural level, there are
other side channels that can leak information.

Information leakage through power analysis: ELMO [45]
demonstrates the feasibility of reversing AES S-Box output
code sequences through power analysis on the Cortex-M0
processor. Furthermore, Vafa et al. [46] successfully applied
a power analysis attack to recover running instructions on the
Cortex-M3 processor.

Information leakage through timing side-channels: MCU
bus interconnect arbitration logic involves delays when multi-
ple bus masters, such as the CPU and DMA, simultaneously
access a shared secondary port, like a memory controller. As
demonstrated in BUSted [47], the attacker can successfully
bypass protections provided by the MPU and TrustZone by
exploiting these timing differences.

Information leakage through long-term data remanence:
UnTrustZone [48] reveals that static random-access memory
(SRAM) can be manipulated to imprint and expose on-chip
secrets by accelerating analog-domain changes in SRAM.
Using this method, UnTrustZone successfully extracts AES
keys and proprietary firmware from various Cortex-M devices
protected by TrustZone.

I02. Vulnerable to fault injections: A fault injection attack
involves deliberately causing errors in a system’s hardware
(e.g., voltage, clock, electromagnetic) to disrupt its normal op-
erations of a digital circuit and exploit these induced faults for
malicious purposes. Johannes Obermaier and Marc Schink et
al. discussed how to escalate the debug interface permissions
or execute arbitrary code by injecting faults into voltage [49],
Quad-SPI bus [50], and electromagnetic [51] at boot time
on Cortex-M0/3/4 devices. µ-Glitch [52] entails injecting
multiple, coordinated voltage faults into Cortex-M devices
to bypass the TrustZone protection, allowing leaking secrets
stored in secure memory into non-secure code.

152 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Tasks

N
S-

P
N

S-
U

P
S-

P
S-

U
P

(a) Bare-metal or unikernel

RTOS kernel

RTOS tasks

Bare-metal or unikernel

(d) Dual-world system (e) Multi-world system(b) Monolithic kernel

Secure services

Trusted kernel

Tasks

Kernel Kernel

Tasks

Bare-
metal

...

...Exokernel

Bare-
metal

Kernel

(c.1) Software-based exokernel

...

Trusted kernel

Secure
services

(c.2) TrustZone-based exokernel

Bare-
metal

...

...

Exokernel

Bare-
metal...

Kernel

Tasks

A system component
An isolated domain

Tasks
Kernel Secure

services...

Service request
Optional service request

Figure 2: Identified Cortex-M software architectures in the collected dataset and in the literature. NS-UP: non-secure unprivileged,
NS-P: non-secure privileged, S-UP: secure unprivileged, S-P: secure privileged.

Vendor-Agnostic ISA Issues

I03. Fast state switch mechanism exploitable for privilege
escalation: Cortex-M TrustZone uses the fast state switch
technique to allow direct cross-state transitions from any priv-
ilege level without the need for a higher privileged secure
monitor mode like Cortex-A TrustZone. Although this feature
makes cross-state transitions more efficient, it exposes vulner-
abilities to a recently discovered attack known as ret2ns [53].
This attack leverages critical system registers and instructions
used by the fast state switch to escalate privilege in the non-
secure state, potentially leading to arbitrary code execution.

I04. Improper privilege management for inter-processor
debugging: CVE-2018-18068 reports that the debugging
host’s privilege level is ignored in the inter-processor debug-
ging mode, allowing the non-secure state on both TrustZone-
M and TrustZone-A to gain access to the secure state re-
sources via the ETM [54, 55].

I05. Information leakage to the non-secure state due to
state switches: This could happen through memory and
general-purpose and special registers: (i) if a region used by
the secure state is re-mapped by MPC into the non-secure
state without proper sanitization, sensitive information will be
leaked; (ii) information leakage could happen if the general-
purpose registers are not cleared when switching to the non-
secure state. To address this issue, Arm recommends general-
purpose registers that are not used to pass arguments should
be cleared before state switches [7]; (iii) CVE-2021-35465 re-
ports an issue of the floating-point lazy load multiple (VLLDM)
instruction, which allows the non-secure code to access secure
state floating-point registers.

Vendor-Specific Hardware Issues

I06. Improper privilege management in vendor-specific
hardware features: Some hardware vendors introduce over-
powerful hardware features that can be exploited to gain full
control of the system. For example, NXP LPC55S6x MCUs
include a ROM patch controller to fix bugs in the ROM after
fabrication. CVE-2021-31532 reports that even attackers in
the non-secure state and unprivileged level can utilize the
ROM patch controller to reconfigure the SAU regions to gain
privilege escalation. CVE-2022-22819 shows that the ROM
patch controller firmware also has a buffer overflow bug that
can lead to arbitrary code execution at the privileged level.

I07. Bypassable vendor-specific readback protection:
Only M55 and M85 have the execute-only memory (XOM)
feature, which prevents software or a hardware debugger from
reading execute-only memory [56]. For MCUs before M55,
some hardware vendors implement their own hardware units
to prevent reading from the debug interface, a feature known
as readback protection. For instance, the Nordic nRF51 series
implements a mechanism to prevent debuggers from directly
accessing flash and RAM address ranges. Notwithstanding,
we found that only 32 out of the 1,458 Nordic samples in our
dataset enable this feature. This protection, however, can be
easily bypassed through arbitrary register read and write and
single stepping in debugging [57]. Though the mechanism
was improved in the nRF52 series [58], CVE-2020-27211
reports that a voltage glitch attack can still bypass it [51].
Similar mechanisms implemented by ST [59], NXP [60], and
TI [61] are also bypassable by inferring instructions from the
observed state transitions [62].

Insights
• Streamlined hardware mechanisms in Cortex-M, e.g., fast

state switch, lead to new privilege management vulnera-
bilities and information leakage.

• The fragmentation of the Cortex-M ecosystem has brought
in new security challenges: vendors aggressively introduce
over-powerful hardware, which can undermine Cortex-M
systems security if not properly designed.

4 Software Architectural Issues
4.1 Software Architectures
As shown in Figure 2, we identified two (i.e., a and b) soft-
ware architectures in the collected firmware dataset and an-
other three (i.e., c, d, and e) in the literature. Bare-metal
systems and unikernels (a) run directly on the hardware at
the highest (non-secure) privilege level. The RTOSs in such
systems are only linked as a library OS, e.g., Mbed OS bare-
metal profile [63]. We will discuss in I08 that over 99.44%
of the 1,797 firmware belong to this category, including 66
firmware samples that use FreeRTOS and another 13 firmware
use Mbed OS. Monolithic kernels (b) are the most common
organization in microprocessor-based systems, e.g., Linux
and Windows. Such systems run the kernel entirely at the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 153

Table 2: Empirical Analysis of Security Features Adopted in Real-world Firmware
Hardware Vendor Nordic

(FirmXRay)
Other
Nordic TI Telink Dialog NXP Cypress ST Total

Security Feature #F #D #F #F #D #F #D #F #D #F #F #F #F

Readback Protection (I07) 17 2.21% 9 1.75% 15 2.17% - - - - - - - - - 32 1.78%
Privilege Separation (I08) 8 1.04% 5 0.97% 2 0.29% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 10 0.56%
SVC for Library Call (I09) 753 98.04% 500 97.47% 690 100% 2 9.09% 1 5% 17 8.85% 17 14.17% 0 0% 0 0% 0 0% 2 2.99% 2 50% 1,466 81.58%
Stack Separation (I10) 49 6.38% 34 6.63% 82 11.88% 0 0% 0 0% 0 0% 0 0% 3 5.66% 1 2.78% 0 0% 0 0% 0 0% 134 7.46%
Stack Limit Register Usage (I10) 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
Task Stack Ovf. Guard* (I10) 59 96.72% 4 80% 9 32.14% - - - - - - - - - 68 76.40%
Memory Access Control (MPU) (I12) 0 0% 0 0% 4 0.58% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 1 100% 0 0% 0 0% 5 0.28%
Memory Access Control (sMPU) (I12) 19 2.47% 17 3.31% 0 0% - - - - - - - - - 19 1.10%
Stack Canaries (I13) 0 0% 0 0% 1 0.14% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 1 0.06%
Proper Instruction Sync. Barriers† (I14) 30 36.59% 16 27.12% 68 40% - - - - 0 0% 0 0% - - - 98 34.88%

#F: Number of firmware, #D: Number of devices, -: Not applicable, *: The percentage is only based on firmware that use RTOS, †: The percentage is only based on firmware that
update CONTROL with the MSR instruction.

privileged level, and applications run in (unprivileged) user
space. However, only 0.56% of the firmware samples in our
dataset fall into this category. Exokernels (c) run at the high-
est privilege level, virtualizing and allocating resources to
RTOSs or bare-metal applications running at a lower priv-
ilege level. We will discuss two software-based exokernel
projects, Hermes [64] and MultiZone [65], and two Cortex-
M TrustZone-based exokernel projects, lLTZVisor [66, 67]
and SBIs [68], in D05. Dual-world systems (d), which are
enabled by TrustZone-M, run RTOSs and applications in the
non-secure state, whereas secure OS/services run in the secure
state. The Trusted Firmware for Cortex-M (TF-M) [69] is a
reference implementation of this architecture. Multi-world
systems (e) enable multiple equally-secure TEEs. We will
discuss uTango [70], one prominent example of a multi-world
TEE implementation leveraging TrustZone-M in D06.

Insights
• Despite the research progress towards more secure ar-

chitectures for Cortex-M systems, a large number of the
real-world firmware in our dataset are simply bare-metal
systems and unikernels.

4.2 Architectural Issues

Software architectural issues refer to common limitations and
flaws we found in real-world firmware.

Lack of Privilege Management

I08. No or weak privilege separation: As shown in Table 2,
only 10 out of 1,797 samples in our dataset execute some
code at the unprivileged level, and the others execute entirely
at the privileged level. Due to the lack of spatial isolation and
privilege separation, a bug anywhere may compromise the
whole system, even reverting MPU settings.

I09. SVC repurposing: The SVC instruction is designed to
escalate the execution level; however, executing this instruc-
tion at the privileged level also transfers the control to the
SVC handler. Surprisingly, we find that 1,466 (81.58%) sam-
ples run everything at the privileged level and repurpose this
feature to call library APIs, e.g., Nordic SoftDevice [71], in-

stead of privilege escalation. The behavior is consistent across
vendors, e.g., Nordic, TI, Telink, Cypress, and ST.

Lack of Memory Protections

I10. No or weak stack separation: RTOSs, such as FreeR-
TOS [72] and Zephyr [73], support multi-tasking, so each
task has its own stack. However, stack separation between the
kernel and application is rarely used in bare-metal firmware.
Armv8-M also introduces stack limit registers (PSPLIM and
MSPLIM) to delimit the boundaries of stacks. However, no
firmware in our dataset has been used them.

RTOS Implementations: We found that only a few RTOSs
protect tasks’ stacks, and only Zephyr optionally supports us-
ing stack limit registers. When stack guard is enabled, FreeR-
TOS [74] and Mbed OS [75] insert a predefined delimiter to
mark the boundary of each task’s stack. Zephyr can use ei-
ther PSPLIM or an MPU-configured memory guard to prevent
overwriting beyond a task’s stack [76].

Empirical Analysis on Real-world Firmware: 10 samples
that adopt privilege separation (discussed in I08) leverage
both the MSP- and PSP-based stacks. In addition, another 124
samples use both the MSP- and PSP-based stacks without
privilege separation. All other samples (1,663; 92.54%) only
adopt a single MSP-based stack. 59 of the 66 FreeRTOS-based
firmware samples and 7 of the 13 Mbed OS-based firmware
samples use task stack overflow guards.

I11. Secure state exception stack frame manipulation:
CVE-2020-16273 shows that the non-secure state software
may manipulate the secure stacks and hijack the secure con-
trol flow if the secure software does not properly initialize the
secure stacks. To this end, an attacker creates a fake exception
return stack frame to deprivilege an interrupt.

I12. No or weak memory access control; executable stack:
Despite the presence of MPU, previous research suggests that
it is rarely utilized in most real-world systems [77–79]. We
confirm that 1,773 of the 1,797 firmware in our dataset do not
use MPU, which means the code, SRAM, and RAM regions
are executable and malicious code can read and write arbitrary
memory. Out of the 24 firmware that use MPU in our dataset,
five use the MPU defined by Arm. The remaining 19 use
a vendor-specific implementation, i.e., Nordic’s simplified

154 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

MPU (sMPU) [80], which only supports a subset of MPU
features. Specifically, sMPU only supports read and write
permissions with two protection domains.

I13. No or weak stack canary: Stack canary implementation
involves initializing the canary value, runtime verification, and
handling mismatches. The compiler and libraries manage the
latter two, with the system initializing the canary value. In
the standard C libraries (libc), the value of the stack canary is
taken from a global variable __stack_chk_guard. In mod-
ern OSs, the value of the canary is randomly initialized when
a process is created. However, embedded systems often use
a fixed canary value post-compilation or boot [81]. Notably,
there is only one __stack_chk_guard for the entire physical
address space. We found that only one of the 1,797 firmware
samples in our dataset adopts it.

I14. Missing barrier instructions: Barrier instructions, in-
cluding data memory barrier (DMB), data synchronization bar-
rier (DSB), and instruction synchronization barrier (ISB), guar-
antee that system configurations take effect before any mem-
ory operations [82]. The omission of them is unlikely to cause
any issues on most Cortex-M MCUs because they do not have
out-of-order execution and branch prediction capabilities. For
MCUs that do have such capabilities, e.g., M7, this may lead
to similar vulnerabilities that were discovered on microproces-
sors [83–85]. To check if barriers are set in firmware, for any
CONTROL register update, we verify if there is an ISB instruc-
tion in its ten subsequent instructions. Our analysis shows that
only 98 of the 281 firmware samples (34.88%) that update the
CONTROL register use the ISB instruction thereafter. However,
as we cannot confirm which architecture those firmware are
using, it is unclear whether the missing barrier instructions
will cause issues or not.

Insights
• The real-world firmware samples in our dataset barely

use the security features of Cortex-M and largely lack the
security mitigations that are widely deployed on modern
microprocessor-based systems.

• Some software- and compiler-based mitigations, e.g., stack
canaries, are less effective on MCU-based systems and
should be redesigned.

5 Software Implementation Issues
Table 3 presents the numbers of Cortex-M related CVEs
affecting nine hardware vendors, seven RTOSs, and two
TLS libraries. We break down the number based on CVSS
scores [86]. As shown in Table 3, the majority of CVEs
(53.85%) affecting hardware vendors are classified as
“medium” severity, while the majority of CVEs affecting
RTOSs (78.07%) are categorized as either “critical” or “high”.
We use a bug classification system proposed in [4] to charac-
terize them into three major classes, i.e., validation, functional,
and extrinsic. We summarize the results in Table 4, where we

Table 3: Distribution of disclosed Cortex-M related CVEs
(2017 - 2023)

HW Vendor/RTOS/Lib Critical High Medium Low Total

Arm 0 0% 4 57.14% 2 28.57% 1 14.29% 7 1.99%
Microchip Technology 1 14.29% 2 28.57% 4 57.14% 0 0% 7 1.99%
Silicon Labs 6 40.00% 2 13.33% 6 40.00% 1 6.67% 15 4.27%
NXP Semiconductors 1 7.69% 6 46.15% 6 46.15% 0 0% 13 3.70%
ST Microelectronics 2 12.50% 2 12.50% 12 75.00% 0 0% 16 4.56%
Cypress Semiconductor 0 0% 6 50.00% 6 50.00% 0 0% 12 3.42%
Gigadevice 0 0% 0 0% 6 100.00% 0 0% 6 1.71%
Texas Instruments 0 0% 6 54.55% 5 45.45% 0 0% 11 3.13%
Nordic 0 0% 2 50.00% 2 50.00% 0 0% 4 1.14%
Subtotal (HW vendors) 10 10.99% 30 32.97% 49 53.85% 2 2.20% 91 25.93%

FreeRTOS 3 15.79% 9 47.39% 7 36.84% 0 0% 19 5.41%
CMSIS RTOS2 1 100.00% 0 0% 0 0% 0 0% 1 0.28%
Mbed OS 6 60.00% 4 40.00% 0 0% 0 0% 10 2.85%
Zephyr 17 23.61% 36 50.00% 18 25.00% 1 1.39% 72 20.51%
RIOT-OS 10 33.33% 18 60.00% 2 6.67% 0 0% 30 8.55%
Contiki-ng 16 39.02% 18 43.90% 7 17.07% 0 0% 41 11.68%
Azure 5 35.71% 3 21.43% 5 35.71% 1 7.14% 14 3.99%
Subtotal (RTOSs) 58 31.01% 88 47.06% 39 20.86% 2 1.07% 187 53.28%

Mbed TLS 6 20.69% 12 41.38% 11 37.93% 0 0% 29 8.26%
WolfSSL 10 22.73% 14 31.82% 20 45.45% 0 0% 44 12.54%
Subtotal (Libs) 16 21.92% 26 35.62% 31 42.47% 0 0% 73 20.80%

Total 84 23.93% 144 41.03% 119 33.90% 4 1.14% 351

further provide a breakdown of bugs based on the functional-
ity and the software components.

5.1 Validation bugs
Validation bugs refer to bugs that mishandle or improperly
validate input and output data. Examples are out-of-bounds
read and write and improper parameter validation. They are
frequently exploited for arbitrary write and read, allowing
attackers to steal/overwrite sensitive information, execute re-
mote code, or cause a denial of service.

I15. Validation bugs in communication components: Ta-
ble 4 shows that 57.78% of validation bugs affect communi-
cation stacks, e.g., Bluetooth and TCP/IP implementations.
For instance, FreeRTOS has a DNS poisoning bug that does
not check if a DNS answer matches an outgoing query (CVE-
2018-16598). Open-source libraries that are heavily used by
Cortex-M systems, such as Mbed TLS or WolfSSL, also have
42 validation bugs.

I16. Validation bugs in device drivers: Device drivers are
exposed to attackers through physically-accessible peripher-
als, e.g., the USB interface. We found 25 bugs that affect two
hardware vendors and two RTOSs in this category. For in-
stance, the buffer overread bug of the NXP Kinetis K82 USB
driver can be leveraged to access the flash (CVE-2021-44479).
The USB driver in Zephyr also has a buffer overflow bug that
allows a USB-connected host to cause possible remote code
execution (CVE-2020-10019).

I17. Validation bugs in dynamic memory allocations:
Embedded systems commonly implement custom allocators
rather than using the standard heap implementations in the
Libc [16]. Bugs in heap management can result in a system
crash or arbitrary code execution. For example, NXP’s SDK,
RIOT-OS, Mbed OS, and CMSIS RTOS are vulnerable to
integer overflows in their allocator functions [87].

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 155

Table 4: Distribution of Cortex-M software CVEs in different classes
Bug Class Functions Affected HW Vendors’ SDKs Affected RTOSs / TLS libs #Bugs

Communication NXP (2), Microchip (5), ST (1), TI (9),
Cypress (10), Silicon Libs (8), Nordic (3)

FreeRTOS (11), RIOT-OS (24), Mbed OS (7), Zephyr (32),
Contiki-ng (39), Mbed TLS (14), wolfSSL (28) 193 57.78%

Device Driver TF-M (1), NXP (4), ST (7) Zephyr (8), Azure (5) 25 7.48%

Memory Allocation NXP (1) FreeRTOS (2), RIOT-OS (2), Mbed OS (2),
CMSIS RTOS2 (1), Zephyr (2) 10 2.99%

Context Switch TF-M (2) FreeRTOS(1), Zephyr (3) 6 1.79%

Validation

Others Silicon Labs(5), NXP (2), Microchip (1) Contiki-ng (1), Zephy (10), Azure (9) 28 6.59%

Protocol Implementation TI (1), Cypress (2), Silicon Labs (2) FreeRTOS (3), RIOT-OS (4), Zephyr (13), Mbed OS (1),
Mbed TLS (3), wolfSSL (9) 38 11.38%

Memory Access Control TF-M (1), NXP (1), ST (1) FreeRTOS (2), Zephyr (4), Contiki-ng (1) 10 2.99%Functional

Cryptography Primitive TF-M (2), Microchip (1), ST (1) Mbed TLS (4), wolfSSL (4) 12 3.59%
Extrinsic Software Side-Channel ST (1) Mbed TLS (8), wolfSSL (5) 14 4.19%

I18. Validation bugs in context switch components: Bugs
in these components have been exploited for privilege escala-
tion. Zephyr uses signed integer comparison to validate the
syscall number, so a negative number leads to privilege es-
calation (CVE-2020-10027). TF-M has a bug allowing for
out-of-bounds write in an NSC function, which can lead to
data leakage from the secure state (CVE-2021-27562).

I19. Validation bugs in other components: As discussed
in I08, many systems execute entirely at the privileged level,
and bugs in any component could lead to severe consequences.
For example, a buffer overflow in FreeRTOS’ shell can cause
privileged code execution (CVE-2020-10023). Microchip’s
SDK has integer overflows that can be leveraged to access
flash memory (CVE-2019-16127).

5.2 Functional bugs

Functional bugs refer to programming errors that do not cor-
rectly implement the intended design.

I20. Functional bugs in protocol implementations: 11.38%
of the functional bugs are related to protocol implementations.
For instance, the Bluetooth controller in the Cypress SDK
uses a much shorter random number (than 128 bits) as the
paring number, allowing the brute force of the random number
to perform a man-in-the-middle attack during BLE pairing
(CVE-2020-11957).

I21. Functional bugs in memory access control: Incorrect
memory access control configurations, including for MPU
and TrustZone, compromise isolation. We found eight bugs
affecting one hardware vendor and two RTOSs in this cate-
gory. For example, FreeRTOS has a bug that allows any code
to set the system privilege level (CVE-2021-43997).

I22. Functional bugs in cryptography primitives: We
found four bug reports in this category. For instance, RIOT-OS
has a nonce reuse bug in its encryption function (CVE-2021-
41061) and TF-M has a functional bug when cleaning up
the memory allocated for a multi-part cryptographic oper-
ation, resulting in a memory leak (CVE-2021-32032). The
implementations of PKCS #1 v1.5 padding for RSA in the
ST (CVE-2020-20949) and Microchip (CVE-2020-20950)
SDKs are vulnerable to the Bleichenbacher attack [88]. This
vulnerability relies on the use of error messages or responses

from the server to gain information about the validity of the
padding after decryption attempts.

5.3 Extrinsic bugs

Extrinsic bugs refer to defects that do not belong to the vali-
dation bugs or functional errors.

I23. Software side-channels: The Lucky 13 attack in Mbed
TLS (CVE-2020-16150 and CVE-2020-36423) enables an
attacker to deduce secret key information by exploiting time
variations in the decryption process. This vulnerability, specif-
ically found in Cipher Block Chaining (CBC) mode, is based
on the time differences associated with padding length.

Insights
• Most Cortex-M based production systems are written in

memory-unsafe languages, e.g., C [89], and they suffer
from memory corruption vulnerabilities.

• Microcontrollers lack security mechanisms present in mi-
croprocessors for decades, such as privilege separation.
Microcontroller developers may not realize the absence of
features like an MMU can pose greater risks than micro-
processors. Without privilege separation, any bug can be
critical and compromise the entire system.

6 Security Research
We present a taxonomy of the security research projects on
Cortex-M systems. Figure 3 depicts and summarizes the rela-
tionships among limitations, issues, and mitigations at differ-
ent layers. Table 5 presents a comparative evaluation.

Addressing Hardware Issues

6.1 Addressing Microarchitectural and ISA Is-
sues

D01. Mitigating microarchitectural attacks: To miti-
gate information leakage through timing side-channels (I01),
BUSted [47] recommends disabling DMA during sensitive
execution, and introducing random delays. To counter infor-
mation leakage through long-term data remanence, UnTrust-
Zone [48] suggests initializing SRAM at startup. To mitigate

156 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

12/6/23, 5:26 PM tree-polyline (2).html

file:///C:/Users/minta/Downloads/tree-polyline (2).html 1/1

L01. No memory virtualization
L02. No IOMMU
L03. A small number of MPU ...
L04. A small number of secure ...

L05. No intrinsic encryption to ...

L06. Lack of intrinsic support for ...
L07. Lack of hardware-based RA ...

D01. Mitigating micro. attacks

D02. Secure cross-state ...

D03. Privilege separation
D04. Compartmentalization

D05. Virtualization

D06. Multi-world systems

D07. Stack and return address integrity
D08. Forward-edge CFI
D09. Compiler-based software diversity
D10. ASLR
D11. Formal verification
D12. Software-based XOM
D13. Secure multiprogramming with ...
D14. Software-based control-flow ...
D15 - D16. Firmware update
D17 - D20. Vulnerability discovery

I01. ... micro. side-channels
I02. Vulnerable to fault injections
I03. ... inter-processor debugging
I04. Fast state switch mechanism ...
I05. ... due to state switches
I06. ... vendor-specific HW features
I07. Bypassable vendor-specific ...
I08. No or weak privilege separation
I09. SVC repurposing
I10. No or weak stack separation
I11. Secure state exception stack ...

I12. No or weak memory access ...

I13. No or weak stack canary
I14. Missing barrier instructions
I15 - I22. Validation/Functional bugs
I23. Software side-channels

Hardware Limitations (§3.1)
Hardware Issues (§3.2)
Software Architectural Issues (§4.2)
Software Implementation Issues (§5)
Security Research (§6)

Limitations of
	 Memory

	 Protection

 Mechanisms

 Inherited

 Limitations from

 TrustZone-A

 Addressing

Micro. and ISA

 Issues

 Addressing

 Software

 Architectural

 Issues

Vendor-Agnostic

 ISA Issues

Vendor-Specific

	 HW Issues

	 Lack of

 Privilege

Management

 Lack of

 Memory

Protections

Figure 3: The relationships among the systematized Cortex-M related limitations, issues, and mitigations. The connections
indicate the issues a research direction attempts to address and the limitations it needs to overcome. For instance, to address the
issue of no or weak privilege separation (I08), mitigations (D03, D05, and D06) have been proposed, and they overcome some
limitations (L01, L02, and L03). An interactive version of this figure can be accessed at our anonymized repo.

fault injection attacks (I02), one strategy is the use of dupli-
cate security-critical registers [131]. µGlitch suggests intro-
ducing random delays in the execution code to complicate the
parameter determination process for fault injections.

D02. Secure cross-state control and data interactions: One
effective way to counteract privilege escalation through fast
state switching (I03) is to add additional privilege checks.
Ret2ns [53] suggests using address masking and MPU con-
figuration checks to limit return targets from secure to non-
secure state at the non-secure unprivileged level. In improving
privilege management for inter-processor debugging (I04),
Nailgun [55] employs MPU to restrict low-privilege access
to debug registers. To mitigate information leakage during
cross-state switches (I05), one approach is to implement au-
thentication and authorization between the two states, as Se-
CReT [132] does for TrustZone-A. Secure Informer [95] and
ShieLD [96] authenticate secure service calls from the non-
secure state by verifying non-secure MPU configurations.

Addressing Software Architectural Issues

6.2 Separation of Privilege
Projects in this category provide different levels of granularity
in isolating and confining software modules of one bare-metal
system or one RTOS to address I08.

D03. Privilege separation: Solutions were proposed to auto-
matically relegate RTOS tasks and bare-metal systems to the
unprivileged level and use MPU to govern memory access.
SAFER SLOTH [97] dispatches tasks as interrupt handlers
and lowers the privilege level in the interrupt service routine.
EPOXY [77] automatically identifies operations requiring
privileged execution (e.g., MSR, move to system registers from
general-purpose registers) in bare-metal systems. It then rele-
gates the whole bare-metal system to the unprivileged level
and instruments privilege escalation and relegation instruc-
tions around the operations requiring privileged execution.

These privilege separation approaches only introduce a small
number of context switches, introducing low overhead.

D04. Compartmentalization: The projects on privilege sep-
aration (D03) only split a program into privileged and unprivi-
leged parts. However, software modules at the same privilege
level still reside in the same security and fault domain, result-
ing in coarse-grained memory access control (I12). Several
compartmentalization solutions attempt to address this issue.

Compartmentalization with heavy context switches: uSFI
compiler [98] instruments an entry function for each module
and changes cross-module procedure calls to SVC instructions.
ACES [79] instruments binaries to enforce inter-component
isolation. MINION [99] automatically identifies the reachable
memory regions of tasks through static analysis and enforces
run-time memory access control. Because there are limited
available MPU regions (L03), ACES and MINION propose
schemes to merge the compartments. Compared to D03, com-
partmentalization introduces more context switches between
modules; hence, the overhead is higher.

Compartmentalization with reduced context switches: To
reduce the overhead introduced by compartmentalization,
OPEC [100] leverages global variable shadowing to mini-
mize the need for MPU regions and compartmentalizes pro-
grams to include only essential functions. EC [101] uses a
formally verified microkernel and intra-kernel isolation to
achieve compartmentalization. CRT-C [102] compartments
an RTOS into kernel, threads, and device drivers and utilizes
CheckedC [133] to restrict their programming capabilities.

DMA-enabled compartmentalization: The aforementioned
compartmentalization solutions do not support DMA, leaving
the system vulnerable to malicious DMA-capable devices due
to the absence of an IOMMU (L02). D-Box [103] addresses
this issue by introducing more secure MPU configurations and
kernel extensions with explicit support for DMA operations.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 157

Table 5: Comparative evaluation of system isolation and attack mitigation projects for Cortex-M (§6.2 - §6.8). The first column
of the table lists the major defense mechanism proposed or adopted in a project.

§3.1 §3.2 §4.2 §5 Self-reported average or worst case overhead (%)

Project Year Venue In
pu

t(
S:

so
ur

ce
co

de
;B

:b
in

ar
y)

Ta
rg

et
(B

:b
ar

e-
m

et
al

;R
:R

TO
S)

Pr
ot

ot
yp

e
Im

pl
em

en
ta

tio
n

(I
SA

)

L
im

it.
of

M
em

or
y

Pr
ot

.M
ec

ha
ni

sm
s

In
he

ri
te

d
L

im
it.

fr
om

Tr
us

tZ
on

e-
A

V
en

do
r-

A
gn

os
tic

M
ic

ro
.I

ss
ue

s
V

en
do

r-
A

gn
os

tic
IS

A
Is

su
es

V
en

do
r-

sp
ec

ifi
c

H
ar

dw
ar

e
Is

su
es

L
ac

k
of

Pr
iv

ile
ge

M
an

ag
em

en
t

L
ac

k
M

em
or

y
Pr

ot
ec

tio
ns

V
al

id
at

io
n

B
ug

s
Fu

nc
tio

na
lB

ug
s

E
xt

ri
ns

ic
B

ug
s

M
PU

U
np

riv
ile

ge
d

St
or

e/
L

oa
d

In
st

ru
ct

io
ns

Tr
us

tZ
on

e
D

W
T

FP
B

C
od

e,
B

in
ar

y
Si

ze
In

cr
ea

se
m

en
t

M
em

or
y

O
ve

rh
ea

d

E
ne

rg
y

C
on

su
m

pt
io

n
O

ve
rh

ea
d

B
ar

e-
m

et
al

A
pp

lic
at

io
ns

R
TO

Ss

B
E

E
B

S
[9

0]

C
or

eM
ar

k
[9

1]

C
or

eM
ar

k-
Pr

o
[9

2]

D
hr

ys
to

ne
[9

3]

E
m

be
nc

h
[9

4]

BUSted [47] 2023 S&P - - v8 +
UnTrustZone [48] 2023 S&P - - - +D01
µGlitch [52] 2023 USENIX - - -
Nailgun [55] 2021 TDSC S R v7 +
ret2ns [53] 2023 DAC S R v8 + +
Secure Informer [95] 2022 CPSS S R v8 + + <.01 3.5D02

ShieLD [96] 2022 TDSC S R v8 + + .04 2600

SAFER SLOTH [97] 2014 RTAS S R v7 + >100D03 EPOXY [77] 2017 S&P S B v7 + 29 29 2.6 2.4 1.6
uSFI [98] 2018 DATE S R v7 + + 10 1.1
ACES [79] 2018 USENIX S B v7 + 70 13
MINION [99] 2018 NDSS S R v7 + -71.3 -98.86 6.13
OPEC [100] 2022 EuroSys S B v7 + 1.79 5.53 .23
EC [101] 2023 S&P S B/R v7 + + 2.57
CRT-C [102] 2023 S&P S R v7 1.75 2.63

D04

D-Box [103] 2022 NDSS S R v7 + -.12 -.07 -18.2 2
Hermes [64] 2018 MCSA S B/R v7 +
MultiZone [65] 2020 EW B B v7 + .01
lLTZVisor [66, 67] 2018 RTAS S B/R v8 + .6D05

SBIs [68] 2022 RTAS S B/R v8 + +
RT-TEE [104] 2022 S&P S R v8 +
SafeTEE [105] 2022 DATE S R v8 + 2.5D06
uTango [70] 2022 Access B B/R v8 + + 4.6 .05
CaRE [106] 2017 RAID B B v8 + + 14.5 369 513
Silhouette [107] 2020 USENIX S B v7 + + 8.9 3.4 1.3
TZmCFI [108] 2020 IJPP S R v8 + + 84 14.14D07 Kage [109] 2022 USENIX S R v7 + + 49.8 5.2
SUM [110] 2023 C&S S B v7 + 8.33 2.77 2.63
SHERLOC [111] 2023 CCS S B/R v8 + + 123 1106
µRAI [112] 2020 NDSS S B v7 + 54.1 15.2 .1 8.1

D08

RIO [113] 2023 Access S B v8 + 29.9 16.83
D09 Randezvous [114] 2022 EuroS&P S B v7/8 + + 13.6 24.5 0.6 6.9 7.0

HARM [115] 2022 EuroS&P B B/R v8 + + 15.49 5.8 21 28D10 fASLR [116, 117] 2022 ESORICS S B v8 + + 4.73 9.65
D11 Pip-MPU [118] 2023 IJESA S B/R v7/8 +

uXOM [119] 2019 USENIX S R v7 + + 15.7 7.5 7.3D12 PicoXOM [120] 2020 SecDev S B/R v7 + + 5.89 .02 0.46 -.11

D13 Tock [121] 2017 SOSP S R v7 +
DIAT [122] 2019 NDSS S R v7 400
LAPE [123] 2020 HPCC S B v7 + 38 8.2 2.2
ISC-FLAT [124] 2023 RTAS S B v8 + + 17.5 35.1D14

ARI [125] 2023 USENIX S R v7 + + 12.5 10.7

ASSURED [126] 2018 TCAD B R v8 + 80
DisPatch [127] 2022 MobiSys B R v7 .53 1.48D15
Shimware [128] 2023 RAID B B/R v7
HERA [129] 2021 NDSS S R v7 +D16 RapidPatch [130] 2022 USENIX S B/R v7 + 1.5

v7: Armv7-M, v8: Armv8-M. : Implemented defense techniques to address at least one issue or overcome one or more limitations in the corresponding category. +: Need specific
hardware support. -: Not applicable. ↓↓ and ⇓⇓ represent small and big steps towards a similar goal, respectively.

6.3 Virtualization and Multi-world Systems
Solutions in this category enable or secure multiple bare-metal
systems and RTOSs to run in an isolated fashion on one MCU.

D05. Virtualization: This technique can be used to support
privilege separation (see I08).

Software-based virtualization: In those solutions, bare-
metal systems and RTOSs execute at the unprivileged level

and the exokernel or an exception handler runs at the privi-
leged level, as shown in Figure 2(c.1). A challenge is that the
MSR and MRS (move to general-purpose registers from system
registers) instructions fail silently without triggering any ex-
ceptions when executing at the unprivileged level, which can
be addressed by replacing them with undefined instructions.
Examples are Hermes [64] and MultiZone [65].

158 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

TrustZone-based virtualization: As shown in Figure 2(c.2),
the exokernel or hypervisor runs at the highest privilege level
(privileged secure state), and bare-metal systems and RTOSs
can execute at the other three privilege levels. Prominent
examples include lLTZVisor [66, 67] and SBIs [68].

D06. Multi-world systems: Multiple isolation environments
enhance the isolation between system components.

Real-time and secure TrustZone-assisted dual-world sys-
tem: De facto Cortex-M TEE solutions, e.g., TF-M [69], have
availability and security issues, e.g., CVE-2021-32032. To
address these issues, RT-TEE [104] ensures the real-time
availability of both computation and I/O by adopting a policy-
based event-driven hierarchical scheduler. SafeTEE [105]
targets multi-core Cortex-M devices and isolates applications
by assigning cores exclusively to them.

TrustZone-assisted multi-world system: As shown in Fig-
ure 2(e), TrustZone-assisted multi-world systems create mul-
tiple secure execution environments within the non-secure
state to overcome L06. The uTango [70] kernel runs in the
secure state at the privileged level, while other applications,
services, and OSs are isolated in their non-secure state do-
mains. Each domain has its own SAU configuration, which is
only accessible by the uTango kernel.

6.4 Defeating Memory Corruption Attacks
The quest to defeat memory corruption attacks on Cortex-M
systems (I15 - I19) largely includes adapting the security
solutions for microprocessor-based systems to the resource
and power constraint platforms.

D07. Stack and return address integrity: Stack and return
addresses are a major attack vector (I10 and I11). Besides
stack canaries (I13), there have been many attempts to main-
tain stack integrity on Cortex-M.

SafeStack: SafeStack [134] keeps unsafe local variables in
a separate unsafe stack while keeping the return address in
the regular stack. EPOXY implements an adapted SafeStack
by (i) putting the unsafe stack on top of the RAM, (ii) making
the stack grow up, and (iii) placing a region guard between
the unsafe stack and other memory regions.

Shadow stack: Shadow stack [135] stores protected copies
of return addresses. CaRE [106] and TZmCFI [108] use
TrustZone-M and place the shadow stack in the secure state.
To achieve low overhead, Silhouette [107] and Kage [109]
restrict the writes to the shadow stack by transforming regular
store instructions to unprivileged ones (STR*T). SUM [110] re-
stricts unauthorized access to the shadow stack via the MPU.

Return address integrity: µRAI [112] enforces the property
of return address integrity by removing the need to spill return
addresses to the stack. Rio [113] encrypts all return instruc-
tions in the firmware and instruments a runtime module to
decrypt and execute these instructions. SHERLOC [111] intro-
duces a reconstructed call stack (RCS) approach to ensure the
matching of function calls and returns.

ROP gadget removal: Thumb-2 instruction set [136] al-
lows the creation of ROP gadgets by jumping into the middle
of a 32-bit instruction. To replace exploitable instructions,
uSFI [98] and uXOM [119] convert all 32-bit instructions to
equivalent 16-bit instruction sequences.

Stack sealing: To secure the secure world stack exception
frame (I11), Arm recommends adding an integrity signature
to the bottom of the secure exception stack frame [137].

D08. Forward-edge control-flow integrity (CFI): TZmCFI
adopts LLVM’s forward-edge CFI [138]. CaRE calculates the
absolute target addresses, stores them in a branch table, and
replaces all indirect branches with SVC instructions for run-
time checking. Silhouette and Kage insert fixed CFI labels at
the beginning of every address-taken function and check the
label before the jump or the function call executes. SHERLOC
maintains an indirect branch table to constrain the forward
target within a predetermined CFG. InsectACIDE [139] re-
trieves a set of offline-computed legitimate transfer targets to
validate the forward-edge transfers.

D09. Compiler-based software diversity: This technique
randomizes the code and data of programs [140] to offer weak-
ened probabilistic protection from code reuse attacks and data
corruption attacks. However, the system memory layout re-
mains the same after compilation. For instance, EPOXY [77]
and Randezvous [114] randomize the function order and add
dummy variables to the .data and .bss regions.

D10. Address space layout randomization (ASLR): With-
out an MMU (L01) and the dynamic loading of programs, an
ASLR solution on Cortex-M needs to increase entropy and de-
cide when to perform the randomization. Both HARM [115]
and fASLR [116] copy code from flash to RAM for execution
and conduct randomization at the function level to increase en-
tropy. HARM triggers randomization periodically by SysTick
exceptions, while fASLR copies the function to a random
location of RAM when it is called for the first time.

D11. Formal verification: Pip-MPU [118] introduces a
formally verified kernel for Cortex-M. It features user-defined,
MPU-guarded multiple isolation levels and is a refactored
version of the MMU-based Pip protokernel [141]. It disables
exceptions and puts the kernel inside the privileged level.

6.5 Defeating Software-based Code Disclosure
Projects in this category explore software-based XOM. Note
that these efforts cannot address I07, in which a hardware
debugger can disclose the contents in memory.

D12. Software-based XOM: uXOM [119] converts mem-
ory access instructions, excluding those that need privilege,
into unprivileged ones (STR*T/LDR*T) and sets the code re-
gion as privileged access only. For the instructions that are
not converted, uXOM instruments verification before them.
PicoXOM [120] implements XOM by utilizing the address
range matching feature of DWT with a much lower overhead.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 159

The DWT, however, only has up to four comparators, which
limits the number of configurable XOM regions.

Addressing Software Implementation Issues

6.6 Memory-safe Programming
Developing software in a manner that inherently reduces the
likelihood of bugs and errors, thereby enhancing the overall
safety and reliability of the system (I15 - I23).

D13. Secure multiprogramming with memory-safe lan-
guages: Tock [121] takes advantage of MPU and the type-
safety features of Rust to build a multiprogramming system
on Cortex-M. Rust encapsulates a large fraction of the Tock
kernel with granular and type-safe interfaces.

6.7 Remote Attestation
Compared to the attack mitigation discussed in §6.4, remote
attestation only detects adversarial presence.

D14. Software-based control-flow and data integrity at-
testation: Control-flow attestation (CFA) extends static at-
testation of code to run-time control-flow paths. DIAT [122]
provides data integrity attestation and CFA of the code that
generates and processes the data. LAPE [123] provides a
coarse-grained CFA by grouping functions into compartments
and attests the inter-compartment control-flow transfers. ISC-
FLAT [124] extends the aforementioned approaches to sup-
port interrupts, and ARI [125] formulates the property of
real-time mission execution integrity.

Addressing Other Issues

6.8 Firmware Update

D15. Secure software update: ASSURED [126] allows a
device to authenticate the source of firmware updates. Dis-
Patch [127] allows end users to write patches in a domain-
specific language, which DisPatch then automatically injects
into the binary firmware. Shimware [128] investigates the
challenges of updating monolithic firmware images with new
security features. It automates finding safe injection locations
and implementing self-checks to prevent modifications.

D16. Firmware hotpatching: While updating the whole
firmware requires interrupting its normal execution (D15),
hotpatching can fix minor issues at run-time. HERA [129]
uses flash patch and breakpoint (FPB) to insert hardware
breakpoints and redirects the instructions at breakpoints to
the patch codes on RAM. However, FPB is only supported on
M3 and M4 MCUs. To address this issue, RapidPatch [130]
utilizes other hardware mechanisms, e.g., DWT.

6.9 Vulnerability Discovery

D17. Full firmware rehosting: One main challenge in em-
ulating firmware on a desktop is how to model peripherals.

P2IM [142] observes the MMIO access pattern of each pe-
ripheral during firmware emulation. DICE [143] improves
P2IM by additionally modeling DMA. Symbolic execution
that models the return value of an MMIO read as a symbolic
value has also been used in firmware emulation. Examples
include Laelaps [144], µEmu [145], Jetset [146], and Fuz-
zware [21]. SEmu [147] extracts the condition-action rules
to dynamically synthesize peripheral models. To sidestep the
challenges in peripheral modeling, HALucinator [148] detects
and replaces hardware abstraction layer functions of major
chip vendors with host implementations. SAFIREFUZZ [149]
executes embedded firmware as a Linux userspace process
on systems sharing the same instruction set family as the tar-
geted device. HOEDUR [150] employs multi-stream inputs,
restructuring the traditional approach of firmware fuzzing
into multiple, strictly typed, and cohesive streams, thereby
enhancing mutation effectiveness and coverage.

D18. Hardware-in-the-loop rehosting: Full firmware re-
hosting techniques cannot accurately model more complex
peripherals, such as the USB. Hardware-in-the-loop ap-
proaches address this challenge by redirecting I/O interac-
tions to the physical hardware. The pioneer in this direction
is Avatar [151], which is followed by its variants [152–155].
Instead of redirecting I/O interactions, Frankenstein [156]
directly uses dumped firmware images from real devices to
re-establish emulator states.

D19. On-device fuzzing: Existing rehosting solutions fall
short in testing low-level drivers, either because they cannot
provide the needed emulation fidelity or completely sidestep
driver emulation. µAFL [157] supports on-device fuzzing
with the help of a debug dongle and ETM. Moreover, over-
the-air fuzzing has been explored to find bugs in Bluetooth
controllers [158, 159]. Lastly, to make bugs observable dur-
ing fuzzing, µSBS uses binary rewriting to instrument the
firmware for sanitization checks [160]. SyzTrust [161] com-
bines ETM for direct fuzzing on IoT devices with non-
invasive state and code coverage tracking.

D20. Static methods: Static methods are typically geared
toward detecting a particular type of bug. For instance,
PASAN [162] considers concurrency issues with peripheral
access. FirmXRay [15] aims to detect Bluetooth link layer
vulnerabilities from bare-metal firmware. HEAPSTER [16]
inspects common classes of heap vulnerabilities in Cortex-M
monolithic firmware images.

6.10 Other research
Solutions and ideas for other architectures may be ported to
or optimized for Cortex-M with proper modifications. For
instance, the ideas of control-flow attestation (C-FLAT [163])
and operation execution integrity (OAT [164]) apply to
Cortex-M naturally but were only implemented on Cortex-A.
In addition, on Arm Cortex-A, pointer authentication code
(PAC) has been utilized to enforce spatial (e.g., return ad-

160 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

dresses [165] and all pointers [166]) and temporal [167, 168]
memory safety on userspace programs and the kernel [169].

7 Recommendations and Future Directions

7.1 Recommendations to research community
R01. Explore the pros and cons of new hardware features
for security: The hardware features of Cortex-M exhibit
streamlining and differences from its Cortex-A counterparts.
This distinction spans from the microarchitectural layer to
the ISA. For instance, TrustZone-M is a streamlined version
of TrustZone-A, and the key management for PAC [14] on
Cortex-M significantly differs from that on Cortex-A. All of
these differences pose new challenges and opportunities in
discovering their limitations and utilizing them for protections
that were not possible before.

R02. Explore diverse IoT attack models and scenarios to
identify new research problems and challenges: The ap-
plication scenarios of Cortex-M systems, e.g., (i) deployed
in the field and (ii) functionality implemented in privileged
mode, present unique trust models and security research op-
portunities, which must be addressed with extra consideration
for performance, memory, and energy cost [139, 170]. Future
research should not only port the same defenses from micro-
processor systems to Cortex-M systems but also address the
challenges specific to MCUs.

R03. Investigate how to facilitate the practical adoption of
academic research results: Compared to security research
on Cortex-M, its deployment significantly lags behind. Oper-
ational research may focus on bridging the gap between se-
curity research outcomes and practical implementation. Such
research may involve how to foster collaborations between
researchers and industry practitioners, how to advocate for
best practices, and how to promote educational programs to
raise awareness about the importance of timely security de-
ployment in Cortex-M systems.

7.2 Recommendations to developers
R04. Securing the network communications: As discussed
in section §5, network protocol implementations often expose
many vulnerabilities including validation and functional bugs.
This is because these protocols are designed to work with
microcontroller- and microprocessor-based systems, where
developers may prioritize functionalities rather than secu-
rity. Microprocessor-based systems have advanced security
mechanisms like ASLR and DEP, which can handle most
security issues. However, employing vulnerable protocols on
microcontroller-based systems can lead to severe problems.
Thus, microcontroller system developers should pay extra at-
tention to security improvements, such as validating the input
and output, utilizing security mechanisms discussed in section
§6, and assessing the security of protocols before using them.

R05. Implement privilege separation or employ RTOSs
with distinct privilege levels: We have observed that nu-
merous real-world firmware was built upon vendor-supplied
project templates, lacking privilege separation. We strongly
recommend developers opt for templates incorporating es-
sential security features or, alternatively, adopt RTOSs with
different privilege levels as the foundational framework for
their development.

R06. (Partially) Transition into memory-safe languages:
A full transition into memory-safe languages, e.g., Rust, may
not be immediately feasible for all Cortex-M projects due
to factors like existing codebase, expertise, and project time-
lines [171]. Partial adoption of memory-safe languages, which
provides a pragmatic and manageable approach toward em-
bracing memory-safe languages’ advantages within existing
projects, can be highly valuable for enhancing the overall
system robustness by mitigating memory-related issues like
buffer overflows and null pointer dereferences.

R07. Enhance the synergy between developers and the
security research community: During our efforts to sys-
tematize security research, we noticed that some issues lack
corresponding defense mechanisms (Figure 3). This could
be due to incomplete publication collections, as we primarily
focused on security conferences. Nonetheless, similar to the
varying levels of collaboration observed between the hacker
community and academia [172], if developers and the secu-
rity research community unite to share findings and insights,
the security of microcontroller-based systems may be signifi-
cantly improved.

8 Conclusion
We present a comprehensive systematization study of the hard-
ware and software security of Cortex-M systems. It covers the
Cortex-M hardware architectures, security-related features,
limitations, and issues. The study includes by far the largest
empirical analysis of real-world Cortex-M firmware, char-
acterization of reported software bugs, and an overview of
state-of-the-art security research in this area. Based on the in-
sights, we develop a set of recommendations for the research
community and MCU software developers.

Acknowledgment
This material is based upon work supported in part by Na-
tional Science Foundation (NSF) grants (2237238, 2329704,
2207202, 2238264), a National Centers of Academic Excel-
lence in Cybersecurity grant (H98230-22-1-0307), FCT – Fun-
dação para a Ciência e Tecnologia within the R&D Units
Project Scope UIDB/00319/2020, and a Cisco University Re-
search Program Fund (71858473). Any opinions and findings
expressed in this material are those of the author(s) and do
not necessarily reflect the views of United States Government
or any agency thereof.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 161

References

[1] Arm, “Arm Partner Ecosystem Catalog,” https://www.
arm.com/partners/catalog/results#sort=date%20desce
nding&f:armip=[Cortex-M].

[2] Arm, “The Arm ecosystem ships a record 6.7 billion
Arm-based chips in a single quarter,” https://www.arm.
com/company/news/2021/02/arm-ecosystem-ships-r
ecord-6-billion-arm-based-chips-in-a-single-quarter.

[3] ——, “Arm Partners Have Shipped 200 Billion Chips,”
https://www.arm.com/blogs/blueprint/200bn-arm-chi
ps.

[4] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok:
Understanding the prevailing security vulnerabilities
in trustzone-assisted tee systems,” in IEEE Symposium
on Security and Privacy (S&P), 2020.

[5] Arm, “Armv6-M Architecture Reference Manual,” ht
tps://developer.arm.com/documentation/ddi0419/c/
Application-Level-Architecture/The-Armv6-M-Instr
uction-Set/About-the-instruction-set.

[6] ——, “Armv7-M Architecture Reference Manual,” ht
tps://developer.arm.com/documentation/ddi0403/ed.

[7] ——, “Armv8-M Architecture Reference Manual,” ht
tps://developer.arm.com/documentation/ddi0553/late
st?_ga=2.1957362.2138159006.1623856318-79227
2022.1611588763.

[8] J. Yiu, “ARMv8-M architecture technical overview,”
ARM white paper, 2015.

[9] Arm, “Armv8-M Memory Protection Unit,” https://de
veloper.arm.com/documentation/100699/0100.

[10] ——, “Cortex-M23 Technical Reference Manual,” ht
tps://developer.arm.com/documentation/ddi0550/.

[11] ——, “Cortex-M33 Technical Reference Manual,” ht
tps://developer.arm.com/documentation/100230/.

[12] ——, “Cortex-M55 Technical Reference Manual,” ht
tps://developer.arm.com/documentation/101051/.

[13] ——, “TrustZone technology for the Armv8-M archi-
tecture Version 2.1,” https://developer.arm.com/docu
mentation/100690/latest/.

[14] ——, “Armv8.1-M Pointer Authentication and Branch
Target Identification Extension,” https://community.ar
m.com/developer/ip-products/processors/b/processor
s-ip-blog/posts/armv8-1-m-pointer-authentication-a
nd-branch-target-identification-extension.

[15] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting
Bluetooth Link Layer Vulnerabilities From Bare-Metal
Firmware,” in ACM Conference on Computer and Com-
munications Security (CCS), 2020.

[16] F. Gritti, F. Pagani, I. Grishchenko, L. Dresel, N. Redini,
C. Kruegel, and G. Vigna, “HEAPSTER: Analyzing
the Security of Dynamic Allocators for Monolithic
Firmware Images,” in IEEE Symposium on Security
and Privacy (S&P), 2022.

[17] “ucsb-seclab/monolithic-firmware-collection,” https:
//github.com/ucsb-seclab/monolithic-firmware-colle
ction.

[18] “ThePBone/GalaxyBudsFirmwareDownloader,” https:
//github.com/ThePBone/GalaxyBudsFirmwareDown
loader/tree/master/firmware_archive.

[19] “grant-h/ShannonBaseband,” https://github.com/grant
-h/ShannonBaseband/tree/master/firmware.

[20] J. Friebertshäuser, F. Kosterhon, J. Classen, and M. Hol-
lick, “Polypyus–the firmware historian,” in Workshop
on Binary Analysis Research (BAR), vol. 2021, 2021,
p. 21.

[21] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson,
M. Muench, G. Vigna, C. Kruegel, T. Holz, and A. Ab-
basi, “Fuzzware: Using Precise MMIO Modeling for
Effective Firmware Fuzzing,” in USENIX Security Sym-
posium, 2022.

[22] “Nordic semiconductor,” https://www.nordicsemi.com
/.

[23] “Texas instruments,” https://www.ti.com/.

[24] “STMicroelectronics,” https://www.st.com/content/s
t_com/en.html.

[25] “Telink Semiconductor,” https://www.telink-semi.co
m/.

[26] “Dialog Semiconductor,” https://www.dialog-semicon
ductor.com/.

[27] “NXP Semiconductors,” https://www.nxp.com/.

[28] “Cypress Semiconductor,” https://www.infineon.com/.

[29] “Ghidra,” https://ghidra-sre.org/.

[30] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“ByteWeight: Learning to recognize functions in binary
code,” in USENIX Security Symposium, 2014.

[31] Arm, “ARM CMSIS RTOS2,” https://github.com/A
RM-software/CMSIS_5/blob/2ccc9e92637fe80f50d
5e8b9d503bb715112fe69/CMSIS/RTOS2/RTX/RT
X5.scvd.

162 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.arm.com/partners/catalog/results#sort=date%20descending&f:armip=[Cortex-M]
https://www.arm.com/partners/catalog/results#sort=date%20descending&f:armip=[Cortex-M]
https://www.arm.com/partners/catalog/results#sort=date%20descending&f:armip=[Cortex-M]
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/blogs/blueprint/200bn-arm-chips
https://www.arm.com/blogs/blueprint/200bn-arm-chips
https://developer.arm.com/documentation/ddi0419/c/Application-Level-Architecture/The-Armv6-M-Instruction-Set/About-the-instruction-set
https://developer.arm.com/documentation/ddi0419/c/Application-Level-Architecture/The-Armv6-M-Instruction-Set/About-the-instruction-set
https://developer.arm.com/documentation/ddi0419/c/Application-Level-Architecture/The-Armv6-M-Instruction-Set/About-the-instruction-set
https://developer.arm.com/documentation/ddi0419/c/Application-Level-Architecture/The-Armv6-M-Instruction-Set/About-the-instruction-set
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0553/latest?_ga=2.1957362.2138159006.1623856318-792272022.1611588763
https://developer.arm.com/documentation/ddi0553/latest?_ga=2.1957362.2138159006.1623856318-792272022.1611588763
https://developer.arm.com/documentation/ddi0553/latest?_ga=2.1957362.2138159006.1623856318-792272022.1611588763
https://developer.arm.com/documentation/ddi0553/latest?_ga=2.1957362.2138159006.1623856318-792272022.1611588763
https://developer.arm.com/documentation/100699/0100
https://developer.arm.com/documentation/100699/0100
https://developer.arm.com/documentation/ddi0550/
https://developer.arm.com/documentation/ddi0550/
https://developer.arm.com/documentation/100230/
https://developer.arm.com/documentation/100230/
https://developer.arm.com/documentation/101051/
https://developer.arm.com/documentation/101051/
https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100690/latest/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ThePBone/GalaxyBudsFirmwareDownloader/tree/master/firmware_archive
https://github.com/ThePBone/GalaxyBudsFirmwareDownloader/tree/master/firmware_archive
https://github.com/ThePBone/GalaxyBudsFirmwareDownloader/tree/master/firmware_archive
https://github.com/grant-h/ShannonBaseband/tree/master/firmware
https://github.com/grant-h/ShannonBaseband/tree/master/firmware
https://www.nordicsemi.com/
https://www.nordicsemi.com/
https://www.ti.com/
https://www.st.com/content/st_com/en.html
https://www.st.com/content/st_com/en.html
https://www.telink-semi.com/
https://www.telink-semi.com/
https://www.dialog-semiconductor.com/
https://www.dialog-semiconductor.com/
https://www.nxp.com/
https://www.infineon.com/
https://ghidra-sre.org/
https://github.com/ARM-software/CMSIS_5/blob/2ccc9e92637fe80f50d5e8b9d503bb715112fe69/CMSIS/RTOS2/RTX/RTX5.scvd
https://github.com/ARM-software/CMSIS_5/blob/2ccc9e92637fe80f50d5e8b9d503bb715112fe69/CMSIS/RTOS2/RTX/RTX5.scvd
https://github.com/ARM-software/CMSIS_5/blob/2ccc9e92637fe80f50d5e8b9d503bb715112fe69/CMSIS/RTOS2/RTX/RTX5.scvd
https://github.com/ARM-software/CMSIS_5/blob/2ccc9e92637fe80f50d5e8b9d503bb715112fe69/CMSIS/RTOS2/RTX/RTX5.scvd

[32] R. Yu, F. Del Nin, Y. Zhang, S. Huang, P. Kaliyar, S. Za-
kto, M. Conti, G. Portokalidis, and J. Xu, “Building
Embedded Systems Like It’s 1996,” in Network and
Distributed System Security Symposium (NDSS), 2022.

[33] MITRE, “CVE database,” https://cve.mitre.org/.

[34] “MCU Market Size In 2022 By Fastest Growing Com-
panies,” https://www.marketwatch.com/press-release
/iot-microcontroller-mcu-market-size-2022-industr
y-analysis-by-growth-share-trends-demand-segment
s-opportunities-and-forecast-2028-2022-09-19.

[35] Market Growth Reports, “United States IoT Operating
Systems Market Report & Forecast 2021-2027,” https:
//www.marketgrowthreports.com/united-states-iot-o
perating-systems-market-19250528.

[36] Arm, “Mbed OS TLS,” https://tls.mbed.org/.

[37] wolfSSL, “wolfSSL,” https://www.wolfssl.com/.

[38] NXP Semiconductors, “i.MX RT Crossover MCUs,”
https://www.nxp.com/products/processors-and-micro
controllers/arm-microcontrollers/i-mx-rt-crossover
-mcus:IMX-RT-SERIES.

[39] ——, “MCUXpresso SDK API Reference Manual,”
https://mcuxpresso.nxp.com/api_doc/dev/1411/a000
57.html.

[40] J. Y. Afonso Santos, “SAU, IDAU, MPC and PPC.
What’s the difference?” https://community.arm.co
m/support-forums/f/architectures-and-processors-for
um/12065/sau-idau-mpc-and-ppc-what-s-the-differe
nce/34873.

[41] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appel-
baum, and E. W. Felten, “Lest we remember: cold-boot
attacks on encryption keys,” Communications of the
ACM, 2009.

[42] Linaro, “Trusted Firmware M (TFM) v1.3.0 sourcec
code,” https://git.trustedfirmware.org/TF-M/trusted-f
irmware-m.git/tag/?h=TF-Mv1.3.0.

[43] “Arm Platform Security Architecture Security Model,”
https://armkeil.blob.core.windows.net/developer/File
s/pdf/PlatformSecurityArchitecture/Architect/DEN
0079-PSA_SM_ALPHA-02.pdf.

[44] “PSA Attestation API ,” https://armkeil.blob.core.wi
ndows.net/developer/Files/pdf/PlatformSecurityArch
itecture/Implement/IHI0085-PSA_Attestation_API-1
.0.1-2.pdf.

[45] D. McCann, C. Whitnall, and E. Oswald, “ELMO: Em-
ulating Leaks for the Arm Cortex-M0 without Access
to a Side Channel Lab,” IACR Cryptol. ePrint Arch.,
2016.

[46] S. Vafa, M. Masoumi, and A. Amini, “An efficient
profiling attack to real codes of PIC16F690 and Arm
Cortex-M3,” IEEE Access, 2020.

[47] C. Rodrigues, D. Oliveira, and S. Pinto, “BUSted!!!
Microarchitectural Side-Channel Attacks on the MCU
Bus Interconnect,” in IEEE Symposium on Security
and Privacy (S&P), 2023.

[48] J. Mahmod and M. Hicks, “UnTrustZone: System-
atic Accelerated Aging to Expose On-chip Secrets,”
in IEEE Symposium on Security and Privacy (S&P),
2023.

[49] J. Obermaier and S. Tatschner, “Shedding too much
Light on a Microcontroller’s Firmware Protection,” in
USENIX Workshop on Offensive Technologies (WOOT),
2017.

[50] J. Obermaier, M. Schink, and K. Moczek, “One exploit
to rule them all? on the security of drop-in replacement
and counterfeit microcontrollers,” in USENIX Work-
shop on Offensive Technologies (WOOT), 2020.

[51] M. Schink, A. Wagner, F. Unterstein, and J. Heyszl,
“Security and Trust in Open Source Security Tokens,”
IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021.

[52] X. M. Saß, R. Mitev, and A.-R. Sadeghi, “Oops..! I
Glitched It Again! How to Multi-Glitch the Glitching-
Protections on ARM TrustZone-M,” USENIX Security,
2023.

[53] Z. Ma, X. Tan, L. Ziarek, N. Zhang, H. Hu, and
Z. Zhao, “Return-to-Non-Secure Vulnerabilities on
ARM Cortex-M TrustZone: Attack and Defense,” in
ACM/IEEE Design Automation Conference, 2023.

[54] Z. Ning and F. Zhang, “Understanding the Security
of Arm Debugging Features,” in IEEE Symposium on
Security and Privacy (S&P), 2019.

[55] Z. Ning, C. Wang, Y. Chen, F. Zhang, and J. Cao, “Re-
visiting arm debugging features: Nailgun and its de-
fense,” Transactions on Dependable and Secure Com-
puting (TDSC), 2021.

[56] Sultan Qasim Khan, “Whitepaper: Microcontroller
Readback Protection: Bypasses and Defenses,” Techni-
cal Report, 2020.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 163

https://cve.mitre.org/
https://www.marketwatch.com/press-release/iot-microcontroller-mcu-market-size-2022-industry-analysis-by-growth-share-trends-demand-segments-opportunities-and-forecast-2028-2022-09-19
https://www.marketwatch.com/press-release/iot-microcontroller-mcu-market-size-2022-industry-analysis-by-growth-share-trends-demand-segments-opportunities-and-forecast-2028-2022-09-19
https://www.marketwatch.com/press-release/iot-microcontroller-mcu-market-size-2022-industry-analysis-by-growth-share-trends-demand-segments-opportunities-and-forecast-2028-2022-09-19
https://www.marketwatch.com/press-release/iot-microcontroller-mcu-market-size-2022-industry-analysis-by-growth-share-trends-demand-segments-opportunities-and-forecast-2028-2022-09-19
https://www.marketgrowthreports.com/united-states-iot-operating-systems-market-19250528
https://www.marketgrowthreports.com/united-states-iot-operating-systems-market-19250528
https://www.marketgrowthreports.com/united-states-iot-operating-systems-market-19250528
https://tls.mbed.org/
https://www.wolfssl.com/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://mcuxpresso.nxp.com/api_doc/dev/1411/a00057.html
https://mcuxpresso.nxp.com/api_doc/dev/1411/a00057.html
https://community.arm.com/support-forums/f/architectures-and-processors-forum/12065/sau-idau-mpc-and-ppc-what-s-the-difference/34873
https://community.arm.com/support-forums/f/architectures-and-processors-forum/12065/sau-idau-mpc-and-ppc-what-s-the-difference/34873
https://community.arm.com/support-forums/f/architectures-and-processors-forum/12065/sau-idau-mpc-and-ppc-what-s-the-difference/34873
https://community.arm.com/support-forums/f/architectures-and-processors-forum/12065/sau-idau-mpc-and-ppc-what-s-the-difference/34873
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tag/?h=TF-Mv1.3.0
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tag/?h=TF-Mv1.3.0
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079-PSA_SM_ALPHA-02.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079-PSA_SM_ALPHA-02.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079-PSA_SM_ALPHA-02.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf

[57] Kris Brosch, “Firmware dumping technique for an Arm
Cortex-M0 SoC,” https://blog.includesecurity.com/201
5/11/firmware-dumping-technique-for-an-arm-corte
x-m0-soc/.

[58] Nordic Semiconductor, “nRF52832 Objective Product
Specification,” https://infocenter.nordicsemi.com/pdf/
nRF52832_OPS_v0.6.3.pdf.

[59] STMicroelectronics, “Proprietary code read-out protec-
tion on microcontrollers of the STM32F4 Series,” https:
//www.st.com/resource/en/application_note/an4701
-proprietary-code-readout-protection-on-microcontro
llers-of-the-stm32f4-series-stmicroelectronics.pdf.

[60] NXP Semiconductors, “Using the Kinetis Flash
Execute-Only Access Control Feature,” https://ww
w.nxp.com/docs/en/application-note/AN5112.pdf.

[61] Texas Instruments, “Tiv TM4C123GH6PM Microcon-
troller,” https://www.ti.com/lit/ds/symlink/tm4c123g
h6pm.pdf.

[62] M. Schink and J. Obermaier, “Taking a Look into
Execute-Only Memory,” in Workshop on Offensive
Technologies (WOOT), 2019.

[63] “Mbed OS,” https://os.mbed.com/mbed-os/.

[64] N. Klingensmith and S. Banerjee, “Hermes: A real
time hypervisor for mobile and iot systems,” in Inter-
national Workshop on Mobile Computing Systems &
Applications, 2018.

[65] S. Pinto and C. Garlati, “Multi zone security for arm
cortex-m devices,” in Embedded World Conference,
2020.

[66] H. M. E. Araújo, “lLTZVisor: a lightweight TrustZone-
assisted hypervisor for low-end Arm devices,” Ph.D.
dissertation, University of Minho, 2018.

[67] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and
A. Tavares, “Virtualization on trustzone-enabled mi-
crocontrollers? voilà!” in IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS),
2019.

[68] R. Pan and G. Parmer, “SBIs: Application Access to
Safe, Baremetal Interrupt Latencies,” in IEEE Real-
Time and Embedded Technology and Applications Sym-
posium (RTAS), 2022.

[69] “Trusted Firmware-M,” https://www.trustedfirmware.
org/projects/tf-m.

[70] D. Oliveira, T. Gomes, and S. Pinto, “uTango: an open-
source TEE for IoT devices,” IEEE Access, 2022.

[71] Nordic Semiconductor, “SoftDevices,” https://infocent
er.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/softde
vices.html.

[72] FreeRTOS, “RTOS Fundamentals - Context Switching,”
https://www.freertos.org/implementation/a00006.htm
l.

[73] Zephyr Project Documentation, “Arm Cortex-M De-
veloper Guide - Thread context switching,” https:
//docs.zephyrproject.org/3.0.0/guides/arch/arm_c
ortex_m.html#thread-context-switching.

[74] “The FreeRTOS Kernel,” https://www.freertos.org/R
TOS.html.

[75] Arm, “API and RTX Reference Implementation - Con-
figure RTX v5,” https://www.keil.com/pack/doc/CMSI
S/RTOS2/html/config_rtx5.html.

[76] Zephyr Project Documentation, “Arm Cortex-M De-
veloper Guide - Memory protection features,” https:
//docs.zephyrproject.org/3.0.0/guides/arch/arm_corte
x_m.html#memory-protection-features.

[77] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Sri-
vastava, J. Koo, S. Bagchi, and M. Payer, “Protecting
bare-metal embedded systems with privilege overlays,”
in IEEE Symposium on Security and Privacy (S&P),
2017.

[78] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Good Mo-
tive but Bad Design: Why Arm MPU Has Become
an Outcast in Embedded Systems,” arXiv preprint
arXiv:1908.03638, 2019.

[79] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and
M. Payer, “ACES: Automatic Compartments for Em-
bedded Systems,” in USENIX Security Symposium,
2018.

[80] Nordic Semiconductor, “nRF51 Series Reference Man-
ual,” https://infocenter.nordicsemi.com/pdf/nRF51_
RM_v3.0.pdf.

[81] X. Tan, S. Mohan, M. Armanuzzaman, Z. Ma, G. Liu,
A. Eastman, H. Hu, and Z. Zhao, “Is the Canary Dead?
On the Effectiveness of Stack Canaries on Microcon-
troller Systems,” in ACM/SIGAPP Symposium On Ap-
plied Computing (SAC), 2024.

[82] “Arm Cortex-M Programming Guide to Memory Bar-
rier Instructions,” https://developer.arm.com/document
ation/dai0321/latest/.

[83] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin
et al., “Meltdown: Reading kernel memory from user
space,” in USENIX Security Symposium, 2018.

164 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/
https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/
https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/
https://infocenter.nordicsemi.com/pdf/nRF52832_OPS_v0.6.3.pdf
https://infocenter.nordicsemi.com/pdf/nRF52832_OPS_v0.6.3.pdf
https://www.st.com/resource/en/application_note/an4701-proprietary-code-readout-protection-on-microcontrollers-of-the-stm32f4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4701-proprietary-code-readout-protection-on-microcontrollers-of-the-stm32f4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4701-proprietary-code-readout-protection-on-microcontrollers-of-the-stm32f4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4701-proprietary-code-readout-protection-on-microcontrollers-of-the-stm32f4-series-stmicroelectronics.pdf
https://www.nxp.com/docs/en/application-note/AN5112.pdf
https://www.nxp.com/docs/en/application-note/AN5112.pdf
https://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf
https://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf
https://os.mbed.com/mbed-os/
https://www.trustedfirmware.org/projects/tf-m
https://www.trustedfirmware.org/projects/tf-m
https://infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/softdevices.html
https://infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/softdevices.html
https://infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/softdevices.html
https://www.freertos.org/implementation/a00006.html
https://www.freertos.org/implementation/a00006.html
https://docs.zephyrproject.org/3.0.0/guides/arch/arm_cortex_m.html#thread-context-switching
https://docs.zephyrproject.org/3.0.0/guides/arch/arm_cortex_m.html#thread-context-switching
https://docs.zephyrproject.org/3.0.0/guides/arch/arm_cortex_m.html#thread-context-switching
https://www.freertos.org/RTOS.html
https://www.freertos.org/RTOS.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/config_rtx5.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/config_rtx5.html
https://docs.zephyrproject.org/3.0.0/guides/arch/arm_cortex_m.html#memory-protection-features
https://docs.zephyrproject.org/3.0.0/guides/arch/arm_cortex_m.html#memory-protection-features
https://docs.zephyrproject.org/3.0.0/guides/arch/arm_cortex_m.html#memory-protection-features
https://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
https://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
https://developer.arm.com/documentation/dai0321/latest/
https://developer.arm.com/documentation/dai0321/latest/

[84] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre At-
tacks: Exploiting Speculative Execution,” in IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[85] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PAC-
MAN: attacking Arm pointer authentication with spec-
ulative execution,” in International Symposium on
Computer Architecture (ISCA), 2022.

[86] METRE, “Common Vulnerability Scoring System
v3.1: User Guide,” https://www.first.org/cvss/v3.1
/user-guide.

[87] “Multiple RTOS (Update E) | CISA,” https://www.cisa
.gov/uscert/ics/advisories/icsa-21-119-04.

[88] D. Bleichenbacher, “Chosen ciphertext attacks against
protocols based on the RSA encryption standard
PKCS# 1,” in Annual International Cryptology Con-
ference. Springer, 1998.

[89] Embedded by AspenCore, “2019 embedded markets
study,” https://www.embedded.com/wp-content/uploa
ds/2019/11/EETimes_Embedded_2019_Embedded_
Markets_Study.pdf.

[90] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: open
benchmarks for energy measurements on embedded
platforms,” arXiv preprint arXiv:1308.5174, 2013.

[91] “CoreMark,” https://www.eembc.org/coremark.

[92] “CoreMark-Pro,” https://www.eembc.org/coremark-p
ro/.

[93] R. P. Weicker, “Dhrystone: a synthetic systems pro-
gramming benchmark,” Communications of the ACM,
1984.

[94] “Embench: A Modern Embedded Benchmark Suite,”
https://www.embench.org/.

[95] A. K. Iannillo, S. Rivera, D. Suciu, R. Sion, and
R. State, “An REE-independent Approach to Identify
Callers of TEEs in TrustZone-enabled Cortex-M De-
vices,” in ACM Cyber-Physical System Security Work-
shop (CPSS), 2022.

[96] A. Khurshid, S. D. Yalew, M. Aslam, and S. Raza,
“ShieLD: Shielding Cross-zone Communication within
Limited-resourced IoT Devices running Vulnerable
Software Stack,” IEEE Transactions on Dependable
and Secure Computing (TDSC), 2022.

[97] D. Danner, R. Müller, W. Schröder-Preikschat,
W. Hofer, and D. Lohmann, “Safer Sloth: Efficient,

hardware-tailored memory protection,” in IEEE Real-
Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014.

[98] Z. B. Aweke and T. Austin, “uSFI: Ultra-lightweight
software fault isolation for IoT-class devices,” in IEEE
Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018.

[99] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang,
and D. Xu, “Securing Real-Time Microcontroller Sys-
tems through Customized Memory View Switching,”
in Network and Distributed System Security Sympo-
sium (NDSS), 2018.

[100] X. Zhou, J. Li, W. Zhang, Y. Zhou, W. Shen, and
K. Ren, “OPEC: operation-based security isolation for
bare-metal embedded systems,” in European Confer-
ence on Computer Systems, 2022.

[101] A. Khan, D. Xu, and D. Tian, “Ec: Embedded sys-
tems compartmentalization via intra-kernel isolation,”
in Symposium on Security and Privacy (SP). IEEE
Computer Society, 2023.

[102] ——, “Low-cost privilege separation with compile
time compartmentalization for embedded systems,” in
Symposium on Security and Privacy (SP). IEEE Com-
puter Society, 2023.

[103] A. Mera, Y. H. Chen, R. Sun, E. Kirda, and L. Lu, “D-
Box: DMA-enabled Compartmentalization for Embed-
ded Applications,” in Network and Distributed System
Security Symposium (NDSS), 2022.

[104] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE:
Real-time System Availability for Cyber-physical Sys-
tems using Arm TrustZone,” in IEEE Symposium on
Security and Privacy (SP), 2022.

[105] M. Schönstedt, F. Brasser, P. Jauernig, E. Stapf, and
A.-R. Sadeghi, “SafeTEE: combining safety and secu-
rity on ARM-based microcontrollers,” in IEEE Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2022.

[106] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI
CaRE: Hardware-supported call and return enforce-
ment for commercial microcontrollers,” in Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses. Springer, 2017.

[107] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J.
Walls, “Silhouette: Efficient protected shadow stacks
for embedded systems,” in USENIX Security Sympo-
sium, 2020.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 165

https://www.first.org/cvss/v3.1/user-guide
https://www.first.org/cvss/v3.1/user-guide
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.eembc.org/coremark
https://www.eembc.org/coremark-pro/
https://www.eembc.org/coremark-pro/
https://www.embench.org/

[108] T. Kawada, S. Honda, Y. Matsubara, and H. Takada,
“TZmCFI: RTOS-Aware Control-Flow Integrity Us-
ing TrustZone for Armv8-M,” International Journal of
Parallel Programming, 2020.

[109] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and
J. Criswell, “Holistic Control-Flow Protection on Real-
Time Embedded Systems with Kage,” in USENIX Se-
curity Symposium, 2022.

[110] W. Choi, M. Seo, S. Lee, and B. B. Kang, “SuM: Ef-
ficient Shadow Stack Protection on ARM Cortex-M,”
Computers & Security, 2023.

[111] X. Tan and Z. Zhao, “SHERLOC: Secure and Holis-
tic Control-Flow Violation Detection on Embedded
Systems,” in ACM Conference on Computer and Com-
munications Security (CCS), 2023.

[112] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and
M. Payer, “µRAI: Securing embedded systems with
return address integrity,” in Network and Distributed
System Security Symposium (NDSS), 2020.

[113] B. Kim, K. Lee, W. Park, J. Cho, and B. Lee, “RIO:
Return Instruction Obfuscation for Bare-metal IoT De-
vices,” IEEE Access.

[114] Z. Shen, K. Dharsee, and J. Criswell, “Randezvous:
Making Randomization Effective on MCUs,” in An-
nual Computer Security Applications Conference (AC-
SAC), 2022.

[115] J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and
N. Zhang, “HARM: Hardware-Assisted Continuous
Re-randomization for Microcontrollers,” in IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
2022.

[116] L. Luo, X. Shao, Z. Ling, H. Yan, Y. Wei, and X. Fu,
“fASLR: Function-Based ASLR via TrustZone-M and
MPU for Resource-Constrained IoT Systems,” IEEE
Internet of Things Journal, 2022.

[117] X. Shao, L. Luo, Z. Ling, H. Yan, Y. Wei, and X. Fu,
“faslr: Function-based aslr for resource-constrained iot
systems,” in European Symposium on Research in
Computer Security (ESORICS), 2022.

[118] N. Dejon, C. Gaber, and G. Grimaud, “Pip-MPU: For-
mal verification of an MPU-based separation kernel
for constrained devices,” International Journal of Em-
bedded Systems and Applications, 2023.

[119] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek,
“uXOM: Efficient eXecute-Only Memory on Arm
Cortex-M,” in USENIX Security Symposium, 2019.

[120] Z. Shen, K. Dharsee, and J. Criswell, “Fast Execute-
Only Memory for Embedded Systems,” in IEEE Secure
Development (SecDev), 2020.

[121] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pan-
nuto, P. Dutta, and P. Levis, “Multiprogramming a 64kb
computer safely and efficiently,” in ACM SIGOPS sym-
posium on Operating systems principles (SOSP), 2017.

[122] T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A.-R.
Sadeghi, and M. Schunter, “DIAT: Data Integrity At-
testation for Resilient Collaboration of Autonomous
Systems,” in Network and Distributed System Security
Symposium (NDSS), 2019.

[123] D. Huo, Y. Wang, C. Liu, M. Li, Y. Wang, and Z. Xu,
“LAPE: A Lightweight Attestation of Program Execu-
tion Scheme for Bare-Metal Systems,” in IEEE HPC-
C/SmartCity/DSS, 2020.

[124] A. J. Neto and I. d. O. Nunes, “ISC-FLAT: On the
Conflict Between Control Flow Attestation and Real-
Time Operations,” 2023.

[125] J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou,
Y. T. Hou, and N. Zhang, “Ari: Attestation of real-time
mission execution integrity,” 2023.

[126] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R.
Sadeghi, and G. Tsudik, “ASSURED: Architecture for
secure software update of realistic embedded devices,”
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), 2018.

[127] T. Kim, A. Ding, S. Etigowni, P. Sun, J. Chen, L. Garcia,
S. Zonouz, D. Xu, and D. Tian, “Reverse engineering
and retrofitting robotic aerial vehicle control firmware
using dispatch,” in International Conference on Mobile
Systems, Applications and Services (MobiSys), 2022.

[128] E. Gustafson, P. Grosen, N. Redini, S. Jha, A. Con-
tinella, R. Wang, K. Fu, S. Rampazzi, C. Kruegel,
and G. Vigna, “Shimware: Toward Practical Security
Retrofitting for Monolithic Firmware Images,” in Inter-
national Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2023.

[129] C. Niesler, S. Surminski, and L. Davi, “HERA: Hot-
patching of Embedded Real-time Applications,” in
Network and Distributed System Security Symposium
(NDSS), 2021.

[130] Y. He, Z. Zou, K. Sun, Z. Liu, K. Xu, Q. Wang, C. Shen,
Z. Wang, and Q. Li, “RapidPatch: Firmware Hotpatch-
ing for Real-Time Embedded Devices,” in USENIX
Security Symposium, 2022.

166 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

[131] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and
F. Regazzoni, “Countermeasures against fault attacks
on software implemented AES: effectiveness and cost,”
in Workshop on Embedded Systems Security (WESS),
2010.

[132] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang,
“SeCReT: Secure Channel between Rich Execution
Environment and Trusted Execution Environment,” in
Network and Distributed System Security Symposium
(NDSS), 2015.

[133] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi,
“Checked C: making C safe by extension,” in Cyberse-
curity Development (SecDev). IEEE, 2018.

[134] P. Larsen and A.-R. Sadeghi, The Continuing Arms
Race: Code-Reuse Attacks and Defenses. Association
for Computing Machinery and Morgan & Claypool,
2018, ch. Code-pointer integrity.

[135] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light
on shadow stacks,” in IEEE Symposium on Security
and Privacy (S&P), 2019.

[136] Arm, “Arm Architecture Reference Manual Thumb-2
Supplement,” https://class.ece.iastate.edu/cpre288/re
sources/docs/Thumb-2SupplementReferenceManual.
pdf.

[137] ——, “Armv8-M Stack Sealing Vulnerability,” https:
//developer.arm.com/support/arm-security-updates/a
rmv8-m-stack-sealing.

[138] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
Ú. Erlingsson, L. Lozano, and G. Pike, “Enforcing
forward-edge control-flow integrity in GCC & LLVM,”
in USENIX Security Symposium, 2014.

[139] Y. Wang, C. Lemieux Mack, X. Tan, N. Zhang, Z. Zhao,
S. Baruah, and B. C. Ward, “InsectACIDE: Debugger-
Based Holistic Asynchronous CFI for Embedded Sys-
tem,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2024.

[140] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz,
“SoK: Automated software diversity,” in IEEE Sympo-
sium on Security and Privacy (S&P), 2014.

[141] N. Jomaa, D. Nowak, and P. Torrini, “Formal Develop-
ment of the Pip Protokernel,” ENTROPY, 2018.

[142] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and
Hardware-independent Firmware Testing via Auto-
matic Peripheral Interface Modeling,” in USENIX Se-
curity Symposium, 2020.

[143] A. Mera, B. Feng, L. Lu, E. Kirda, and W. Robertson,
“DICE: Automatic Emulation of DMA Input Channels
for Dynamic Firmware Analysis,” in IEEE Symposium
on Security and Privacy (S&P), 2021.

[144] C. Cao, L. Guan, J. Ming, and P. Liu, “Device-agnostic
firmware execution is possible: A concolic execu-
tion approach for peripheral emulation,” in Annual
Computer Security Applications Conference (ACSAC),
2020.

[145] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic
Firmware Emulation through Invalidity-guided Knowl-
edge Inference,” in USENIX Security Symposium,
2021.

[146] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Check-
oway, S. Savage, and K. Levchenko, “Jetset: Tar-
geted Firmware Rehosting for Embedded Systems,”
in USENIX Security Symposium, 2021.

[147] W. Zhou, L. Zhang, L. Guan, P. Liu, and Y. Zhang,
“What Your Firmware Tells You Is Not How You
Should Emulate It: A Specification-Guided Approach
for Firmware Emulation,” in ACM SIGSAC Conference
on Computer and Communications Security, 2022.

[148] A. A. Clements, E. Gustafson, T. Scharnowski,
P. Grosen, D. Fritz, C. Kruegel, G. Vigna, S. Bagchi,
and M. Payer, “HALucinator: Firmware Re-hosting
Through Abstraction Layer Emulation,” in USENIX
Security Symposium, 2020.

[149] L. Seidel, D. Maier, and M. Muench, “Forming faster
firmware fuzzers,” in USENIX Conference on Security
Symposium, 2023.

[150] T. Scharnowski, S. Wörner, F. Buchmann, N. Bars,
M. Schloegel, and T. Holz, “HOEDUR: embedded
firmware fuzzing using multi-stream inputs,” in
USENIX Conference on Security Symposium, 2023.

[151] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al.,
“AVATAR: A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares.” in Net-
work and Distributed System Security (NDSS), 2014.

[152] M. Muench, A. Francillon, and D. Balzarotti, “Avatar2:
A Multi-target Orchestration Platform,” in Workshop
on Binary Analysis Research, 2018.

[153] K. Koscher, T. Kohno, and D. Molnar, “SURRO-
GATES: Enabling Near-Real-Time Dynamic Analyses
of Embedded Systems,” in USENIX Workshop on Of-
fensive Technologies (WOOT 15), 2015.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 167

https://class.ece.iastate.edu/cpre288/resources/docs/Thumb-2SupplementReferenceManual.pdf
https://class.ece.iastate.edu/cpre288/resources/docs/Thumb-2SupplementReferenceManual.pdf
https://class.ece.iastate.edu/cpre288/resources/docs/Thumb-2SupplementReferenceManual.pdf
https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing
https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing
https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing

[154] Corteggiani, Nassim and Camurati, Giovanni and Fran-
cillon, Aurélien, “Inception: System-wide security test-
ing of real-world embedded systems software,” in
USENIX Security Symposium, 2018.

[155] N. Corteggiani and A. Francillon, “HardSnap: Lever-
aging Hardware Snapshotting for Embedded Systems
Security Testing,” in IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN),
2020.

[156] J. Ruge, J. Classen, F. Gringoli, and M. Hollick,
“Frankenstein: Advanced Wireless Fuzzing to Exploit
New Bluetooth Escalation Targets,” in USENIX Secu-
rity Symposium, 2020.

[157] W. Li, J. Shi, , F. Li, J. Lin, W. Wang, and L. Guan,
“µAFL: Non-intrusive Feedback-driven Fuzzing for Mi-
crocontroller Firmware,” in IEEE/ACM International
Conference on Software Engineering, 2022.

[158] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei,
and E. Kurniawan, “SweynTooth: Unleashing May-
hem over Bluetooth Low Energy,” in USENIX Annual
Technical Conference, 2020.

[159] M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun,
and E. Kurniawan, “BRAKTOOTH: Causing Havoc
on Bluetooth Link Manager via Directed Fuzzing,” in
USENIX Security Symposium, 2022.

[160] M. Salehi, D. Hughes, and B. Crispo, “µSBS: Static
binary sanitization of bare-metal embedded devices for
fault observability,” in 23rd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID
2020), 2020, pp. 381–395.

[161] Q. Wang, B. Chang, S. Ji, Y. Tian, X. Zhang, B. Zhao,
G. Pan, C. Lyu, M. Payer, W. Wang et al., “SyzTrust:
State-aware Fuzzing on Trusted OS Designed for IoT
Devices,” 2023.

[162] T. Kim, V. Kumar, J. Rhee, J. Chen, K. Kim, C. H. Kim,
D. Xu, and D. J. Tian, “PASAN: Detecting Peripheral
Access Concurrency Bugs within Bare-Metal Embed-
ded Applications,” in USENIX Security Symposium,
2021.

[163] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Ny-
man, A. Paverd, A.-R. Sadeghi, and G. Tsudik, “C-
FLAT: control-flow attestation for embedded systems
software,” in ACM Conference on Computer and Com-
munications Security, 2016.

[164] Z. Sun, B. Feng, L. Lu, and S. Jha, “OAT: Attesting
operation integrity of embedded devices,” in IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[165] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and
N. Asokan, “PACStack: an Authenticated Call Stack,”
in USENIX Security Symposium, 2021.

[166] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E.
Ekberg, and N. Asokan, “PAC it up: Towards pointer in-
tegrity using ARM pointer authentication,” in USENIX
Security Symposium, 2019.

[167] R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Tem-
poral Memory Safety via Robust Points-to Authentica-
tion,” in USENIX Security Symposium, 2021.

[168] Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and
C. Zhang, “PACMem: Enforcing Spatial and Temporal
Memory Safety via ARM Pointer Authentication,” in
ACM SIGSAC Conference on Computer and Commu-
nications Security, 2022.

[169] S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim, “In-Kernel
Control-Flow Integrity on Commodity OSes using
ARM Pointer Authentication,” in USENIX Security
Symposium, 2022.

[170] Z. Zhao, M. Armanuzzaman, X. Tan, and Z. Ma,
“Trusted Execution Environments in Embedded and
IoT Systems: A CactiLab Perspective,” in IEEE Inter-
national Symposium on Secure and Private Execution
Environment Design (SEED), 2024.

[171] A. Sharma, S. Sharma, S. Torres-Arias, and
A. Machiry, “Rust for Embedded Systems: Cur-
rent State, Challenges and Open Problems,” arXiv
preprint arXiv:2311.05063, 2023.

[172] H. Bos, “NDSS 2024 Keynote - Corruption of Memory:
Those who don’t know history are doomed to repeat
it,” https://www.youtube.com/watch?v=vhj2We2vjqs.

168 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.youtube.com/watch?v=vhj2We2vjqs

Appendix

Our open-source repository contains extra information for
researchers:

• A Cortex-M firmware analysis tool (in the
firmware_analysis folder).

• A Cortex-M firmware database (in the firmware_analysis
folder).

• Cortex-M hardware feature test suites (in the
hw_feature_test_suites folder).

• Supplementary Material 1: Cortex-M Architecture in a
Nutshell (Background.pdf).

• An interactive figure showcasing the relationships be-
tween Cortex-M limitations, issues, and mitigations
(download relations_interactive_fig.html).

• A collection of Cortex-M-related CVEs in Google
Spreadsheet.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 169

Not Quite Write: On the Effectiveness of Store-Only Bounds Checking

Adriaan Jacobs
DistriNet, KU Leuven

Stijn Volckaert
DistriNet, KU Leuven

Abstract
Compiler-based memory safety enforcement for unsafe C/C++
code has historically suffered from prohibitively high over-
head. Despite regular advances in compiler optimization and
increasing hardware resources and hardware support, most
applications require too many checks to guarantee complete
memory safety at an acceptable performance level. Conse-
quently, researchers often propose relaxed policies where
not all memory accesses undergo equally rigorous checking.
One common suggestion is to omit pointer validity checks
for memory loads. This omission significantly reduces the
number of necessary checks and, thus, overhead. Moreover,
it should only sacrifice the detection of pure information dis-
closure vulnerabilities through invalid reads, which are left
unchecked.

This work challenges the perceived security benefits of
store-only bounds checking. We show that invalid reads often
suffice to take control of memory writes and bypass store-only
validity checks. We empirically demonstrate the problem on
SoftBound and qualitatively analyze the impact on a broad
scope of other work. We also perform a large-scale evaluation
on 1,000 popular C/C++ repositories and show that real-world
code readily satisfies the necessary preconditions for store-
only bypasses. Finally, we briefly discuss possible defenses
and adaptations that let complete bounds checkers regain a
part of the store-only overhead reduction potential without
dramatically losing security.

1 Introduction

Memory-unsafe programming languages continue to domi-
nate the composition of our modern software stack, from boot-
loaders, Operating System (OS) kernels, and system libraries
to user-facing applications like web servers and browsers. Pro-
grams written in these languages often contain memory errors
such as out-of-bounds (OOB) accesses [70, 72] or use-after-
free bugs (UAF) [71], which can be exploited by attackers to
leak or corrupt sensitive data, or to force the victim program
to execute attacker-chosen code [102].

Owing to these security risks, government bodies [80] and
industry leaders [89] are increasingly pushing for more mem-
ory safety in critical infrastructure and systems-level soft-
ware, encouraging the use of safe languages instead, such
as Rust [22]. Software vendors have already adopted these
recommendations for new software projects [61, 99]. How-
ever, for a vast amount of already existing C and C++ code,
translating it into safer languages is not feasible any time
soon [86], leaving a mountain of unsafe code currently de-
ployed in production environments for which no clear solution
exists.

Researchers and practitioners from academia and indus-
try alike have come up with many attempts to minimize the
security impact of this unsafety through compiler transfor-
mations that automatically harden the code against memory
error exploitation, e.g., by inserting checks on memory ac-
cesses or indirect control flow transfers. One such approach,
which has been thoroughly investigated for decades [97, 102],
is to retrofit memory safety into these languages by (semi-
)automatically instrumenting memory accesses with run-
time checks that validate pointer bounds (spatial memory
safety) and object lifetimes (temporal memory safety) [6,
9, 12, 14, 18, 25–27, 30–32, 35, 36, 42, 49, 51, 54, 57–
59, 63, 66, 74, 77–79, 90, 93, 94, 103, 116, 120, 121]. We
broadly refer to these memory safety enforcement mecha-
nisms as “bounds checkers” for short.

The design and implementation of bounds checkers has
been a long-standing and highly active area of research, fu-
eled by the promise of strong memory safety but plagued
by prohibitive run-time overhead and compatibility issues.
Despite steady advances over time, from optimizing the
storage structure of bounds and lifetime metadata [18, 39,
41, 67, 68, 75, 78, 111], to avoiding the branch predic-
tor pollution of typical compare-and-branch instrumenta-
tion [6, 18, 36, 58], or maximally reducing the number of
redundant checks through static code analysis and optimiza-
tion [12, 18, 44, 45, 52, 66, 100, 108, 112, 117, 122], the
overhead of comprehensive memory safety enforcement re-
mains well outside the stringent performance budget of typ-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 171

ical production deployments [102]. For this reason, some
prior work proposes to deliberately sacrifice some security
coverage to reduce the performance impact by selectively
eliding validity checks on memory accesses whose protection
is explicitly scoped out [15, 63, 75, 77, 78], or whose perfor-
mance impact is considered disproportional to their security
benefit [38, 50, 107].

One commonly suggested strategy is to place validity
checks on memory writes alone [36, 63, 75, 77, 78, 81, 94],
which significantly reduces performance overhead, as most
programs tend to read memory far more often than they write
to it [65, 81, 84, 115]. Naturally, this comes at the cost of
leaving pure information disclosure vulnerabilities out of
scope. Major security crises like Heartbleed demonstrate
that such confidentiality breaches are not necessarily of lesser
impact [87]. Still, they only represent a minority of possi-
ble attacks, while their mitigation frequently requires more
than double the amount of validity checks [78, 81]. Hence,
store-only bounds checking is often heralded as a straightfor-
ward option to curb overhead while keeping the vast majority
of memory vulnerabilities at bay by ensuring that attackers
can never abuse invalid memory writes to corrupt program
memory.

Store-only checking, which allows read operations
on out-of-bound locations and with dangling point-
ers, is sufficient to prevent all memory corruption-
based security vulnerabilities.

Nagarakatte et al. [77]

In this work, we argue that the intended integrity assur-
ance of store-only bounds checking does not hold in prac-
tice, as a direct consequence of the lack of protection on
memory reads. In short, the core issue is that store-only
bounds checkers do not suffice to secure the data and pointer
flow of the program, while their protection guarantees assume
they do. As just one striking consequence of this, we show
that attackers can corrupt arbitrary memory locations using
protected writes by loading valid pointers through invalid
memory reads. Our key finding is that the substituted, in-
validly loaded pointer will always pass the store-only validity
check, regardless of the bounds checker design or implemen-
tation. In summary, we make the following contributions:

• We outline four types of attacks that can corrupt memory
under store-only bounds checking, including one that
abuses protected writes.

• We empirically validate our attack on a SoftBound-
hardened program [75], and qualitatively analyze the
susceptibility of a representative selection of other work.

• We estimate the real-world feasibility of our attacks by
analyzing a large corpus of open-source code.

• We reflect on the security assurances of store-only
bounds checking and discuss possible improvements.

Listing 1: SoftBound’s pointer propagation instrumentation,
adapted from [75].

ptr = *some_loc; // pointer load
bounds = lookup(some_loc)->bounds;

*other_loc = ptr; // pointer store
lookup(other_loc)->bounds = bounds;

2 Background

Bounds checkers check if the pointers a program dereferences
still point to their intended referent [51]. This intended refer-
ent is usually the object whose address the program initially
derived the pointer value from. Two main bounds-checking
approaches can guarantee complete memory safety.

Pointer-based approaches explicitly track the intended
referent for each pointer as run-time information, either in a
disjoint metadata structure [25, 75, 76, 79, 81], or encoded as
part of the pointer itself (so-called fat pointers1) [9, 14, 49,
79, 109]. In the former case, the referent metadata is indexed
using the address of pointers in memory, and the compiler
explicitly instruments pointer copies in the program so they
update the metadata. Listing 1 shows the way this explicit
propagation happens in SoftBound [75].

Object-based approaches instead restrict pointer arith-
metic such that the program can always recover the address of
the original referent during memory accesses [26, 30, 51, 90].
Typically, this means not permitting a pointer to escape the
original bounds of its allocation [30, 78]. The program asso-
ciates safety metadata with every object’s base address and
inspects the currently-pointed-to object’s metadata whenever
it performs pointer arithmetic. Pointer propagation through
memory requires no special handling, as the program can re-
trieve the allocation bounds based on the pointer value alone.

It is worth noting that many bounds checkers, especially
recent ones [32, 58, 78, 93], do not perfectly fit either of
these categories but instead appear more of a hybrid. For
instance, Delta Pointers track the original referent per pointer
through a relative distance metric in the pointer’s unused top
bits (Pointer-Based) but can only do so for a limited range
of pointer arithmetic, after which the original referent is lost
(Object-Based) [58].

Secondly, as mentioned in Section 1, developers do not
always operate bounds checkers in their most secure, full-
coverage mode due to overhead concerns. Instead, bounds
checkers sometimes omit some checks, allowing developers
to accept a limited security risk to improve run-time perfor-
mance. For instance, Wagner et al. argue that the most fre-
quently executed memory accesses are the best candidates for

1For brevity, we also include “diet” pointers that do not extend the native
pointer width in this category.

172 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

bounds check elision [107], since they contribute to the over-
head the most. Yet, the code that contains these accesses is
likely the least bug-prone and best-tested code in the program,
given its frequent execution.

A more popular way to deploy bounds checkers selectively
is to restrict the checks to memory writes alone [63, 75, 77,
78, 81, 94], or to memory accesses that are permitted to access
a certain amount of sensitive data [3, 15, 60, 101], or only
certain regions of memory, e.g., the heap [30, 35, 45, 66]. The
overhead reduction factor naturally depends on the amount of
memory accesses that are left unchecked.

Store-only bounds checkers frequently report reduced over-
heads by a factor 2 or more [63, 75], while preventing all
out-of-bounds or dangling pointer writes. Prior work has
presented this as an attractive performance-security trade-
off [77, 81], primarily due to the ease of converting any
bounds checker design to a store-only working mode. Hence,
although not all published memory safety enforcement work
includes dedicated discussions and benchmarks of store-only
operating modes, the prevailing notion seems that any bounds
checker can readily be operated in a store-only mode when
performance requirements dictate so, with limited security
impact.

3 Risks of Store-Only Bounds Checking

The central thesis of this paper is that by leaving mem-
ory reads uninstrumented and freely exploitable, store-only
bounds checkers give up much more security guarantees than
“merely” the detection of pure information disclosure vul-
nerabilities such as Heartbleed [33, 87]. In this section, we
describe several additional vulnerabilities and attack vectors
spawned by the lack of protection on memory reads. In par-
ticular, we show that attackers can still arbitrarily corrupt
memory despite passing all store-only validity checks.

3.1 Threat Model and Assumptions
Throughout this paper, we assume that (i) the program con-
tains exploitable memory reads (e.g., out-of-bounds accesses
or reads through dangling pointers), and (ii) the program uses
a bounds checker of any type (i.e., pointer- or object-based, or
a combination of both) to protect its memory writes. As we
aim to break the intended integrity assurance of the store-only
working mode, we do not rely on sub-object overflows [34]
or vulnerabilities in external code or unprotected memory re-
gions since prior work usually considers such vulnerabilities
out of scope [30, 35, 45, 66]. We also assume that the attacker
knows the details of the deployed store-only hardening and
will adapt the attack to its design and implementation char-
acteristics. Finally, as repeatedly demonstrated by previous
work [73, 95, 98], we assume that any Address Space Layout
Randomization (ASLR) [83] can readily be bypassed through
information disclosure as a result of invalid memory reads.

3.2 Invalid Pointer Loads
A first, highly impactful security issue with store-only bounds
checking appears when the program loads pointers from mem-
ory through exploitable memory reads such as the one shown
in Listing 2. Attackers that can control the read on line 3 can
choose which pointer to load from memory and, thus, which
pointer gets dereferenced in the later memory write. Crucial
here is that, as long as the loaded pointer points to a valid
live object, the memory write will always pass the store-only
validity check on line 5. The fundamental problem is that
omitting the validity check for the memory read allows attack-
ers to load a pointer value illegitimately, yet ensures that the
pointer has valid bounds information when the program per-
forms the store validity check. This is true even if the loaded
pointer propagates through an arbitrary number of assignment
statements before it reaches the final store instruction because
the bounds checker will propagate the pointer metadata along
the way if necessary.

Listing 2: A vulnerable code pattern under store-only harden-
ing, with SoftBound instrumentation in red.

1 // exploitable pointer load
2 ptr = array[i];
3 bounds = lookup(&array[i])->bounds;
4 // ...
5 assert_in_bounds(ptr, bounds);
6 *ptr = ...;

Taking SoftBound as an example, Listing 2 shows that
the bounds of the pointer at the &array[i] memory location
are loaded and then checked against the value of the loaded
pointer itself. Given control over i, attackers can choose
which pointer is loaded, and due to the dynamic bounds prop-
agation, SoftBound will look up the correct bounds associated
with the accessed memory location. We stress that this is not a
design or implementation issue with SoftBound; these are the
intended bounds propagation rules for any bounds checker,
regardless of object- or pointer-orientation. In Section 6, we
describe the same issues against other types of bounds check-
ers.

To exploit this issue in practice, attackers must procure a
valid pointer in the program to use as a substitute for (one of
the) intended pointer values. Operating a bounds checker in
store-only mode dramatically facilitates the search for these
valid pointers since attackers can freely disclose large swaths
of application memory through invalid reads, explicitly per-
mitted by the threat model of these bounds checkers [77, 81].
Even without such capabilities, and depending on the type of
victim application, offline analysis on a local binary may be
sufficient to find useful pointers near the exploitable memory
read location. Such an attack would not even require defeating
ASLR in the first place, as a form of “Position-Independent

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 173

Address Reuse” [37].
Alternatively, attackers can craft valid pointers and inject

them in attacker-controlled memory regions as part of the
payload. This crafting option gives attackers even greater
flexibility to meet the constraints of the invalid memory load.
As far as we are aware, only pointer-based bounds checkers
that maintain disjoint metadata keyed on pointer addresses,
e.g., SoftBound [75], may be able to reject such crafted point-
ers during the store-only validity check, because the disjoint
metadata will only contain entries for addresses of existing,
valid pointers in the program. Any crafted pointers will not
have corresponding entries in the metadata, and, as such, fail
the metadata lookup itself. We note that modern pointer-based
bounds checkers rarely use disjoint metadata, as it hurts cache
locality [2, 81], can be a concurrency bottleneck in multi-
threaded programs, and leads to compatibility issues when the
bounds checker cannot reliably instrument all pointer copies
that should update the metadata, e.g., in external code [42].
Hence, most modern bounds checkers [63, 78, 81] fail to
detect the use of attacker-crafted pointers.

3.3 Arbitrary Code Execution Without Mem-
ory Corruption

No amount of validity checks on memory writes can help pre-
vent exploits that solely use invalid memory reads. Existing
store-only bounds checkers explicitly consider this in the case
of information disclosure vulnerabilities [63, 75, 77, 78, 81,
94], but overlook the broader implications of memory-unsafe
information flow. Consider the below snippet:

func = array[i];
func(args);

As previous work also noted [60, 102], code patterns such as
the above allow attackers to substitute func for other code
pointers, including crafted ones, by merely abusing a single
memory read. Such invalid function pointer reads suggest
that developers should at least complement store-only bounds
checks with defenses like Control Flow Integrity (CFI) [1].
In the original Code Pointer Integrity (CPI) paper [60], the
protection against invalid code pointer reads is the precise
difference between CPI and its less secure Code Pointer Sep-
aration (CPS) variant.

Store-only checking provides much better safety
than control-flow integrity with similar perfor-
mance overheads.

Nagarakatte et al. [77]

Interestingly, SoftBound also associates metadata with
function pointers [75], much like data pointers, and checks
on indirect calls whether the called address has a correspond-
ing metadata entry. As acknowledged by the authors, any

valid function pointer can still be substituted, enabling ex-
pressive Whole-Function Reuse (WFR) [88, 92, 104]. More
modern bounds checkers typically do not include any checks
on indirect branches at all since the memory safety offered
by the bounds checking itself should suffice to stop the initial
memory error leading to a code pointer overwrite.

3.4 Invalidly Loading Non-Pointer Data
Further generalizing the implications of memory-unsafe infor-
mation flow, attackers can also abuse invalid memory reads
to load plain, non-pointer data from an attacker-controlled
source. These invalid reads include pure information dis-
closure vulnerabilities like Heartbleed. However, they can
also be used to create a write-what primitive where there
previously existed none, as shown below:

1 int adminLvl = dangling_ptr ->lvl;
2 if (adminLvl > 2)
3 system("/bin/bash");
4 globalAdminLvl = adminLvl;

The use-after-free vulnerability on line 1 allows attackers
to take control of the value of the adminLvl variable follow-
ing the invalid load, typically by placing payload data at the
dangling_ptr location. Because that memory load is left
unchecked under store-only bounds checking, this snippet
allows attackers to control a privilege flag without corrupting
it, solely through an invalid read. In this case, the attack re-
sults in a privilege escalation. Note how this attack allows
attackers to overwrite memory, e.g., the globalAdminLvl on
line 4. Such an overwrite is entirely memory-safe.

3.5 Breaching Pointer Confidentiality
Some bounds checkers embed metadata in pointers (e.g., by
writing a key tag into their top bits) but, for the sake of com-
patibility, still allow the program to perform arbitrary pointer
arithmetic [42, 62, 63, 91, 105]. Unconstrained, this pointer
arithmetic could overwrite the metadata. Any such design
implicitly introduces a confidentiality requirement on pointer
values. Consider the below snippet:

int* adminLvl = ...;
ptr = &array[i];
*ptr = ...;

If attackers can leak the adminLvl pointer value and the
base address of the array, they can fill the difference be-
tween both in as i. The resulting ptr will then be equal
to array+(adminLvl-array) = adminLvl, which will be
a valid pointer to dereference, including all the necessary
in-pointer metadata.

To defend against this type of attack, affected bounds check-
ers enforce the confidentiality of pointer values by checking
memory reads to prevent information disclosure. In contrast, a

174 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

store-only deployment explicitly breaches this confidentiality
by eliding checks on memory reads, massively exacerbating
the applicability of this attack.

No matter how tempting it may sound to pro-
tect only writes, one must remember that buffer-
overread vulnerabilities will slip away from such
low-overhead checking.

Oleksenko et al. [81]

With the advent of low-latency cryptographic block ci-
phers in commodity hardware [10, 11, 56], we notice a grow-
ing trend towards such in-pointer metadata designs without
pointer arithmetic restrictions [42, 62, 63, 105]. We want to
stress that, even with full and store protection, these schemes
still struggle to guarantee pointer confidentiality when the
program is prone to sub-object overflows [34], or when it
inadvertently leaks pointer values without violating mem-
ory safety. Concurrent work [40, 46] already exploits this
precise weakness of the C3 defense [62]. On top of this, store-
only checking grants attackers reliable access to confidential
pointer values via information disclosure, thus presenting
a clear security incompatibility with this emerging trend in
low-overhead bounds checker design.

4 Ubiquity in Real-World Code

To assess whether existing code contains the necessary pat-
terns to enable our store-only bypass techniques, we con-
ducted an evaluation of the 1,000 most-starred C and C++
GitHub repositories. We tried to automatically identify the
generic vulnerable patterns described in Section 3 using cus-
tom CodeQL2 queries. We excluded two patterns from this
search. We did not search for invalid loads of non-pointer
data (Section 3.4), since its exploitable use, e.g., bypassing
a privilege check, is highly application-specific and hard to
infer automatically for a broad range of software. In addition,
we also disregarded pointer arithmetic sites that are prone to
the attack we described in Section 3.5 since we have no way
of realistically estimating attacker control over the pointer
offset.

Instead, we looked for loads of pointers that are later deref-
erenced in a memory write (Section 3.2), or called indirectly
(Section 3.3). We excluded patterns where the load opera-
tion was obviously safe (e.g., direct loads from a scalar local
variable). Instead, we focused on patterns (specifically on
reads from arrays), of which we assume a substantial por-
tion are exploitable. We then evaluated how many of them
suit the requirements of store-only bypasses. This selection
targets a large class of spatial C and C++ vulnerabilities but
may miss potential Use-After-Free (UAF) issues, which can
also appear without any indexing operations. However, these
temporal safety issues are much harder to distinguish from
obviously-safe pointer loads statically.

We match every pattern that contains direct data flow from
a loaded pointer value to the pointer operand of a memory
write (unsafe data pointer loads) or an indirect call (unsafe
funcptr loads). Figure 1 shows that the former pattern occurs
broadly across the entire suite of evaluated repositories. In
addition, many repositories have frequent occurrences, e.g.,
1,000 or more for over half of the evaluated programs. In con-
trast, the function pointer load pattern occurs less frequently,
in large part because indirect calls occur less frequently than
memory accesses. Hence, the store-only bypass based on
invalidly loaded data pointers significantly increases the at-
tacker’s options when facing a store-only bounds-checked
program.

5 Assurances of Store-Only Bounds Checking

Given the store-only bounds-checking risks we describe in
Section 3, one may ask whether the utility of store-only
bounds checking is defeated entirely. In this section, we ana-
lyze the expressiveness of the arbitrary write primitive granted
through our store-only bypass, and discuss cases where store-
only bounds checking is still useful.

After gaining some control over the target object of the
memory write, attackers can corrupt address data to bootstrap
a more powerful primitive [43], or corrupt key data struc-
tures directly, e.g., security-sensitive configuration data [16],
syscall arguments [43], or syscall-guard variables [113]. Al-
ternatively, attackers may seek arbitrary code execution by
corrupting a code pointer in the program [13, 82, 85]. Most of
these are already accessible through valid pointers in the pro-
gram, so attackers can disclose the target corruption address
more easily and obtain valid pointers to bypass the store-only
validity checks. However, some objects never appear as valid
overwrite targets in the bounds-checking metadata because
no instrumented write should ever be able to target them. We
describe a few examples here.

Return Addresses Overwriting return addresses can be dif-
ficult under store-only hardening since they are not part of any
live object. In addition, some bounds checkers “heapify” [79]
stack allocations to better control their memory layout [29], or
to simplify instrumentation. This effectively leaves the return
addresses on a safe stack [60], of which the location may be
harder to disclose, and, in turn, complicates the task of craft-
ing valid pointers. However, we find no such restrictions for
the corruption of function pointers, i.e., forward-edge control
flow hijacking, which is equally expressive [13].

Bounds Metadata An attractive option for adversaries
looking to bootstrap an initial store-only bypass into a more
expressive primitive may be to target the bounds or lifetime
metadata itself. Once again, however, no pointers will nat-
urally occur in the program for which any bounds checker

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 175

Figure 1: Occurrences of the enabling code patterns in the 1,000 most popular C/C++ GitHub repositories. The top axis counts
the black graph, representing the distribution of the lines of code of each repository. The bottom axis counts the yellow and blue
graphs, which show the distribution of unsafe data pointer loads, and unsafe function ptr loads respectively.

metadata is a valid target. Some defenses, e.g., CryptSan [42]
and Mid-Fat Pointers [57], even include dedicated Software
Fault Isolation (SFI) to explicitly outlaw invalid accesses to
the metadata, as a defense-in-depth measure.

Safe Objects As a way to reduce run-time overhead [29,
106] or to provide isolation [44, 45, 60, 64], defenses stati-
cally identify objects that can never be the source of memory
errors, because they are provably always accessed within their
bounds. Bounds checkers do so too, e.g., to avoid heapify-ing
many stack objects for performance reasons [29]. Similar to
return addresses, this leaves them separated on a safer stack,
which no bounds-checked memory writes can target.

For each of these cases, we notice a large difference be-
tween centralized/disjoint and decentralized/inline metadata.
For a typical fat pointer approach, e.g., Austin et al.’s [9], at-
tackers can craft fat pointers with any bounds attached to them,
including those permitting access to the stack, bounds table
metadata, or any other illegitimate targets, e.g., the Global
Offset Table (GOT) [118]. After disclosing the address of the
target object, such approaches pave the way for expressive
exploitation.

On the other hand, many bounds checkers contain at least
some metadata that is not kept inline with the pointer, and
thus hinders straightforward crafting. Among “diet pointer”
schemes, i.e., those that do not extend the native pointer
width, many include a small metadata key as part of the
pointer [18, 63, 78, 79, 91, 110], which can be used to retrieve
complete metadata information during validity checks. These
make it harder to craft arbitrary pointers to illegitimate tar-
gets, since it may require crafting a metadata entry, too. If all
metadata is stored in a centralized, disjoint location [63, 91],

this is near impossible using store-only hardened writes alone.
Alternatively, metadata can be stored inline with the objects
too, e.g., as allocation headers or footers [18, 78, 79]. Adver-
saries must then be able to craft the metadata in the expected
location, typically near the target object, to accompany the
crafted pointer. For some illegitimate targets, e.g., return
addresses, this can still be feasible when there are enough
attacker-controlled regions available nearby.

Note that our discussion in this section primarily concerns
illegitimate corruption targets, such as return addresses, to
which the bounds checker will never create any valid pointers,
as they are not supposed to be overwritten by application-level
memory writes. All other corruption targets, e.g., function
pointers, access control data, configuration data, etc., can
generally be targeted through hardened memory writes using
both crafted and reused pointers. In addition, store-only se-
curity risks that do not depend on invalid memory writes are
not affected by any limitations of the store-only bypass primi-
tive. For instance, loading attacker-chosen function pointers
enables expressive control flow hijacking, with which these
“illegitimate” targets can still be corrupted.

6 Analysis of Existing Store-Only Bounds
Checkers

We reviewed several prominent bounds checkers that include
a store-only mode and analyzed their susceptibility to the
security risks we identified in Section 3. We summarize our
findings in this section. Table 1 shows the condensed results,
with the properties of each evaluated defense, and the bypass
expressiveness it grants.

176 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Property SoftBound [75] FRAMER [78] PACMem [63] Intel MPX [81]
Hardware None None Commodity Commodity
Type Pointer-based Object-based Pointer-based Pointer-based
Per-Pointer Metadata Disjoint In-pointer In-pointer Disjoint
Per-Object Metadata None Inline Disjoint None
Pointer Reuse 3 3 3 3
Pointer Crafting 7 3 3 3
Illegitimate Targets 7 7 7 3

Table 1: Comparison of selected bounds checkers that offer a store-only working mode. We highlight their respective design
properties and the expressiveness of the store-only bypass technique under each.

Listing 3: Vulnerable program.

1 int* adminLvl = ...; // *adminLvl = 0
2 struct user {
3 int age;
4 }* users[NUM_USERS] = ...;
5

6 id = input_user();
7 age = input_user();
8 // exploitable memory read
9 struct user* user = users[id];

10 // checked memory write
11 user->age = age;
12

13 if (*adminLevel > 2) {
14 printf("Shell for admin: \n");
15 system("/bin/bash");
16 }

SoftBound [75] SoftBound is one of the most well-known
spatial memory safety defenses in academic literature, with
much derivative work reusing or extending its techniques [15,
100, 101]. The basic design is pointer-based with disjoint,
centralized metadata. A large table, indexed by the storage
locations of program pointers, contains information about
the bounds of their intended referents. When pointers move
around in memory, SoftBound updates the metadata to move
around with them, and when they are loaded from memory,
their bounds metadata is, too. This propagation mechanism
allows SoftBound to check every pointer against the bounds of
its intended referent on memory accesses without constraining
or checking pointer arithmetic.

SoftBound, and the later review article by the same au-
thors [77], includes an evaluation of a store-only working
mode that reduces run-time overhead by a factor of 2 or more.
Using SoftBounds’ open-source prototype [23], we empir-
ically validated our store-only bounds check bypass on a
manually written vulnerable program, shown in Listing 3.
On line 9, attackers can use the id variable to control the

loaded pointer from the users array. After defeating ASLR
and disclosing the addresses of the objects involved, attackers
can load the adminLvl pointer on line 9 by out-of-bounds
indexing the users array, such that the bounds-checked write
on line 11 overwrites the admin level, leading to privilege
escalation in this case. We modeled this example after the
IE God Mode bug [7], where a single variable controlled the
privilege level of VBScript code executing in a sandbox.

We confirmed that we were able to successfully exploit the
native program, without any hardening applied, by passing
it the correct offset value for id, e.g., &adminLvl - &users,
and supplying an age larger than 2. When we repeated this
experiment on a fully hardened program version, SoftBound
successfully detected the exploitation at the initial out-of-
bounds memory read on line 9. We then turned off checks
on memory reads and were able to exploit the program again,
using the same technique as with the native program. During
the memory read, SoftBound looked up the bounds associated
with the actually-accessed memory location, i.e., &adminLvl,
and enforced those at line 11. Naturally, these bounds were
valid for the memory write to *adminLvl.

FRAMER [78] FRAMER is a spatial-only bounds checker
which implements a mostly object-based design. Small in-
pointer metadata keys track the location of per-object bounds
information, which is typically located close to the object.
FRAMER restricts pointer arithmetic to preserve the metadata
key and, thus, to remember the intended referent at all times.
FRAMER also supports a store-only working mode, which
incurs less than a third of the performance overhead of its full
instrumentation version.

As pointers store metadata keys in the unused top bits,
they contain all the necessary information to pass the validity
check. Naturally, pointer reuse is possible here to obtain valid
substitute pointers, like in the previous SoftBound exploita-
tion example. In addition, attackers can trivially craft pointers
with arbitrary metadata keys in the upper bits. The possibility
of pointer crafting makes FRAMER even more suitable for
store-only attack bypasses than SoftBound.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 177

PACMem [63] PACMem uses ARM’s Pointer Authentica-
tion (PA) feature [8] to bind pointers to their disjoint per-
object metadata entries cryptographically. During allocation,
PACMem generates a Pointer Authentication Code (PAC)
based on the object’s full validity metadata (base pointer, al-
location size, and a randomly generated temporal identifier
called a “birthmark”) and places it into the top bits of the
pointer. PACMem also stores per-object validity metadata in
a linear table, indexed by the PAC of pointers during memory
accesses. If the PAC does not match the looked-up validity
metadata, PACMem knows the pointer is no longer tracking
its intended referent, either due to out-of-bounds indexing or
due to an intervening deallocation.

The authors also evaluate PACMem in a store-only work-
ing mode, which more than halves run-time overhead. From
a store-only bypass perspective, PACMem behaves very sim-
ilarly to FRAMER. The PAC is essentially a metadata key,
protected from corruption through cryptographic integrity
checks, for which FRAMER uses pointer arithmetic checks
instead. In both cases, the metadata keys are revealed when
the attacker can leak memory contents, and attackers can craft
pointers using any metadata key to grant access to any bounds
stored in the metadata table. Hence, this design permits both
crafting and reuse to obtain valid pointers. To reiterate, what
we describe as pointer crafting still requires the disclosure
of authenticated pointers to the target object first to craft an
identical copy in a different place. However, this is entirely
in the scope of the store-only threat model, as mentioned in
Section 3.1.

Finally, PACMem is the only one out of our evaluated
schemes that suffers from the breach of its implicit pointer
confidentiality. As discussed in Section 3.5, pointers con-
tain their own metadata tags, and PACMem permits arbitrary
pointer arithmetic. Hence, leaking two PACMem pointers
and computing their offset gives attackers an index value with
which they can construct pointer A from pointer B and vice
versa.

Intel MPX [81] The now-deprecated Intel Memory Protec-
tion Extensions (MPX) were a hardware feature of select Intel
CPU microarchitectures that included dedicated bounds regis-
ters, as well as bounds checking and management instructions
that provided generic hardware acceleration for pointer-based
bounds checking schemes [120]. Several papers additionally
explored using MPX as a fast, coarse-grained intra-process
isolation mechanism [15, 55, 60], for which it was arguably
better suited.

MPX has architectural support for a centralized in-memory
metadata structure that contains bounds entries for the loca-
tion of every pointer in the program. In that regard, typi-
cal MPX-accelerated bounds checkers, such as those imple-
mented by the GCC and ICC toolchains in the past [19, 81],
are very similar to SoftBound, which itself was inspired by
a hardware implementation of the same idea [25]. Indeed,

Oleksenko et al. analyzed the performance characteristics
of Intel MPX when used for its intended bounds checking
purpose [81], and included a performance comparison with,
among others, SoftBound. They also evaluated a store-only
working mode of such an MPX-based bounds checker and
found that it reduces the performance overhead by a factor of
2.

A key difference between MPX’s design and SoftBound is
that MPX redundantly stores the pointer’s value in the bounds
entry that describes its intended referent. The goal is to allow
the detection of external uninstrumented code that overwrites
pointers in memory without updating their associated meta-
data entries, e.g., by re-assigning it to a different object. Dur-
ing loads of pointers, using the BNDLDX instruction [47], the
processor checks whether the bounds table entry is present
and holds a pointer value that matches its disjointly stored
copy as a way to verify whether the metadata is still up to date.
If it is not, MPX can take one of two implementation-defined
actions. On the one hand, MPX can update the bounds table
entry to cover the entire address space [47], i.e., the loaded
pointer value can point to any object in the program, as a
security concession that prioritizes compatibility with exter-
nal code [77]. This compatibility mechanism allows MPX
to gracefully handle calls to uninstrumented libraries, dy-
namically unbounding pointers when external code changes
them instead of terminating the program. On the other hand,
MPX can simply terminate the program. This latter option
prioritizes security over compatibility.

From a store-only bypass perspective, the aforementioned
compatibility option makes pointer crafting much easier than
it is with SoftBound, which strictly distinguishes between
valid pointer-holding locations and non-pointer data (cfr. Sec-
tion 3.2). In its store-only mode, MPX would then graciously
interpret any attacker-crafted pointer as a valid pointer for
any object in the program, which bypasses previous pointer
crafting limitations with SoftBound, yielding the single most
expressive store-only bypass primitive we have observed in
our review of the literature.

7 Discussion & Related Work

Until now, we described several attack vectors against store-
only bounds checkers that go beyond information disclosure,
in the hope of recalibrating the community’s expectations
about the security guarantees of such defenses. In this section,
we take a broader look at other types of store-only hardening,
and the impact of our findings on other areas of memory safety
enforcement.

Write Integrity Testing (WIT) [5] WIT is a notable mem-
ory safety hardening that solely provides store-only validity
checks. However, its enforcement mechanism fundamen-
tally differs from that of bounds checkers. At compile time,

178 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

WIT assigns the same color to all memory writes that may
alias. This creates disjoint alias sets [53], each identified
with a unique color, that hold all objects in the points-to sets
of the aliasing writes. At run time, WIT tags each object
with the color of its alias set, and queries the color of the
actually-accessed object on memory writes. WIT’s store-only
validity check verifies that the looked-up color matches the
statically-assigned color of the write. This validity check en-
sures that the actually-accessed object is within the statically-
computed points-to set of the memory write. Within that set,
the memory write can corrupt all objects. Naturally, this per-
mits clear memory safety violations, and has been regarded
as strictly weaker than precise bounds checking for that rea-
son. However, because WIT establishes the set of accessible
objects statically, its validity checks cannot be fooled by our
store-only bypass. Contrary to bounds checkers, WIT does
not propagate any bounds or metadata information dynam-
ically. As such, its security guarantees are not affected by
any memory-unsafety from which the memory write operand
originates; the same, statically-determined set of objects will
be enforced regardless. WIT shows increased resilience over
bounds checkers in the face of arbitrary memory reads, which
makes it more suitable as a store-only hardening mechanism.

Impact on Static Analysis Bounds checkers typically in-
clude a range of compiler optimizations to suppress over-
head [12, 18, 44, 45, 52, 66, 100, 108, 112, 117, 122]. A
popular optimization is to check whether pointer operands
of memory accesses are always in bounds of any object they
could refer to [5]; if so, they are provably safe and do not
require a dynamic bounds check. This in-bounds analysis
typically requires statically tracing pointers backward to de-
termine their origin, accumulating any offsets they garner
along the way. Many pointers are loaded from memory even-
tually (Section 4), at which point thorough analyses perform
a Reaching Definitions Analysis (RDA) [4] to determine the
possible values of the loaded pointer. The in-bounds analy-
sis can then continue investigating all these possible loaded
pointer values. If all possible loaded values are in bounds,
the analysis will consider the original memory access as safe,
and leave it uninstrumented.

Again, a problem appears when the loaded pointer value
originates from an exploitable memory read. Attackers can
invalidly load a different pointer, and, due to the optimization,
there will not even be a bounds check left to bypass. The
underlying problem here is that many static analyses do not
account for the memory-unsafety of C and C++ [69], but are
still used to prove its safety properties. To avoid this specific
issue, we recommend only performing RDA on memory loads
which themselves are also provably in bounds.

Store-Only Testing In this paper, we have primarily dis-
cussed the weaknesses of bounds checkers as exploit miti-
gations, facing a sophisticated adversary that is motivated to

break the program’s protection through any means necessary.
However, some bounds checkers simply aim to catch mem-
ory safety violations that are triggered during development
or (fuzz) testing [17, 36, 67, 94]. The latter are commonly
referred to as “sanitizers” [97], and tend to use less secure
methods of catching memory errors, that nevertheless detect
violations more precisely, e.g., at object bounds instead of
allocation bounds [28]. Performance can still be important
here, e.g., to improve throughput during automated fuzz test-
ing [36, 48, 119, 122]. Indeed, the original AddressSanitizer
(ASan) paper, now integrated into popular compilers [20, 21],
included an evaluation of a “writes-only” instrumentation
mode, which reduced the run-time overhead threefold. How-
ever, since ASan is not meant to run in production, despite
a stint in the Tor browser [24], the impact of our attack is
limited. Still, our work undermines the assumption that when
a program is thoroughly sanitized/fuzzed for invalid write
bugs, attackers will not be able to corrupt program memory
or achieve arbitrary code execution.

Selective Bounds Checking Apart from store-only deploy-
ments, researchers have also proposed using bounds checkers
to protect only a security-critical, sensitive part of the data
space [3, 15, 60, 101]. These defenses generally include a
coarse-grained isolation mechanism in the non-sensitive part
to prevent access to the sensitive part, e.g. using SFI [114]
or Intel MPK [47]. Typically, a pointer analysis determines
which memory accesses are allowed to access the sensitive
region and which are not. Depending on the way the analysis
computes sensitivity, we believe that such selective bounds
checkers carry a similar vulnerability to their store-only sib-
lings. Consider the snippet below:

1 ptrToSens = nonSensArray[i];
2 *ptrToSens = ...;

The nonSensArray is non-sensitive, and it contains non-
sensitive pointers to sensitive objects. The load from the array
on line 1 is only instrumented with coarse-grained bounds
checks, since the pointer analysis correctly determined that it
accesses a non-sensitive object (nonSensArray). The store
on line 2 is bounds checked in a fine-grained way, since it
is supposed to access sensitive data. When the load on 1
is exploitable, however, attackers can load any valid pointer
to the sensitive region from the non-sensitive region, which
will pass the validity check on line 2, in true store-only by-
pass fashion. Hence, attackers can choose which sensitive
object gets written to on line 1, by abusing a memory error
they were permitted to exploit (coarse-grained bounds check).
Note that we bypass two layers of defense-in-depth at once
here: attackers are not supposed to write to the sensitive re-
gion (inter-sensitive isolation), and sensitive memory accesses
are not supposed to be exploitable, because they are bounds
checked (intra-sensitive isolation).

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 179

One option to address this issue is to include pointers to
sensitive objects in the sensitive region as well [15, 96], recur-
sively. However, this can quickly lead to a very large sensitive
region, with almost all memory accesses instrumented, and
the associated performance overhead.

8 Conclusion

In this work, we uncovered fundamental weaknesses of store-
only bounds checking, directly caused by the lack of protec-
tion on memory reads. In particular, we demonstrated that
invalid loads of pointers give attackers control over hardened
memory writes. We empirically validated our attack on a
prominent bounds checker prototype, and characterized the
same weakness in other bounds checker designs. Through
automated code analysis, we showed that a large corpus of
real software exhibits the vulnerable patterns that enable our
store-only bypass.

Looking ahead, we discussed potential avenues to rebal-
ance the security and overhead advantages of store-only hard-
ening. To this end, we recognized the resilience of Data
Flow Integrity (DFI) against malicious pointer loads. Given
the broader importance of efficient memory safety enforce-
ment, we encourage new research into store-only hardening,
keeping in mind the subversive effects of attacker-controlled
memory loads.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful feedback. In addition, we thank Silviu Vlasceanu
and Mahmoud Ammar from Huawei Trusted System Security
Lab Munich for the interesting conversations that led to this
work, and Dairo de Ruck for providing access to much-needed
computation resources. This research is partially funded by
the Research Fund KU Leuven, and by the Cybersecurity
Research Program Flanders.

Availability

Our attack experiments and code analysis queries are
available at https://github.com/ku-leuven-msec/
not-quite-write-experiments.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, CCS ’05, pages 340–353, New York,
NY, USA, 2005. Association for Computing Machin-
ery. ISBN 1595932267. doi: 10.1145/1102120.
1102165.

[2] Masab Ahmad, Syed Kamran Haider, Farrukh Hijaz,
Marten van Dijk, and Omer Khan. Exploring the per-
formance implications of memory safety primitives in
many-core processors executing multi-threaded work-
loads. In Proceedings of the Fourth Workshop on Hard-
ware and Architectural Support for Security and Pri-
vacy, HASP ’15, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450334839.
doi: 10.1145/2768566.2768572. URL https://doi.
org/10.1145/2768566.2768572.

[3] Salman Ahmed, Hans Liljestrand, Hani Jamjoom,
Matthew Hicks, N. Asokan, and Danfeng (Daphne)
Yao. Not all data are created equal: Data and
pointer prioritization for scalable protection against
Data-Oriented attacks. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1433–1450,
Anaheim, CA, August 2023. USENIX Association.
ISBN 978-1-939133-37-3. URL https://www.
usenix.org/conference/usenixsecurity23/
presentation/ahmed-salman.

[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jef-
frey D Ullman. Compilers: principles, techniques, &
tools. Pearson Education India, 2007.

[5] Periklis Akritidis, Cristian Cadar, Costin Raiciu,
Manuel Costa, and Miguel Castro. Preventing Memory
Error Exploits with WIT. In 2008 IEEE Symposium
on Security and Privacy (S&P 2008), pages 263–277,
2008. doi: 10.1109/SP.2008.30.

[6] Periklis Akritidis, Manuel Costa, Miguel Castro, and
Steven Hand. Baggy bounds checking: An effi-
cient and backwards-compatible defense against out-
of-bounds errors. In USENIX Security Symposium,
volume 10, page 96, 2009.

[7] Anit Anubhav and Manish Sardiwal. The
journey and evolution of god mode in 2016:
Cve-2016-0189, 2017. URL https://www.
virusbulletin.com/virusbulletin/2017/01/
journey-and-evolution-god-mode-2016-cve-2016-0189/.

[8] Arm Ltd. Arm Architecture Reference Manual Supple-
ment Armv9, for Armv9-A architecture profile, 2022.

[9] Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient Detection of All Pointer and Array
Access Errors. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design
and Implementation, PLDI ’94, pages 290–301, New
York, NY, USA, 1994. Association for Computing
Machinery. ISBN 089791662X. doi: 10.1145/178243.
178446. URL https://doi.org/10.1145/178243.
178446.

180 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/ku-leuven-msec/not-quite-write-experiments
https://github.com/ku-leuven-msec/not-quite-write-experiments
https://doi.org/10.1145/2768566.2768572
https://doi.org/10.1145/2768566.2768572
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-salman
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://doi.org/10.1145/178243.178446
https://doi.org/10.1145/178243.178446

[10] Roberto Avanzi. The QARMA block cipher family.
IACR Transactions on Symmetric Cryptology, pages
4–44, 2017.

[11] Yanis Belkheyar, Joan Daemen, Christoph Dobrau-
nig, Santosh Ghosh, and Shahram Rasoolzadeh. Bip-
bip: A low-latency tweakable block cipher with
small dimensions. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(1):
326–368, Nov. 2022. doi: 10.46586/tches.v2023.i1.
326-368. URL https://tches.iacr.org/index.
php/TCHES/article/view/9955.

[12] Lukas Bernhard, Michael Rodler, Thorsten Holz, and
Lucas Davit. xTag: Mitigating Use-After-Free Vulner-
abilities via Software-Based Pointer Tagging on Intel
x86-64. In 2022 IEEE 7th European Symposium on Se-
curity and Privacy (EuroS&P), pages 502–519, 2022.
doi: 10.1109/EuroSP53844.2022.00038.

[13] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-oriented programming: A new
class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS ’11, pages 30–40,
New York, NY, USA, 2011. Association for Com-
puting Machinery. ISBN 9781450305648. doi:
10.1145/1966913.1966919.

[14] Nathan Burow, Derrick McKee, Scott A. Carr, and
Mathias Payer. CUP: Comprehensive User-Space
Protection for C/C++. In Proceedings of the 2018 on
Asia Conference on Computer and Communications
Security, ASIACCS ’18, pages 381–392, New York,
NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450355766. doi: 10.1145/3196494.
3196540.

[15] Scott A. Carr and Mathias Payer. DataShield: Config-
urable Data Confidentiality and Integrity. In Proceed-
ings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’17, pages
193–204, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349444. doi:
10.1145/3052973.3052983. URL https://doi.org/
10.1145/3052973.3052983.

[16] Shuo Chen, Jun Xu, and Emre C. Sezer. Non-
control-data attacks are realistic threats. In 14th
USENIX Security Symposium (USENIX Security
05), Baltimore, MD, 7 2005. USENIX Association.
URL https://www.usenix.org/conference/
14th-usenix-security-symposium/
non-control-data-attacks-are-realistic-threats.

[17] Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li,
Ruoyu Wang, Haixin Duan, Haoyu Wang, and Chao

Zhang. MTSan: A feasible and practical memory
sanitizer for fuzzing cots binaries. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 841–
858, 2023.

[18] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao,
Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé, and
Gail-Joon Ahn. Vik: practical mitigation of tempo-
ral memory safety violations through object id inspec-
tion. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 271–284,
2022.

[19] GCC Developers. Intel MPX support
in the GCC compiler, June 2018. URL
https://gcc.gnu.org/wiki/Intel%20MPX%
20support%20in%20the%20GCC%20compiler.

[20] GCC Developers. Program instrumentation options.
https://gcc.gnu.org/onlinedocs/
gcc/Instrumentation-Options.html#
index-fsanitize_003daddress, 2024.

[21] LLVM Developers. Addresssanitizer.
https://clang.llvm.org/docs/
AddressSanitizer.html, 2024.

[22] Rust Developers. Rust programming language, 2024.
URL https://www.rust-lang.org/.

[23] SoftBoundCETS developers. softboundcets-34,
2014. URL https://github.com/santoshn/
softboundcets-34.

[24] Tor Developers. Tor browser 5.5a4-
hardened is released, November 2015.
URL https://blog.torproject.org/
tor-browser-55a4-hardened-released/.

[25] Joe Devietti, Colin Blundell, Milo M. K. Martin, and
Steve Zdancewic. Hardbound: Architectural Support
for Spatial Safety of the C Programming Language.
In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XIII, pages 103–
114, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781595939586. doi:
10.1145/1346281.1346295. URL https://doi.org/
10.1145/1346281.1346295.

[26] Dinakar Dhurjati and Vikram Adve. Backwards-
compatible array bounds checking for c with very low
overhead. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages
162–171, New York, NY, USA, 2006. Association
for Computing Machinery. ISBN 1595933751. doi:

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 181

https://tches.iacr.org/index.php/TCHES/article/view/9955
https://tches.iacr.org/index.php/TCHES/article/view/9955
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.1145/3052973.3052983
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fsanitize_003daddress
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fsanitize_003daddress
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fsanitize_003daddress
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://www.rust-lang.org/
https://github.com/santoshn/softboundcets-34
https://github.com/santoshn/softboundcets-34
https://blog.torproject.org/tor-browser-55a4-hardened-released/
https://blog.torproject.org/tor-browser-55a4-hardened-released/
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/1346281.1346295

10.1145/1134285.1134309. URL https://doi.org/
10.1145/1134285.1134309.

[27] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
SAFECode: Enforcing alias analysis for weakly typed
languages. In Proceedings of the 27th ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, PLDI ’06, pages 144–157,
New York, NY, USA, 2006. Association for Com-
puting Machinery. ISBN 1595933204. doi: 10.
1145/1133981.1133999. URL https://doi.org/
10.1145/1133981.1133999.

[28] Baozeng Ding, Yeping He, Yanjun Wu, Alex Miller,
and John Criswell. Baggy bounds with accurate check-
ing. In 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Workshops, pages
195–200, 2012. doi: 10.1109/ISSREW.2012.24.

[29] Gregory Duck, Roland Yap, and Lorenzo Cavallaro.
Stack object protection with low fat pointers. In NDSS
Symposium 2017, 2017.

[30] Gregory J. Duck and Roland H. C. Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion, CC 2016, pages 132–142, New York, NY, USA,
2016. Association for Computing Machinery. ISBN
9781450342414. doi: 10.1145/2892208.2892212.

[31] Gregory J Duck and Roland HC Yap. EffectiveSan:
Type and memory error detection using dynamically
typed c/c++. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 181–195, 2018.

[32] Gregory J. Duck, Yuntong Zhang, and Roland H. C.
Yap. Hardening binaries against more memory er-
rors. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, pages
117–131, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450391627. doi:
10.1145/3492321.3519580. URL https://doi.org/
10.1145/3492321.3519580.

[33] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bai-
ley, and J. Alex Halderman. The matter of heart-
bleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference, IMC ’14, pages
475–488, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450332132. doi:
10.1145/2663716.2663755. URL https://doi.org/
10.1145/2663716.2663755.

[34] Ronald Gil, Hamed Okhravi, and Howard Shrobe.
There’s a hole in the bottom of the c: On the effec-
tiveness of allocation protection. In 2018 IEEE Cyber-
security Development (SecDev), pages 102–109, 2018.
doi: 10.1109/SecDev.2018.00021.

[35] Amogha Udupa Shankaranarayana Gopal, Raveen-
dra Soori, Michael Ferdman, and Dongyoon Lee.
TAILCHECK: A lightweight heap overflow detection
mechanism with page protection and tagged pointers.
In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 2023.

[36] Floris Gorter, Enrico Barberis, Raphael Isemann,
Erik van der Kouwe, Cristiano Giuffrida, and Her-
bert Bos. FloatZone: Accelerating memory er-
ror detection using the floating point unit. In
32nd USENIX Security Symposium (USENIX Secu-
rity 23), pages 805–822, Anaheim, CA, August 2023.
USENIX Association. ISBN 978-1-939133-37-
3. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/gorter.

[37] Enes Göktas, Benjamin Kollenda, Philipp Koppe,
Erik Bosman, Georgios Portokalidis, Thorsten Holz,
Herbert Bos, and Cristiano Giuffrida. Position-
independent code reuse: On the effectiveness of aslr in
the absence of information disclosure. In 2018 IEEE
European Symposium on Security and Privacy (Eu-
roS&P), pages 227–242, 2018. doi: 10.1109/EuroSP.
2018.00024.

[38] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer,
Cristiano Giuffrida, Herbert Bos, and Erik van der
Kouwe. TypeSan: Practical type confusion detection.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
pages 517–528, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. ISBN 9781450341394.
doi: 10.1145/2976749.2978405. URL https://doi.
org/10.1145/2976749.2978405.

[39] Istvan Haller, Erik van der Kouwe, Cristiano Giuf-
frida, and Herbert Bos. Metalloc: Efficient and
comprehensive metadata management for software
security hardening. In Proceedings of the 9th Eu-
ropean Workshop on System Security, EuroSec ’16,
New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450342957. doi:
10.1145/2905760.2905766. URL https://doi.org/
10.1145/2905760.2905766.

[40] Mohamed Tarek Bnziad Mohamed Hassan. Hardware-
Software Co-design for Practical Memory Safety. PhD
thesis, Columbia University, 2022.

182 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/3492321.3519580
https://doi.org/10.1145/3492321.3519580
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/2905760.2905766
https://doi.org/10.1145/2905760.2905766

[41] Konrad Hohentanner, Florian Kasten, and Lukas Auer.
Hwasanio: Detecting c/c++ intra-object overflows with
memory shading. In Proceedings of the 12th ACM
SIGPLAN International Workshop on the State Of the
Art in Program Analysis, pages 27–33, 2023.

[42] Konrad Hohentanner, Philipp Zieris, and Julian Horsch.
Cryptsan: Leveraging arm pointer authentication for
memory safety in c/c++. In Proceedings of the
38th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC ’23, pages 1530–1539, New York, NY,
USA, 2023. Association for Computing Machin-
ery. ISBN 9781450395175. doi: 10.1145/
3555776.3577635. URL https://doi.org/10.
1145/3555776.3577635.

[43] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Pra-
teek Saxena, and Zhenkai Liang. Automatic generation
of data-oriented exploits. In Proceedings of the 24th
USENIX Conference on Security Symposium, SEC’15,
pages 177–192, USA, 2015. USENIX Association.
ISBN 9781931971232.

[44] Kaiming Huang, Yongzhe Huang, Mathias Payer,
Zhiyun Qian, Jack Sampson, Gang Tan, and Trent
Jaeger. The Taming of the Stack: Isolating Stack Data
from Memory Errors. In Proceedings of the 2020 ISOC
Network and Distributed Systems Security Symposium
(NDSS), February 2022.

[45] Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack
Sampson, Gang Tan, and Trent Jaeger. Top of the
heap: Efficient memory error protection for many heap
objects. arXiv preprint arXiv:2310.06397, 2023.

[46] Mohamed Tarek Ibn Ziad, Evgeny Manzhosov, and
Simha Sethumadhavan. C-4: Compromising crypto-
graphic capability computing. 2022. Work in progress.

[47] Intel Inc. Intel 64 and IA-32 Architectures. Software
Developer’s Manual, 2021.

[48] Yuseok Jeon, WookHyun Han, Nathan Burow, and
Mathias Payer. FuZZan: Efficient sanitizer meta-
data design for fuzzing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 249–
263. USENIX Association, July 2020. ISBN 978-
1-939133-14-4. URL https://www.usenix.org/
conference/atc20/presentation/jeon.

[49] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of c. In Proceedings of the
General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, pages 275–
288, USA, 2002. USENIX Association. ISBN
1880446006.

[50] X. Jin, X. Xiao, S. Jia, W. Gao, H. Zhang, D. Gu,
S. Ma, Z. Qian, and J. Li. Annotating, Tracking, and
Protecting Cryptographic Secrets with CryptoMPK. In
2022 IEEE Symposium on Security and Privacy (S&P),
pages 473–488, Los Alamitos, CA, USA, May 2022.
IEEE Computer Society. doi: 10.1109/SP46214.2022.
00028. URL https://doi.ieeecomputersociety.
org/10.1109/SP46214.2022.00028.

[51] Richard WM Jones and Paul HJ Kelly. Backwards-
compatible bounds checking for arrays and pointers in
c programs. In AADEBUG, volume 97, pages 13–26,
1997.

[52] Tina Jung, Fabian Ritter, and Sebastian Hack. Pico: A
presburger in-bounds check optimization for compiler-
based memory safety instrumentations. ACM Transac-
tions on Architecture and Code Optimization (TACO),
18(4):1–27, 2021.

[53] Vineet Kahlon. Bootstrapping: A technique for scal-
able flow and context-sensitive pointer alias analysis.
SIGPLAN Not., 43(6):249–259, June 2008. ISSN
0362-1340. doi: 10.1145/1379022.1375613.

[54] Piyus Kedia, Rahul Purandare, Udit Agarwal, and
Rishabh. Cguard: Scalable and precise object bounds
protection for c. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, pages 1307–1318, 2023.

[55] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No need to hide:
Protecting safe regions on commodity hardware. In
European Conference on Computer Systems (EuroSys),
2017.

[56] Michael Kounavis, Sergej Deutsch, Santosh Ghosh,
and David Durham. K-cipher: A low latency, bit length
parameterizable cipher. In 2020 IEEE Symposium on
Computers and Communications (ISCC), pages 1–7,
2020. doi: 10.1109/ISCC50000.2020.9219582.

[57] Taddeus Kroes, Koen Koning, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. Fast and
generic metadata management with mid-fat point-
ers. In Proceedings of the 10th European Work-
shop on Systems Security, EuroSec’17, New York,
NY, USA, 2017. Association for Computing Ma-
chinery. ISBN 9781450349352. doi: 10.1145/
3065913.3065920. URL https://doi.org/10.
1145/3065913.3065920.

[58] Taddeus Kroes, Koen Koning, Erik van der Kouwe,
Herbert Bos, and Cristiano Giuffrida. Delta point-
ers: Buffer overflow checks without the checks. In

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 183

https://doi.org/10.1145/3555776.3577635
https://doi.org/10.1145/3555776.3577635
https://www.usenix.org/conference/atc20/presentation/jeon
https://www.usenix.org/conference/atc20/presentation/jeon
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00028
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00028
https://doi.org/10.1145/3065913.3065920
https://doi.org/10.1145/3065913.3065920

Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys ’18, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355841. doi:
10.1145/3190508.3190553.

[59] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov,
Bohdan Trach, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. SGXBOUNDS: Memory safety for
shielded execution. In Proceedings of the Twelfth
European Conference on Computer Systems, pages
205–221, 2017.

[60] Volodymyr Kuznetsov, László Szekeres, Mathias
Payer, George Candea, R. Sekar, and Dawn Song.
Code-pointer integrity. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 147–163, USA,
2014. USENIX Association. ISBN 9781931971164.

[61] Michael Larabel. The first rust-written net-
work phy driver set to land in linux 6.8, 12 2023.
URL https://www.phoronix.com/news/Linux-6.
8-Rust-PHY-Driver.

[62] Michael LeMay, Joydeep Rakshit, Sergej Deutsch,
David M. Durham, Santosh Ghosh, Anant Nori,
Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karan-
vir Grewal, and Sreenivas Subramoney. Crypto-
graphic capability computing. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’21, pages 253–267, New
York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450385572. doi:
10.1145/3466752.3480076. URL https://doi.org/
10.1145/3466752.3480076.

[63] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang,
Mathias Payer, Ying Liu, and Chao Zhang. PACMem:
Enforcing spatial and temporal memory safety via arm
pointer authentication. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’22, pages 1901–1915,
New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450394505. doi:
10.1145/3548606.3560598. URL https://doi.org/
10.1145/3548606.3560598.

[64] Hans Liljestrand, Carlos Chinea, Rémi Denis-
Courmont, Jan-Erik Ekberg, and N. Asokan. Color my
world: Deterministic tagging for memory safety, 2022.
URL https://arxiv.org/abs/2204.03781.

[65] Ankur Limaye and Tosiron Adegbija. A workload char-
acterization of the spec cpu2017 benchmark suite. In
2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 149–
158, 2018. doi: 10.1109/ISPASS.2018.00028.

[66] Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Cam-
panoni, Peter Dinda, and Xinyu Xing. Camp: Com-
piler and allocator-based heap memory protection. In
USENIX Security Symposium, 2024. URL https://
zplin.me/papers/CAMP.pdf. To appear in USENIX
Security 2024.

[67] Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao
Cai, and Charles Zhang. Giantsan: Efficient memory
sanitization with segment folding. In 29th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS 2024), 2024.

[68] Zhengyang Liu and John Criswell. Flexible and ef-
ficient memory object metadata. In Proceedings of
the 2017 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2017, pages 36–46,
New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450350440. doi:
10.1145/3092255.3092268. URL https://doi.org/
10.1145/3092255.3092268.

[69] Benjamin Livshits, Manu Sridharan, Yannis
Smaragdakis, Ondrej Lhotak, J. Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P.
Khedker, Anders Møller, and Dimitrios Vardoulakis.
In defense of soundiness: A manifesto. Com-
munications of the ACM, 58:44–46, 2015. URL
http://cacm.acm.org/magazines/2015/2/
182650-in-defense-of-soundiness/abstract.

[70] The MITRE Corporation (MITRE). CWE-125: Out-
of-bounds read. https://cwe.mitre.org/data/
definitions/125.html, 2024.

[71] The MITRE Corporation (MITRE). CWE-416:
Use after free. https://cwe.mitre.org/data/
definitions/416.html, 2024.

[72] The MITRE Corporation (MITRE). CWE-787: Out-
of-bounds write. https://cwe.mitre.org/data/
definitions/787.html, 2024.

[73] Micah Morton, Jan Werner, Panagiotis Kintis, Kevin
Snow, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. Security risks in asynchronous
web servers: When performance optimizations amplify
the impact of data-oriented attacks. In 2018 IEEE
European Symposium on Security and Privacy (Eu-
roS&P), pages 167–182, 2018. doi: 10.1109/EuroSP.
2018.00020.

[74] Yeoul Na. -fbounds-safety. enforcing bounds safety for
production c code. EuroLLVM Developers’ Meeting,
May 2023. URL https://llvm.org/devmtg/
2023-05/slides/TechnicalTalks-May11/
01-Na-fbounds-safety.pdf.

184 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.phoronix.com/news/Linux-6.8-Rust-PHY-Driver
https://www.phoronix.com/news/Linux-6.8-Rust-PHY-Driver
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3548606.3560598
https://arxiv.org/abs/2204.03781
https://zplin.me/papers/CAMP.pdf
https://zplin.me/papers/CAMP.pdf
https://doi.org/10.1145/3092255.3092268
https://doi.org/10.1145/3092255.3092268
http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/abstract
http://cacm.acm.org/magazines/2015/2/182650-in-defense-of-soundiness/abstract
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May11/01-Na-fbounds-safety.pdf
https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May11/01-Na-fbounds-safety.pdf
https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May11/01-Na-fbounds-safety.pdf

[75] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Mar-
tin, and Steve Zdancewic. Softbound: Highly com-
patible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’09, pages 245–258, New York, NY, USA,
2009. Association for Computing Machinery. ISBN
9781605583921. doi: 10.1145/1542476.1542504.

[76] Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Watchdog: Hardware for safe and secure
manual memory management and full memory safety.
In Proceedings of the 39th Annual International Sym-
posium on Computer Architecture, ISCA ’12, pages
189–200, USA, 2012. IEEE Computer Society. ISBN
9781450316422.

[77] Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Everything You Want to Know About
Pointer-Based Checking. In Thomas Ball, Rastislav
Bodik, Shriram Krishnamurthi, Benjamin S. Lerner,
and Greg Morrisett, editors, 1st Summit on Advances
in Programming Languages (SNAPL 2015), volume 32
of Leibniz International Proceedings in Informatics
(LIPIcs), pages 190–208, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-939897-80-4. doi: 10.4230/LIPIcs.
SNAPL.2015.190. URL http://drops.dagstuhl.
de/opus/volltexte/2015/5026.

[78] Myoung Jin Nam, Periklis Akritidis, and David J
Greaves. Framer: A tagged-pointer capability sys-
tem with memory safety applications. In Proceed-
ings of the 35th Annual Computer Security Appli-
cations Conference, ACSAC ’19, pages 612–626,
New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450376280. doi:
10.1145/3359789.3359799.

[79] George C. Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. Ccured: Type-
safe retrofitting of legacy software. ACM Trans. Pro-
gram. Lang. Syst., 27(3):477–526, may 2005. ISSN
0164-0925. doi: 10.1145/1065887.1065892. URL
https://doi.org/10.1145/1065887.1065892.

[80] White House Office of the National Cyber Direc-
tor (ONCD). Back to the building blocks: A path
toward secure and measurable software. Technical
report, ONCD, February 2024. URL https:
//www.whitehouse.gov/wp-content/uploads/
2024/02/Final-ONCD-Technical-Report.pdf.

[81] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bha-
totia, Pascal Felber, and Christof Fetzer. Intel MPX
Explained: A Cross-layer Analysis of the Intel MPX

System Stack. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 2018.

[82] Aleph One. Smashing the stack for fun and
profit. Phrack Magazine, 7(49), November
1996. URL http://www.phrack.com/issues.
html?issue=49&id=14.

[83] PaX Team. Address space layout randomization
(aslr). https://pax.grsecurity.net/docs/aslr.
txt, 2001.

[84] Tribuvan Kumar Prakash and Lu Peng. Performance
characterization of spec cpu2006 benchmarks on intel
core 2 duo processor. ISAST Trans. Comput. Softw.
Eng, 2(1):36–41, 2008.

[85] Marco Prandini and Marco Ramilli. Return-oriented
programming. IEEE Security and Privacy, 10(6):84–
87, November 2012. ISSN 1540-7993. doi: 10.1109/
MSP.2012.152.

[86] Alex Rebert and Christoph Kern. Secure by design:
Google’s perspective on memory safety. Technical
report, Google Security Engineering, 2024.

[87] Inc. Red Hat. CVE-2014-0160. Available
from MITRE, CVE-ID CVE-2014-0160., December 3
2014. URL http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160.

[88] Robert Rudd, Richard Skowyra, David Bigelow, Veer
Dedhia, Thomas Hobson, Stephen Crane, Christopher
Liebchen, Per Larsen, Lucas Davi, Michael Franz, et al.
Address oblivious code reuse: On the effectiveness of
leakage resilient diversity. In NDSS, 2017.

[89] Mark Russinovich, September 2022. URL
https://twitter.com/markrussinovich/
status/1571995117233504257.

[90] Olatunji Ruwase and Monica S Lam. A practical
dynamic buffer overflow detector. In NDSS, volume
2004, pages 159–169, 2004.

[91] Gururaj Saileshwar, Rick Boivie, Tong Chen, Ben-
jamin Segal, and Alper Buyuktosunoglu. Heapcheck:
Low-cost hardware support for memory safety. ACM
Trans. Archit. Code Optim., 19(1), January 2022.
ISSN 1544-3566. doi: 10.1145/3495152. URL
https://doi.org/10.1145/3495152.

[92] Felix Schuster, Thomas Tendyck, Christopher
Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and
Thorsten Holz. Counterfeit object-oriented program-
ming: On the difficulty of preventing code reuse at-
tacks in c++ applications. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, S&P ’15,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 185

http://drops.dagstuhl.de/opus/volltexte/2015/5026
http://drops.dagstuhl.de/opus/volltexte/2015/5026
https://doi.org/10.1145/1065887.1065892
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://twitter.com/markrussinovich/status/1571995117233504257
https://twitter.com/markrussinovich/status/1571995117233504257
https://doi.org/10.1145/3495152

pages 745–762, USA, 2015. IEEE Computer Society.
ISBN 9781467369497. doi: 10.1109/SP.2015.51.

[93] Jiwon Seo, Junseung You, Donghyun Kwon, Yeongpil
Cho, and Yunheung Paek. ZOMETAG: Zone-based
Memory Tagging for Fast, Deterministic Detection of
Spatial Memory Violations on ARM. IEEE Transac-
tions on Information Forensics and Security, 2023.

[94] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
USENIX ATC’12, page 28, USA, 2012. USENIX
Association.

[95] Fermin J Serna. The info leak era on software exploita-
tion. Black Hat USA, 7, 2012.

[96] Chengyu Song, Byoungyoung Lee, Kangjie Lu,
William R. Harris, Taesoo Kim, and Wenke Lee. En-
forcing kernel security invariants with data flow in-
tegrity. In NDSS 2016, 2016.

[97] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. Sok: Sanitizing for security. In 2019 IEEE Sym-
posium on Security and Privacy (S&P), pages 1275–
1295, 2019. doi: 10.1109/SP.2019.00010.

[98] Alexander Sotirov and Mark Dowd. Bypassing
browser memory protections. Black Hat USA, 2008.

[99] Jeffrey Vander Stoep. Memory safe lan-
guages in android 13, 12 2022. URL
https://security.googleblog.com/2022/12/
memory-safe-languages-in-android-13.html.

[100] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Elim-
inating redundant bounds checks in dynamic buffer
overflow detection using weakest preconditions. IEEE
Transactions on Reliability, 65(4):1682–1699, 2016.
doi: 10.1109/TR.2016.2570538.

[101] Zhichuang Sun, Bo Feng, Long Lu, and Somesh
Jha. Oat: Attesting operation integrity of embed-
ded devices. In 2020 IEEE Symposium on Security
and Privacy (S&P), pages 1433–1449, 2020. doi:
10.1109/SP40000.2020.00042.

[102] László Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE Sym-
posium on Security and Privacy, pages 48–62, 2013.
doi: 10.1109/SP.2013.13.

[103] Mohamed Tarek Ibn Ziad, Sana Damani, Aamer Jaleel,
Stephen W Keckler, and Mark Stephenson. cucatch: A
debugging tool for efficiently catching memory safety

violations in cuda applications. Proceedings of the
ACM on Programming Languages, 7(PLDI):124–147,
2023.

[104] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian
Jiang, Vincent Freeh, and Peng Ning. On the expres-
siveness of return-into-libc attacks. In Robin Som-
mer, Davide Balzarotti, and Gregor Maier, editors, Re-
cent Advances in Intrusion Detection, pages 121–141,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-23644-0.

[105] Martin Unterguggenberger, David Schrammel, Lukas
Lamster, Pascal Nasahl, and Stefan Mangard. Cryp-
tographically enforced memory safety. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’23, pages
889–903, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400700507. doi:
10.1145/3576915.3623138. URL https://doi.org/
10.1145/3576915.3623138.

[106] Erik van der Kouwe, Taddeus Kroes, Chris Ouwe-
hand, Herbert Bos, and Cristiano Giuffrida. Type-
after-type: Practical and complete type-safe memory
reuse. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC ’18, pages
17–27, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450365697. doi:
10.1145/3274694.3274705.

[107] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security
and Privacy, pages 866–879. IEEE, 2015.

[108] Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen
Yu, Xiaosong Ma, and Wenguang Chen. Spindle:
Informed memory access monitoring. In Proceed-
ings of the 2018 USENIX Conference on Usenix An-
nual Technical Conference, USENIX ATC ’18, pages
561–573, USA, 2018. USENIX Association. ISBN
9781931971447.

[109] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revis-
iting risc in an age of risk. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture
(ISCA), pages 457–468, 2014. doi: 10.1109/ISCA.
2014.6853201.

[110] Shengjie Xu, Wei Huang, and David Lie. In-
fat pointer: Hardware-assisted tagged-pointer spatial
memory safety defense with subobject granularity pro-
tection. In Proceedings of the 26th ACM International

186 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://doi.org/10.1145/3576915.3623138
https://doi.org/10.1145/3576915.3623138

Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’21,
pages 224–240, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383172.
doi: 10.1145/3445814.3446761. URL https://doi.
org/10.1145/3445814.3446761.

[111] Shengjie Xu, Eric Liu, Wei Huang, and David Lie.
Mifp: Selective fat-pointer bounds compression for
accurate bounds checking. In Proceedings of the 26th
International Symposium on Research in Attacks, In-
trusions and Defenses, pages 609–622, 2023.

[112] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian
Lan, and Guru Venkataramani. SIMBER: Eliminating
redundant memory bound checks via statistical infer-
ence. In ICT Systems Security and Privacy Protection:
32nd IFIP TC 11 International Conference, SEC 2017,
Rome, Italy, May 29-31, 2017, Proceedings 32, pages
413–426. Springer, 2017.

[113] Hengkai Ye, Song Liu, Zhechang Zhang, and
Hong Hu. VIPER: Spotting Syscall-Guard
variables for Data-Only attacks. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 1397–1414, Anaheim, CA, August 2023.
USENIX Association. ISBN 978-1-939133-37-
3. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/ye.

[114] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
2009 30th IEEE Symposium on Security and Privacy,
pages 79–93, 2009. doi: 10.1109/SP.2009.25.

[115] Suan Hsi Yong and Susan Horwitz. Protecting c pro-
grams from attacks via invalid pointer dereferences. In
Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT In-
ternational Symposium on Foundations of Software En-
gineering, ESEC/FSE-11, pages 307–316, New York,
NY, USA, 2003. Association for Computing Machin-
ery. ISBN 1581137435. doi: 10.1145/940071.940113.

[116] Yves Younan, Pieter Philippaerts, Lorenzo Caval-
laro, R. Sekar, Frank Piessens, and Wouter Joosen.
Paricheck: an efficient pointer arithmetic checker
for c programs. In Proceedings of the 5th ACM
Symposium on Information, Computer and Commu-
nications Security, ASIACCS ’10, pages 145–156,

New York, NY, USA, 2010. Association for Com-
puting Machinery. ISBN 9781605589367. doi:
10.1145/1755688.1755707. URL https://doi.org/
10.1145/1755688.1755707.

[117] Yizhuo Zhai, Zhiyun Qian, Chengyu Song, Manu Srid-
haran, Trent Jaeger, Paul Yu, and Srikanth V Krishna-
murthy. Don’t waste my efforts: Pruning redundant
sanitizer checks of developer-implemented type checks.
2024. To appear in USENIX Security 2024.

[118] Chao Zhang, Lei Duan, Tao Wei, and Wei Zou.
Secgot: Secure global offset tables in elf executa-
bles. In Proceedings of the 2nd International Con-
ference on Computer Science and Electronics Engi-
neering (ICCSEE 2013), pages 995–998. Atlantis
Press, 2013/03. ISBN 978-90-78677-61-1. doi:
10.2991/iccsee.2013.250. URL https://doi.org/
10.2991/iccsee.2013.250.

[119] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He,
and Zhendong Su. SANRAZOR: Reducing redundant
sanitizer checks in c/c++ programs. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pages 479–494, 2021.

[120] Tong Zhang, Dongyoon Lee, and Changhee Jung.
Bogo: Buy spatial memory safety, get temporal mem-
ory safety (almost) free. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS ’19, pages 631–644, New
York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362405. doi: 10.1145/
3297858.3304017.

[121] Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuan-
dong Li, and Zhiqiang Zuo. Catamaran: Low-overhead
memory safety enforcement via parallel acceleration.
In Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
pages 816–828, 2023.

[122] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu. Debloating
address sanitizer. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, August
2022. USENIX Association. URL https://www.
usenix.org/conference/usenixsecurity22/
presentation/zhang-yuchen.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 187

https://doi.org/10.1145/3445814.3446761
https://doi.org/10.1145/3445814.3446761
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.2991/iccsee.2013.250
https://doi.org/10.2991/iccsee.2013.250
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen

SoK: On the Effectiveness of Control-Flow Integrity in Practice

Lucas Becker
Technical University of Darmstadt

lbecker@seemoo.de

Matthias Hollick
Technical University of Darmstadt

mhollick@seemoo.de

Jiska Classen
Hasso Plattner Institute, University of Potsdam

jiska.classen@hpi.de

Abstract
Complex programs written in memory-unsafe languages tend
to contain memory corruption bugs. Adversaries commonly
employ code-reuse attacks to exploit these bugs. Control-flow
Integrity (CFI) enforcement schemes try to prevent such at-
tacks from achieving arbitrary code execution. Developers
can apply these schemes to existing code bases by setting
compiler flags, requiring less effort than rewriting code in
memory-safe languages. Although many works propose CFI
schemes and attacks against them, they paid little attention
to schemes deployed to end-users. We provide a systematic
categorization and overview of actively used CFI solutions.
We then conduct a large-scale binary analysis on 33 Android
images of seven vendors and two Windows builds for differ-
ent hardware architectures to study CFI utilization in practice.
We analyzed over 77,000 files on the Android images. We
found that depending on the variant, up to 94% of binaries
and 93% of libraries are unprotected. All analyzed binaries
depend on unprotected libraries, therefore rendering CFI en-
forcement ineffective. Further, we look at the development
of CFI coverage over time on Android and find it stagnating.
CFI roll-out is closer to complete on the Windows builds, but
not all files are protected yet (2.63% unprotected). Conse-
quently, our results show that the adoption of CFI protection
is lacking, putting devices at risk. Additionally, our results
highlight a large gap between the state of the art in research
and the reality of deployed systems.

1 Introduction

Memory safety vulnerabilities make up two thirds of security
issues in large code bases across the industry [45]. Despite
the ongoing effort to prevent and mitigate memory corruption
attacks, adversaries exploit these memory corruption bugs to
take over computer systems. Rewriting memory-unsafe code
in memory-safe languages reduces this attack surface [101].
However, the tremendous engineering effort of, e.g., porting
C/C++ code to Rust, will still take years and is often infea-
sible on a limited budget. As a generic solution fitting most

code bases, compiler toolchains add checks meant to prevent
the exploitation of memory safety vulnerabilities. Control-
flow Integrity (CFI) enforcement schemes are one instance
of such checks. CFI checks prevent code-reuse attacks by
limiting the allowed targets for indirect control-flow transfers.
Ideally, this means that the program flow stays within the
intended boundaries. Because the precise and sound points-to
analysis required to enforce this property is generally undecid-
able [93], practical CFI schemes have to settle for less precise
policies. Implementations must be efficient to be deployed
on real-world systems while also granting sufficient security
guarantees. As a result of this trade-off, coarse-grained CFI
schemes can often be observed in practice, even though their
ineffectiveness is well known [31]. We address the following
research questions in this paper:

1. Which CFI schemes are found in practice?

2. Where and how consequently are they deployed?

3. What are their capabilities and limitations to prevent
attacks?

In contrast to previous works comparing and benchmark-
ing CFI schemes [19, 33, 65, 66, 78, 105, 114, 123], we study
real-world ecosystems that deploy CFI mitigations. With this
approach, we address how effectively CFI enforcement is de-
ployed on actual systems rather than comparing academic re-
search prototypes. For that, we study three different software-
and four hardware-based CFI implementations on their cor-
responding platforms. We primarily focus on CFI schemes
targeting user-space programs, even though most of them are
used to protect the operating system kernel as well, since
protecting OS kernels requires a different threat model. We
also examine three shadow stack designs used to implement
backwards-edge CFI. Numerous choices are involved in de-
signing CFI enforcement schemes. These choices include
which kind of control-flow transfers are protected, how the al-
lowed Control-flow Graph (CFG) is derived, and whether spe-
cial hardware features are required. CFI enforcement opens
up a considerable research area, with a vast amount of differ-
ent proposals [2, 24, 34, 46, 52, 59, 61, 62, 68, 72, 79, 82, 83,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 189

https://orcid.org/0009-0004-5437-5067
https://orcid.org/0000-0002-9163-5989

87, 88, 110, 117, 118, 127]. Most of these proposals are not
widely deployed in practice, as they depend on specialized
hardware, require intrusive changes, come with a significant
performance overhead, or are closed-source. Many promising
academic solutions have not been adopted in practice and
were not maintained over time. Following the approaches
laid out by these prototypes, all of the most common operat-
ing systems [100] support some form of CFI enforcement in
2024. We identified the most notable solutions currently used
in practice as:

• LLVM Clang CFI [107,110], used primarily on Android
and the Linux Kernel,

• Windows Control Flow Guard (WCFG) [76] and its suc-
cessor eXtended Flow Guard (XFG) [120],

• ARMv8 Pointer Authentication (PA) [96] including
Branch Target Identification (BTI), utilised by recent
Apple Systems on a Chip (SoCs) starting with the A12,
S4, and M1 chips [11], by Android, and by Windows on
ARM [121]; and

• Intel Control-flow Enforcement Technology (CET) [54,
56], supported on Intel processors starting with the 11th
Gen [55] and used by Windows and Linux.

There are also a few other commercial offerings, such as the
Reuse Attack Protector (RAP) [49] and similar. We do not
include them in this work, as it is difficult to reason about
how frequently they are deployed.

We find that many binaries and libraries are missing appro-
priate protection, despite the compilation toolchains for these
systems supporting them. On Android, we find that every in-
vestigated binary depends on at least one unprotected library.
Overall, less than 17% of the binaries and libraries in recent
firmware images are CFI protected. On Windows, CFI cov-
erage is much higher, but a fine-grained CFI implementation
is only available on preview builds. In summary, our main
contributions are as follows:

• We systematize prevalent CFI solutions in practice, in-
cluding LLVM’s CFI scheme and Microsoft’s closed-
source implementations WCFG and XFG on Windows.

• We study CFI coverage, security characteristics, and ef-
fectiveness in practice by running a large-scale binary
analysis on Android and Windows binaries.

• We analyse Android firmware releases of the same de-
vices to get insights into the development over time.

2 CFI Design Space

Approaches to CFI Enforcement CFI schemes prevent devia-
tion from a program’s control flow, assuming an attacker who
can divert the control flow by exploiting memory corruption
bugs. Figure 1 shows a simplified CFG example, where basic

CFI Policy

C

A

DB

L
egal

ForbiddenLegal

Figure 1: Simplified CFG under a CFI policy. Flows from A
to D are unintended by the programmer and are only made
possible by memory corruption attacks.

block A is allowed to call blocks B and C, but not block D.
Calling into D from A violates the CFI policy. Block D could,
for example, be the system() function on Unix-like systems.

To protect indirect control-flow transfers, most CFI en-
forcement schemes follow the same basic pattern: First, a
program-specific CFG is derived from the policy specifying
the rules for valid control-flow transfers. Then, during run-
time, this CFG is enforced by guard code, which checks that
a control-flow transfer abides by the CFG [123]. If a viola-
tion of the CFG is detected, the program can be terminated
to prevent successful attacks. Some recent proposals also re-
fine the CFG during runtime [34, 52, 83, 115]. This allows to
increase the precision of the CFG, for example, to achieve
forms of context sensitivity. Although CFI includes forward-
and backward-edge protection, this approach is often only
applied to forward-edge flows, while shadow stacks are the
preferred method to protect backward-edge transfers [21].
They can leverage that the return address after a call instruc-
tion is known to be the address of the subsequent instruction,
language features that require special stack unwinding aside.

Compile-time Instrumentation vs. Binary Rewriting
Guard code can be added directly during a program’s com-
pilation or by applying binary rewriting or instrumentation
techniques. Hereby, there is a trade-off between applicability
and precision: Compiler-based CFI implementations require
the source code of applications to add protection, which im-
plies that protection can only be added to commercial off-the-
shelf software by the vendor itself. However, binary rewriting
suffers from higher complexity and usually a loss of preci-
sion [85,114]. Seemingly for this reason, we observed that all
CFI schemes found in practice are compiler-based.

Policy Precision CFI schemes are often categorized into
coarse- and fine-grained schemes. We adopt the definition
from [83], wherein the number of supported Equivalence
Classes is used as the decisive characteristic. Targets of indi-
rect control-flow transfers are divided into classes so that if a
target is reachable from a given control-flow transfer, every
other target in the same equivalence class is a valid target
as well, but others are not. Coarse-grained CFI schemes sup-
port only a program-independent and typically low number
of equivalence classes. Fine-grained CFI schemes support a
program-dependent number of equivalence classes, allowing

190 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 1: Overview of CFI schemes used in practice

Scheme Edge Policy Granularity Impl. Open-source Platforms

LLVM CFI [107, 110] → Type-based Fine SW ✓ All LLVM supported
Control Flow Guard [76] → Marked function Coarse SW ✗ Windows
eXtended Flow Guard [120] → Type-based Fine SW ✗ Windows
Pointer Authentication [12, 96] ⇄ Implementation dep. n/a HW G# ARMv8.3-A, ARMv8.1-M
Branch Target Identification [12] → Label-based (#l=3) Coarse HW G# ARMv8.5-A, ARMv8.1-M
Indirect Branch Tracking [56] → Label-based (#l=1) Coarse HW G# Intel 11th / 12th gen.
FineIBT [44] → Implementation dep. n/a Hybrid G# Linux with IBT support
LLVM Shadow Call Stack [109] ← Shadow Stack n/a SW ✓ ARM-based
SafeStack [64, 106] ← Shadow Stack n/a SW ✓ All LLVM supported
CET Shadow Stack [56, 97] ← Shadow Stack n/a HW G# Intel 11th / 12th gen.

“Edge” specifies the protected control-flow transfers: backward-edge (←), forward-edge (→), and both (⇄). The “Impl.” column shows
whether a scheme is implemented in software (SW) or hardware (HW). G# means that open-source implementations of the compiler and
runtime components exist, but the hardware implementation is closed-source. For hardware schemes, “platforms” specifies the minimum
CPU or instruction set.

each indirect control-flow transfer to have its own targets.
Evaluating CFI Effectiveness How to precisely quantify

the effectiveness of CFI schemes is an open research ques-
tion. To address this issue, several metrics to quantize secu-
rity guarantees have been proposed, most notably Average
Indirect target Reduction (AIR) [127], Average Indirect tar-
gets Allowed (AIA) [46], Relative Average Indirect target Re-
duction (RAIR) [117], Calltarget Reduction (CTR) [81], and
Quantitative Security (QS) [19]. The common shortcoming
of these metrics is that they only consider the target reduction
while ignoring the quality of the corresponding targets. Conse-
quently, good values in these metrics do not guarantee better
security, as even with CFI, there can remain valid paths to
divert the program flow maliciously. CFInsight [43] uses the
length and number of such paths reaching syscalls to judge
the ease of mounting attacks. We argue that this approach
shares the same issue as the other metrics since it remains
unclear which non-syscall gadgets are available and how path
lengths correspond to exploitability.

Another approach is to collect gadgets useful to an ad-
versary and measure their availability with and without CFI
enforcement [30, 97]. In this case, it has to be defined which
gadgets are considered useful. Multiple approaches exist to
analyze gadget quality by determining the expressiveness of
gadgets and their capabilities to set up function calls [18, 42].
We are unaware of any CFI-related work that uses such met-
rics for their evaluation.

3 Adversary Model and Known Attacks

CFI enforcement is a mitigation technique that aims to pre-
vent code-reuse attacks by restricting the allowed targets of
indirect control-flow transfers [2]. Therefore, CFI enforce-
ment is intended to prevent even a strong adversary from
executing arbitrary code [2, 64, 97, 110]. This adversary can
read and write from/to arbitrary addresses in memory by ex-

ploiting already existing memory corruption vulnerabilities.
The CFI adversary model assumes that by using these ca-
pabilities, the adversary can break Address Space Layout
Randomisation (ASLR) [84, 128]. By common assumption,
the adversary can perform arbitrary calculations, for example,
by sending data to their server or by abusing existing scripting
capabilities as present in web browsers. Since an adversary
with arbitrary write capabilities could overwrite any checks,
the enforcement of a Write ⊕ Execute (W⊕X) policy [104]
is typically assumed to protect the integrity of code sections.
Because CFI focuses on protecting individual control-flow
transfers, CFI schemes generally cannot prevent data-only
attacks, which only modify non-control data [21, 23].

Attacks Several generic attacks on CFI are known in the
literature. The first category of attacks exploits imprecision in
the enforced CFG. For instance, [31] studies Call-preceded
Gadgets, assuming that the backward-edge protection only
restricts returning to a legitimate call site but does not restrain
the choice of call sites. This does not hold for shadow stacks,
and only to some extent for PA, as discussed in Section 4.2.1,
and is hence not fully applicable to programs that are ade-
quately protected with either a hardware-based shadow call
stack or PA. In the same category, [50] analyses the availabil-
ity of so called Entry Point Gadgets, which are sequences of
useful instructions that start at a function’s entry point and end
with an indirect call or jump. Similarly, [38] introduces the
notion of Argument Corruptible Indirect Call Site (ACICS)
gadgets, which are pairs of indirect call sites and security-
sensitive target functions that are reachable from the corre-
sponding call sites. As the name suggests, a core property of
these ACICS gadgets is that the attacker can control the argu-
ments of the corrupted call site to gain additional capabilities
(e.g., arbitrary code execution in the best case).

Fundamentally, the previously covered CFI schemes can
only limit the number of available gadgets, not guarantee
their absence. For coarse-grained schemes such as WCFG

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 191

and Indirect Branch Tracking (IBT), this means that the set of
potential entry points of ACICS gadgets consists of all func-
tions that are marked as valid call targets. Fine-grained CFI
implementations like Clang’s schemes and XFG limit valid
call targets per call site even more. Their protection implies
that entry point gadgets must be chained so that the associated
type of the call site at the end of the gadget matches the type
of the next gadget or the gadget dispatching function. This
exact scenario is covered by [41], which uses so-called Linker
Gadgets to traverse the CFG in a policy-adhering fashion. Fi-
nally, the Counterfeit Object-oriented Programming (COOP)
technique [95] chains fake objects with virtual function table
pointers pointing to the functions to be called. This approach
only works if C++ semantics are not adequately enforced, and
hence is only applicable to WCFG, BTI or IBT, but not the
type-based LLVM CFI and XFG schemes.

Besides these works, there are studies covering interac-
tions between compilers, runtime, and CFI schemes leading
to bypasses. Such interactions include the compiler spilling
sensitive registers to the unprotected stack [29], compiler-
introduced double-fetches that enable Time-of-check to Time-
of-use (TOCTOU) attacks [122], and exception handling
mechanisms that can be abused for control-flow hijack-
ing [36]. Further works focus on data-only attacks to bypass
CFI [21, 23, 58]. Such attacks break most CFI schemes since
they fall outside the typical CFI adversary model.

4 CFI Scheme Internals

In this section we categorize existing schemes that we found
relevant in practice and describe how they work. Refer to
Table 1 for an overview.

4.1 Software-based Forward-edge CFI
CFI mechanisms for forward- and backward-edge protection
can be implemented either purely in software [19, 66, 123]
or based on hardware support [33, 105]. From the security
perspective, we found that existing hardware-based forward-
edge CFI mechanisms are not inherently more secure than
schemes implemented entirely in software. Although Clerq et
al. argue in [33] that software CFI instrumentation code can be
bypassed if the adversary can change the page permissions of
code to writable, this also applies to hardware-based schemes
such as Intel’s CET or ARM’s PA and BTI. In addition, there
is already the W⊕X policy to prevent such attacks, which
is typically hardware-enforced [104]. Under it, an adversary
must first overcome CFI to disable this policy, at which point
CFI has already been broken.

4.1.1 LLVM Clang CFI

LLVM’s CFI implementation [107, 110] is part of the com-
piler front-end Clang and supports languages in the C fam-

ily, including C++. It protects indirect function calls, calls
via pointers to member functions, virtual function calls, non-
virtual function calls using polymorphic classes (i.e., classes
declaring or inheriting virtual functions), and invalid casts of
polymorphic classes1.

The enforced policy follows the type system of the source
language, e.g., a function pointer of a specific type is only
allowed to call functions with a compatible signature. Conse-
quently, all unique function signatures and class hierarchies
form their own equivalence classes, and LLVM CFI is, there-
fore, a fine-grained CFI scheme. LLVM’s CFI checks can
be divided into inlined local checks performed in the current
module and Cross-Dynamic Shared Object (CDSO) checks
crossing library boundaries.

Local CFI Local checks use a bit-vector-based approach.
For indirect function calls involving function pointers or point-
ers to member functions, a jump table is generated during
compilation for each unique function signature, which con-
tains all related address-taken or exported functions. In addi-
tion, each call site is instrumented with instructions that check
whether the call target is a member of the table belonging to
the static type of the function pointer. Virtual and non-virtual
function calls and casts to polymorphic classes are checked
with a bit-vector, encoding valid vtable address points for the
corresponding class type [108]. This more elaborate check
is necessary because sub-classes may implement new virtual
functions, resulting in vtables of different sizes, so a simple
alignment and range check does no longer work.

Cross-DSO CFI When the program calls an exported func-
tion of another module, its type identifier must be derived to
perform the CFI check. Hence, a direct table- or vtable- based
check is infeasible in such a case, as the address of the correct
table is unknown. To solve this problem, CDSO-compatible
modules export the __cfi_check function, which is invoked
by the calling module with the type identifier of the function
pointer or class used in the checked call-site, and the address
of the target function. This function can then check to confirm
that the given target address has a matching type.

The corresponding module must be determined to find the
correct __cfi_check function belonging to a target address.
For that, CDSO-compatible programs maintain a CFI-shadow
mapping that allows getting the __cfi_check address of the
module a given address is located in. The lookup of the entry
in the CFI-shadow and calling the correct __cfi_check func-
tion is handled by __cfi_slowpath. At runtime, functions
affecting loaded modules such as dlopen must be intercepted
to adjust the CFI-shadow mapping accordingly.

We find that the necessity to update the CFI-shadow map-
ping introduces a potential race condition, which we discuss
further in Section A.2 in the appendix.

Unprotected Libraries LLVM’s CDSO CFI scheme allows
loading unprotected libraries (i.e., without __cfi_check). In

1We focus on control-flow transfers in this paper, as casts are not a typical
concern of CFI. LLVM just uses the same mechanism to check them.

192 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

this case, the corresponding library is marked as unchecked in
the shadow mapping, and indirect calls to targets in it always
succeed. This principle applies even to protected indirect
calls that are not intended to target functions in this library. If
such calls are corrupted to transfer into an unprotected library,
__cfi_check will dispatch them successfully, because no
information is available regarding valid targets in this library.
As a consequence, mixing protected and unprotected libraries
diminishes CFI’s security guarantees, as large libraries are
bound to contain useful gadgets. Our evaluation in Section 5.1
shows that this is a serious issue across all major Android-
based platforms.

4.1.2 Windows Control Flow Guard

Microsoft Windows has a proprietary CFI implementation,
which is integrated into the operating system itself. It is called
Control Flow Guard (WCFG) [76], and was first released in
November 2014 [14]. WCFG enforces a CFI policy where
indirect calls must target a known address-taken or exported
function. This means there is only a single equivalence class,
and WCFG is hence a coarse-grained CFI scheme. Indirect
calls, including virtual calls using a vtable, are either protected
with a call to a check function or entirely replaced with the
call to a dispatch function that performs the WCFG check and
dispatches the call afterward.

Implementation To mark functions that can be called indi-
rectly, the Load Configuration structure that is part of the
portable executable (PE) format is added to the executable
during compilation. This structure contains various WCFG-
related fields, including function pointers to the check/dis-
patch functions and the address of the table containing the rel-
ative addresses of all WCFG-protected functions [77]. Scan-
ning this table when dispatching an indirect call is inefficient,
which is why a bitmap marking valid functions is constructed
when loading a program [124]. As the compiler aligns func-
tions to 16-byte boundaries, a single bit per 16 bytes of address
space would be sufficient to mark functions in the bitmap.
Windows uses two bits to support unaligned functions, e.g.,
handwritten assembly.

Security Previous research identified various weaknesses
in WCFG, such as gadgets that are contained in unaligned 16-
byte blocks [15], or memory-based indirect calls via writable
function pointers [102]. Independent of WCFG, multiple
works raise issues of coarse-grained CFI schemes [31,50,95],
implying that WCFG cannot prevent memory corruption at-
tacks from achieving arbitrary code execution.

4.1.3 eXtended Flow Guard (XFG)

Microsoft is developing a WCFG successor called eXtended
Flow Guard (XFG) [120], which is already available on Win-
dows preview builds, even though undocumented. XFG uses a
type-based policy similar to LLVM’s CFI implementation (cf.

function a:
0xef83aa18363bd271

+0x00 push rbp
…

function b:
0xa7d5beda74d27871

+0x30 push rbp
…

Program

100000100000000000000000
000000000000000000000000
000000000000000000000000

mov r10 , 0xa7d5beda74d27870
lea rax, b
call qword [rel __guard_dispatch_icall_fptr]

Instrumented Callsite

WCFG Bitmap

ntdll.dll!LdrpHandleInvalidUserCallTarget

Fallback Bitmap
Check

ntdll.dll!LdrpDispatchUserCallTargetXFG

Figure 2: Reverse-engineered XFG check flow. Green and
red arrows represent flows after a successful and failed check,
respectively. The dotted arrows mark data fetches.

Section 4.1.1), but it is based on embedded labels to perform
CFI checks. We extend existing third-party works treating
XFG [39, 73] by reverse-engineering relevant XFG internals
to compare its security properties with the other CFI schemes.
In the implementation at the time of writing (Insider Preview
build 23440), a 64-bit type hash precedes all XFG instru-
mented functions. During runtime, the XFG dispatch function
checks whether a given call target has the expected type hash
or else the program is terminated. The type hashes are derived
from a combination of a function’s signature, its name, and the
class hierarchy in case of virtual function calls. Consequently,
cross-module calls to XFG-instrumented functions work with-
out additional overhead since type hashes directly precede the
functions. On some architectures such as x64, MOV instructions
for loading the expected type hash contain the type hash itself
as part of the instruction encoding. Such instructions would
then produce unintended call targets. To address this issue,
the instrumentation code loads the expected type hash with
the last bit flipped, and the dispatch function undoes this bit
flip before comparing it with the stored label. Figure 2 depicts
the whole XFG flow: First, an instrumented call site is redi-
rected to the dispatch function. This function is configured by
the loader, which sets the __guard_dispatch_icall_fptr
function pointer depending on whether WCFG or XFG should
be enforced. The XFG dispatch function loads the hash lo-
cated at the quad-word prior to the target address, flips the last
bit of the expected value, and compares them. If they match,
the call is dispatched. Else, the WCFG bitmap is consulted
to check if the target is a known function entry address. The
target address is called if it is. Otherwise, a function is called
to determine the consequences of this CFI violation.

XFG is backward-compatible with WCFG-protected pro-
grams. After a failed check for a matching type hash, the
XFG dispatch function also consults the WCFG bitmap to
check whether the target is a WCFG-protected function, and
if so, may still allow the call. XFG-instrumented functions
hence use the fourth remaining bitmap state to encode that
they should not be valid WCFG call targets.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 193

4.2 Hardware-based Forward-edge CFI
This section introduces four hardware-based CFI schemes
targeting forward-edge protection. These schemes are coarse-
grained, except for PA and FineIBT, which allow to implement
different policies. It follows that they are less precise than
LLVM CFI or XFG. However, due to their implementation in
hardware, they are more efficient.

4.2.1 ARM Pointer Authentication

Pointer Authentication (PA) [12] is a security extension for
the AArch64 architecture, which allows for protecting pointer
integrity by inserting a cryptographic Message Authentication
Code (MAC) called Pointer Authentication Code (PAC) into
the unused upper bits of pointers. Unused bits are available
because the virtual address space size does not occupy the full
64-bit of register width. Consequently, their exact number de-
pends on the specific implementation. PA was introduced in A
RMv8.3-A in 2016 [17], and later also for the microprocessor
profile starting with the ARMv8.1-M architecture update, as
announced in 2021 [80]. To operate on PACs, the PA exten-
sion adds a variety of instructions that can be divided into
four categories [12]:

• PAC* instructions to generate and insert a PAC,

• AUT* instructions to authenticate and remove the PAC
for subsequent use of a pointer,

• XPAC* instructions to strip the PAC from a pointer with-
out authenticating it, and

• (no common prefix) combined instructions that perform
a PA-related operation and a related instruction together.

The MAC algorithm uses one of five keys and a 64-bit context
value that allows tying pointers to a specific context. These
keys are stored in CPU registers and are not accessible from
exception level EL0 (user space).

Since PA is more of a building block for CFI schemes rather
than a mitigation on its own, there are different PA-based im-
plementations that differ in their respective characteristics.
While the protection of forward-edge flows is covered in mul-
tiple research works such as [40, 57, 68, 94, 96, 126], Apple’s
arm64e ABI [10] is the only case where we observed a PA-
based forward-edge scheme in practice.

4.2.2 ARM Branch Target Identification

ARM’s BTI feature is a forward-edge CFI scheme and an
alternative to custom PA-based schemes. It introduces the BTI
instruction, which takes a target operand specifying what kind
of control-flow transfer is allowed to target the instruction.
The target operand can be c, j, or jc, indicating that the
corresponding BTI instruction can be targeted by calls, jumps,
or both respectively [12]. Jumps that target the registers X16 or

X17 are also compatible with the c target. This enables the use
of jumps to these registers in Procedure Linkage Table (PLT)
entries or for indirect tail-calls [92]. BTI allows configuring
which memory page should be protected. Outside protected
memory regions, the BTI executes as NOP [12].

4.2.3 Intel Indirect Branch Tracking

The IBT feature is the forward-edge control-flow transfer pro-
tection component of Intel CET. It is a coarse-grained CFI
scheme using label instructions for marking valid call targets,
and thus very similar to the proposal in the seminal work
on CFI [2] and ARM’s BTI feature. The two label instruc-
tions that IBT adds are ENDBR32 and ENDBR64, for the 32-bit
compatibility mode and the 64-bit mode, respectively.

The CFI policy enforced by IBT is straightforward: If an
indirect call or jump is encountered, the next instruction ex-
ecuted must be a label instruction. If it is not, the control
protection exception is raised [56]. There might be instances,
such as switch-case constructs, where the control-flow transfer
target resides in read-only memory or where IBT is undesired
for some other reason. To support such instances, CET sup-
ports a no-track prefix that marks the subsequent CALL or JMP
as not requiring a ENDBR instruction as the target. For back-
ward compatibility, it is also possible to set up a bitmap that
marks memory pages where the same exception applies [56].

4.2.4 FineIBT

FineIBT [44] is a hybrid CFI scheme, which improves the
precision of coarse-grained hardware-based schemes while
preserving their performance gains. While the general ap-
proach is mostly architecture-agnostic, their implementation
targets Intel’s BTI as suggested by the name of their scheme.
The fundamental idea is that if a coarse-grained scheme like
BTI or IBT protects a program, all indirect control-flow trans-
fers are already limited to target particular instructions (i.e.,
ENDBR64 for IBT), and instrumentation code only needs to
be placed at these locations. This restriction means that the
policy check can be executed after the control-flow transfer
occurred since the hardware-based scheme guarantees that
only such locations can be indirect call targets. Compared
to full-software implementations of this approach like XFG,
FineIBT avoids loading a label from memory before taking
an indirect control-flow transfer. It follows that FineIBT is
compatible with execute-only memory.

4.3 Software-based Backward-edge CFI

Shadow call stacks are a common approach to protect
backward-edge control-flow transfers. They protect saved
return addresses against memory corruption attacks by sav-
ing them to an isolated memory region. Since such metadata
must be dynamically updated during runtime, it cannot be

194 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

protected by marking it read-only like CFI checks [20]. Solv-
ing this issue in software is challenging, as it either requires
full Software Fault Isolation (SFI) or hardware-supported iso-
lation [2, 20]. Often, software-based shadow call stacks rely
on information hiding to protect the shadow stack area. How-
ever, it has been shown that due to information disclosure
attacks [48, 84], this approach cannot withstand the CFI ad-
versary [128]. Recent works propose re-randomization as a
solution to such attacks [119, 129, 130]. They continuously
re-randomize the addresses of protected areas or the addresses
contained therein and thus limit the use of information leaks
to an adversary. Another problem of software-based shadow
stacks is that on some platforms such as x64, where call in-
structions directly push the return address on the stack, there
is a timing window for a race condition between the call in-
struction and the return address being written to the shadow
stack [2]. These shortcomings aside, a few software-based
shadow stack approaches are found in practice.

4.3.1 LLVM Shadow Call Stack

LLVM implements a shadow stack scheme for the AArch64
architecture. The design supported by Clang is a compact
shadow stack based on information hiding, i.e., the shadow
stack maintains its own stack pointer in register X18, which
must remain unknown to the attacker to offer any protection.
This implies that this register must not be spilled onto the
stack (e.g., when calling into unprotected code), or else an
attacker could obtain the shadow stack location from there.
Because of its nature as software-based shadow stack, which
is only protected through information hiding, this design is
inherently weak against attacks that try to uncover hidden
locations in memory. Corresponding example attacks based
on allocation oracles are proposed in [84]. A larger guard
region can be allocated to increase the resistance against such
attacks, containing the shadow stack itself. Thus, an allocation
oracle will only find the whole guard region instead of the
exact location of the shadow stack. Android implements this
approach in its Libc [89].

4.3.2 SafeStack

Besides the shadow call stack, LLVM also implements SafeS-
tack [64, 106]. The key idea of SafeStack is to separate safe
and unsafe memory objects on the stack. Memory objects
considered safe are return addresses, stack spills, and local
variables that are not address-taken but only accessed via the
frame pointer. Everything else is stored on the unsafe stack.
The implementation relies on information hiding to protect
the safe stack area and hence suffers the same associated
weaknesses as the shadow call stack [47].

4.4 Hardware-based Backward-edge CFI
Hardware-based backward-edge CFI schemes address the
weaknesses of software-based designs. They can implement
atomic instructions to prevent race conditions and provide
memory isolation for sensitive regions.

4.4.1 PA-based Approaches

One common scheme uses PA to protect saved return ad-
dresses on the stack by tying them to the stack pointer value
at function entry [96]. This can efficiently be done by using
the PACIASP and AUTIASP instruction pair, which sign and
verify the link register with the current stack pointer value
as context. Since the link register is used to store return ad-
dresses by BL instructions, these instructions can be placed at
the start of the function prologue and epilogue, respectively.
The PACIASP and PACIBSP instructions have implicit BTI
behaviour, making them valid call targets [12] under BTI en-
forcement. Consequently, programs using PA to protect the
return address with these instructions do not need an extra
BTI instruction at the start of a function.

In comparison to a regular shadow call stack there is no
memory overhead for the shadow call stack area. Neither
loader nor operating system needs to do additional work be-
sides the operating system managing the PA keys themselves,
which is required for any PA-based scheme. Due to the na-
ture of stack-based function calls, stack pointer values are
not guaranteed to be unique to a specific function during pro-
gram execution. This enables substitution attacks, where an
adversary exchanges the saved return address with another
unintended target that has been leaked earlier [96]. Conse-
quently, compared to the hardware-based shadow call stack,
the PA design offers weaker security guarantees.

4.4.2 Intel CET Shadow Call Stack

Intel CET features a hardware-based shadow call stack for
backward-edge protection [97]. This shadow stack is imple-
mented as a descending second stack designated for storing
only return addresses. A new SSP CPU register holds the cur-
rent shadow stack pointer. This register can only be modified
by dedicated new instructions for shadow call stack manage-
ment, which are intended for either the operating system or
libraries that need to handle special stack unwinding cases.
During normal program execution, the call and return instruc-
tions are shadow stack aware if the shadow stack feature is
enabled. This means that the call instructions do not only push
the return address to the unprotected program stack but also to
the shadow stack. Similarly, the return instructions compare
the return address stored on the shadow stack to the return ad-
dress stored on the save stack and only continue if they match.
Otherwise, the #CP exception is raised [56]. Adapting the
semantics of these instructions means that existing programs
do not need to be recompiled to benefit from shadow stack

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 195

.zip

Firmware Images

Extract and
mount filesystems

Feature Detection

ELF

64-bit ELF Files

OAT

.KO

.SO

PA

SS

Serialized
Storage

if having
__cfi_check

if having
__cfi_slowpath

Symbolic
Execution

Constant
Propagation

Allowed Call
Targets

ELF

ProtectionFile Type

Protected
Indirect Calls

Features

Figure 3: Android analysis pipeline.

protection as long as they do not implement custom unwind-
ing logic. Only the runtime and standard libraries that handle
unwinding must be modified to be shadow stack aware.

The shadow stack region is protected by adding a new
attribute to the address translation to indicate a shadow-stack
page. Pages marked as such cannot be modified by regular
store instructions, protecting the integrity of the saved return
addresses. In addition, call and return instructions fault if
the page where they try to store or fetch the saved return
address from the shadow stack, respectively, is not marked
as shadow page [56]. This implies that even with complete
control over a program’s virtual memory, an adversary cannot
manipulate return addresses without access to either gadgets
with management instructions or a primitive to create shadow-
stack pages under their control.

5 Study on CFI Adoption in Platforms

In this section, we study the usage and effectiveness of the
CFI schemes covered in the previous section on the Android,
Linux, and Windows platforms.

5.1 Android Study

The Android Open Source Project (AOSP) [7] uses LLVM’s
CFI implementation to enforce CFI since Android 8.1 for a
set of components [4]. In user space, CDSO mode is used,
enabling protected programs to perform indirect calls into
shared libraries [108]. Since LLVM’s CFI implementation
only protects indirect forward-edge control-flow transfers,
Android (on AArch64) supports LLVM’s shadow call stack
for backward-edge protection [6]. However, this shadow call
stack is based on information hiding and is not designed to
resist the typical CFI adversary. We also observed the PA-
based return address protection scheme used as a more secure
alternative. Bionic provides the necessary runtime support for
the shadow call stack and LLVM CFI. Android 12 added sup-
port for ARM’s Memory Tagging Extension (MTE) [1, 8], a
hardware-based memory safety mitigation which implements
memory tagging. While the first phones supporting MTE have
been released [16], it is not a CFI mitigation and disabled by
default, and we do not include it in our study.

5.1.1 Android Image Analysis Setup

We analyze 33 Android images of popular flagship devices
to compare the CFI usage on Android across multiple device
manufacturers. Based on their market share, we select the
smartphones Samsung Galaxy S22, Xiaomi 13, Vivo V25, and
Oppo Reno 8 5G [9]. In addition, we include the pure AOSP
Generic System Images (GSIs) for Android 10 to 14 and a
system image from Google’s Pixel 7 phone, because Google
is part of the driving force behind Android. We also include
the GrapheneOS firmware for the Pixel 7, which promises
increased security and privacy [27], to see if it has better CFI
coverage than the Google Pixel 7 firmware. Based on the
results of these images, we picked the Samsung Galaxy S20
and the Xiaomi Mi 10 for analysis over time. They both have
publicly available firmware archives ranging from Android
10 to Android 13. The full versions and source URLs of all
firmware images are specified in the appendix (Table 8).

Since all of these phones are ARM-based, we enumerate
AArch64 ELF files on their Android firmware images and run
an analysis on them. An overview of our analysis pipeline is
shown in Figure 3. We extract the following characteristics:

ELF Type We distinguish between binaries (i.e., executable
programs), shared libraries, and loadable kernel modules (with
a .ko extension).

General LLVM CFI Usage To determine general LLVM
usage, the analysis checks for the existence of the exported
__cfi_check function, which is always present if the binary
was compiled with LLVM CFI. We manually check samples
to confirm that all vendors built their applications with CDSO.

Shadow Stack Usage The analysis searches for instructions
unique to shadow-stack-protected binaries to detect shadow-
stack usage. One such instruction is ldr LR, [x18, #-8]!,
which is used to restore the link register from the shadow stack.
We examine multiple random samples of files containing this
instruction and found that it is only used for the shadow stack
and does not appear in other contexts.

Pointer Authentication PA is used to protect return ad-
dresses in some of the files. We detected PA protection by
scanning for related instructions. This approach introduces
imprecision as it counts files where only certain functions
are PA-instrumented as PA-protected. However, we deem this
approach sufficient to understand the overall distribution of
fully unprotected binaries. We also scanned for BTI related

196 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 2: CFI coverage of Android firmware images.

Files Total [count] LLVM CFI Protected [%] Shadow Stack Protected [%] Pointer Auth. Protected [%]

Vendor & Devices Binaries Libraries Kernel Binaries Libraries Kernel Kernel Binaries Libraries Kernel Binaries Libraries Kernel
Modules Modules Modules Modules

GSI 10 142 1240 0 4.93 9.19 n/a n/a 0 0.24 n/a 0 0 n/a
GSI 11 154 1383 0 7.79 10.12 n/a n/a 0 0.14 n/a 0 0 n/a
GSI 12 167 1708 0 8.98 10.6 n/a n/a 0 0.18 n/a 12.57 5.62 n/a
GSI 13 173 1893 0 8.67 9.77 n/a n/a 0 0.11 n/a 35.26 18.17 n/a
GSI 14 150 1729 0 9.33 8.04 n/a n/a 0 0.12 n/a 39.33 22.15 n/a

Xiaomi 13 535 2601 270 47.85 65.24 100.0 ✓ 0 0.08 100.0 94.21 92.62 97.78
Google Pixel 7 234 998 241 7.26 16.83 100.0 ✓ 0 0.2 99.59 12.82 9.52 99.17
GrapheneOS Pixel 7 233 994 241 7.3 16.9 100.0 ✓ 0 0.2 99.59 12.88 9.56 99.17
Oppo Reno 8 5G 351 2316 9 6.27 8.25 0 ✗ 0 0.17 0 7.98 4.49 0
Samsung Galaxy S22 289 1775 6 7.27 12.23 100.0 ✓ 0 0.28 100.0 23.53 17.18 100.0
Vivo V25 361 2771 10 5.82 6.75 0 ✗ 0 0.14 0 11.36 4.19 0

S20 2020-02-19 10 255 1573 1 3.14 6.74 0 ✗ 0 0.25 0 0 0 0
S20 2020-05-15 10 254 1572 1 3.15 6.74 0 ✗ 0 0.25 0 0 0 0
S20 2020-10-14 10 257 1595 1 3.11 5.58 0 ✗ 0 0.25 0 0 0 0
S20 2020-11-23 11 264 1395 1 4.92 9.82 0 ✗ 0 0.22 0 0 0 0
S20 2021-05-17 11 271 1430 1 4.8 9.58 0 ✗ 0 0.21 0 0 0 0
S20 2021-10-20 11 274 1447 1 4.74 9.47 0 ✗ 0 0.21 0 0 0 0
S20 2021-12-23 12 273 1527 0 5.86 11.92 n/a ✗ 0 0.2 n/a 5.86 4.32 n/a
S20 2022-04-26 12 276 1536 0 5.8 11.78 n/a ✗ 0 0.2 n/a 6.16 4.62 n/a
S20 2022-09-27 12 276 1536 0 5.8 11.78 n/a ✗ 0 0.2 n/a 6.16 4.62 n/a
S20 2022-10-24 13 278 1582 0 5.76 12.2 n/a ✗ 0 0.19 n/a 20.14 15.49 n/a
S20 2023-02-20 13 279 1592 0 5.73 12.12 n/a ✗ 0 0.19 n/a 20.07 15.39 n/a
S20 2023-07-26 13 280 1599 0 5.71 12.45 n/a ✗ 0 0.19 n/a 20.0 15.82 n/a

For the S20 firmware images, the security patch level and the Android version are given. Data for the Mi 10 in Table 5 in the appendix.

instructions, but found them too rare for consideration.
Kernel CFI Configuration Clang’s kernel CFI is enabled

by the CONFIG_CFI_CLANG Kconfig flag [5]. To determine
if the kernel of a firmware image enables CFI we use the
extract-ikconfig script from the Linux repository [70]
and double check the decompressed kernel image for CFI-
related symbols and strings.

Rust Source Language All analyzed Rust binaries were
compiled without CFI protection and hence excluded from the
statistics. These files were detected by checking their symbols
for Rust-specific functions (e.g., __rust_alloc).

OAT Files Some ELF files can contain ahead-of-time com-
piled DEX code in a custom OAT format [91]. Such files are
not CFI-protected and can be detected by a combination of
specific symbols, such as oatdata and oatdex. We exclude
them from the statistics.

Library Dependencies Unprotected dependencies mas-
sively contribute to the number of available call targets. We
collected each analyzed file’s dependencies as indicated in
the corresponding ELF structure.

Type Identifiers Passed to __cfi_slowpath Extracting type
identifiers passed to __cfi_slowpath shows which func-
tion or class types are actually used for CFI checks. In our
analysis, this is done by leveraging Ghidra’s [3] constant
propagation analysis. First, the analysis searches calls to
__cfi_slowpath, which is imported from bionic and hence
easy to locate. Then, it extracts the first argument that is passed
to the function. Since type identifiers are constants, this is
well-doable by static analysis.

Type Identifiers and Their Associated Address Ranges
Given a binary file, its equivalence classes and their mem-

bers can be constructed by extracting type identifiers and
their associated address ranges. The core observation is that
this information is encoded in the exported __cfi_check
function, which is easy to locate. In addition, this function is
independent of any global state and uses only arithmetic and
control-flow instructions, making it a good fit for symbolic
execution [13]. Our implementation uses the Angr frame-
work [99]. It progresses execution states until they either hit
a return, indicating a successful check, or a call to abort(),
in which case they are discarded. Afterward, the collected
constraints on the type identifier and the address argument are
solved for the successful states, resulting in a mapping from
type identifiers to the address ranges of their jump tables or
vtables. Finally, it detects whether a target range is for a jump
table or a vtable by checking whether a branch instruction is
found at the start of the first slot. On a side note, the results
of the symbolic execution can also support program analysis.
We discuss this further in Section A.1 in the appendix.

5.1.2 Evaluation

Unprotected Binaries We count the number of files with and
without CFI protection (as indicated by the existence of the
__cfi_check export) to determine the general coverage of
CFI protection. We divide them into binaries, libraries, and
loadable kernel modules and additionally count the shadow
call stack usage. We filter out files that are unprotected by
design, such as OAT files or binaries that were classified as
Rust binaries. Table 2 depicts the numerical results for the
CFI coverage of the remaining files. For both binaries and
libraries, only the minority of files is CFI-protected, with the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 197

Table 3: Unprotected library dependencies in binaries.

Vendor & Device Min [%] Mean [%] Max [%]

GSI 10 83.78 92.84 100.0
GSI 11 75.24 86.93 100.0
GSI 12 61.76 83.56 100.0
GSI 13 58.97 83.12 100.0
GSI 14 63.41 82.46 100.0

Xiaomi 13 24.14 75.83 100.0
Google Pixel 7 58.97 84.65 100.0
GrapheneOS Pixel 7 58.97 84.65 100.0
Oppo Reno 8 5G 61.76 87.0 100.0
Samsung Galaxy S22 60.98 87.13 100.0
Vivo V25 58.97 88.48 100.0

only exception being the Xiaomi 13 firmware. Concerning
loadable kernel modules, build settings seem to be more con-
sistently activating CFI, i.e., all kernel modules are protected,
or none are.

Unprotected Dependencies When looking at the few pro-
tected binaries, an essential factor is the number of unpro-
tected dependencies they load. Unprotected dependencies
have twofold implications: First, CFI-protected control-flow
transfers targeting address in them cannot be checked. Hence,
every byte in all executable sections in any unprotected de-
pendency is a valid call target. Second, indirect control-flow
transfers within the unprotected dependencies are not checked
and can be used to reach arbitrary code in the protected parts.

For each of the selected Android firmware images, we
compute the recursive dependencies of all protected bina-
ries. Then, we calculate the ratio of unprotected to protected
dependencies (selected results in Table 3, see Table 6 for the
full results). Inspecting the unprotected libraries shows that
system libraries such as libc are never protected. Since these
libraries are large and offer a variety of gadgets, they pose an
attractive target for adversaries [113]. All protected binaries
on the analyzed images depend on at least one of them.

Backwards-edge Protection on Android We find that there
are two prevalent approaches for protecting return addresses
in AArch64-based Android. First, there is the LLVM shadow
call stack [6, 109]. Bionic allocates the shadow stack area
during process creation, and it is only protected by informa-
tion hiding through ASLR. Programs not using the shadow
call stack will simply overwrite X18 and ignore the allocated
shadow stack area. As seen in Table 2, no binaries and barely
any libraries are compiled with the shadow call stack. A prob-
able explanation for its low usage is that a PA-based scheme
is used instead, which does not share the weakness against
memory disclosure attacks.

Comparably many binaries and libraries use the PA in-
structions PACIBSP and AUTIBSP to protect return addresses
by tying them to the stack pointer (cf. Section 4.2.1). We
also observe some cases with generic PA instructions such as
autia1716 (which authenticates the value in X17 with X16
as the context), but they appear only in stack unwinding code.

Development over Time The datasets for the S20 and the

Android 10 Android 11 Android 12 Android 13 Android 14

Release

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

C
ov
er
a
g
e
P
er
ce
n
ta
ge

Protection Mechanism

Prot. Binaries

Prot. Libraries

PA prot. Binaries

PA prot. Libraries

Figure 4: Development of mitigations on the GSI over time.

Mi 10 show that significant changes in CFI coverage occur
only with new Android releases (cf. Table 2 and Table 5).
Minor fluctuation in CFI coverage within the same Android
version happens primarily due to the addition or removal of
ELF files. However, some changes in the protection status of
existing files, from protected to unprotected and vice versa,
also happen in our dataset. Figure 4 shows the development
over consecutive Android releases for the GSI. PA-based re-
turn address protection has been introduced with Android
12 and has since been extended, although the adoption rate
slowed down with Android 14. The LLVM CFI coverage stag-
nates and, in some cases, even decreases with recent releases.
Corresponding figures for the S20 and the Mi firmware can
be found in Figure 6 in the appendix.

Memory-safe Code in Rust We find that Rust binaries are
rather uncommon, with an average of only 14 files over all
Android 13 firmware images. This might be subject to change
as Google plans to primarily use Rust for new low-level code
in Android [101]. Such a transition period comes with its
own issues: Mixed binaries resulting from combined Rust
and C / C++ codebases might be more vulnerable to memory
corruption attacks because memory-safe parts can be abused
to bypass mitigations such as CFI, which are deployed to pro-
tect unsafe code [74, 86]. Mixed binaries aside, Rust-based
libraries will also contribute to the number of unprotected li-
braries and hence to the number of unprotected dependencies
C / C++ binaries might have. While this issue could be ad-
dressed by compiling such libraries with LLVM CFI enabled,
cross-language CFI support for Rust is not available yet [32].

Equivalence Class Size Frequencies For an indirect
forward-edge control-flow transfer, the equivalence class size
expresses the number of available call targets and hence the
possible choices to an adversary. Therefore, the distribution
of equivalence class sizes is a relevant metric to analyze type-
based CFI schemes on a particular platform. Even though
it shares the issue that the usefulness of targets is not con-

198 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

100 101 102

Equivalence Class Size (log scale)

100

101

102

103

104

105

N
u
m
b
er

of
o
cc
u
rr
en
ce
s
(l
og

sc
al
e)

Firmware Image

Google Pixel 7

Vivo V25

Samsung Galaxy S22

Xiaomi 13

Oppo Reno 8 5G

Mi 10 V14.0.2

S20 SIHWGA (12)

GSI 14

Figure 5: Equivalence class size distribution over all firmware.

sidered, it implicitly only considers full functions instead of
arbitrary gadgets. Figure 5 depicts the frequencies with which
each equivalence class size appears on the different firmware
images. Equivalence classes are counted over all files on
the corresponding firmware image as they were extracted
from the __cfi_check function by our analysis. Equivalence
classes consist of either jump tables, as used for checking
function pointers, or vtables for checks involving C++ ob-
jects. Equivalence classes with the same type identifiers may
appear multiple times if used in different files.

The distribution concentrates on single-member classes,
with lesser frequencies of larger classes. This characteristic is
desirable, as single-member classes imply that an adversary
has no choice. We observe that the same outliers are often
found across different firmware images due to the fact that
they share a common codebase. Concerning the type of the
tables these equivalence classes are based on, we found that
jump tables are primarily responsible for the largest equiva-
lence classes, with the exception of the Xiaomi 13 firmware.

Reachable Equivalence Classes Not all equivalence
classes in a CFI-protected binary and its dependencies are
actually reachable, i.e., there is no indirect control-flow trans-
fer targeting them. Calls to __cfi_slowpath can be used
to determine equivalence classes that are reachable from a
binary. This approach is imperfect because __cfi_slowpath
is also used for other CFI-related checks that are not strictly
speaking indirect control-flow transfers. One instance of such
a check is the cfi-nvcall, which checks non-virtual calls
for polymorphic class types by checking the vtable pointer
to ensure that the function is called with a compatible ob-
ject [108]. This can be solved by following the CFG after the
corresponding __cfi_slowpath call to determine the type of
the next branch instruction, keeping only indirect calls. Such

additional analysis steps introduce imprecision and runtime
overhead, and we decided to focus on CFI checks indepen-
dently of their purpose. To get an idea of how a program’s
dependencies increase the size of existing equivalence classes,
we also included its dependencies for this particular analy-
sis. Because this does not make sense for binaries with no
protected dependencies, such files are ignored. Full results
are depicted in Table 7 in the appendix. Besides for the Xi-
aomi firmware, the geometric mean of equivalence class sizes
slightly decreases when considering dependencies. While
this is contrary to the expectation that equivalence classes
grow due to the merging of classes with common type iden-
tifiers, it can be explained by the fact that on these firmware
images, protected libraries on average, have smaller equiva-
lence classes than binaries. Therefore, the geometric mean
decreases when also considering dependencies. The results
restricted to reachable equivalence classes change as expected.
Overall, reachable equivalence classes are expected to contain
more than a single member because else there would be no
need for function pointers or virtual functions. Table 7 con-
tains equivalence class sizes below two because a significant
portion (cf. Table 3) of dependencies are unprotected, and
targets that are located in them cannot be considered.

5.2 Linux Study

The Linux kernel introduced support for Clang’s CFI scheme
in release 5.13 [111]. As a more efficient alternative, Linux
also supports FineIBT, starting with version 6.2 [71]. FineIBT
user-space support is also in the works, but it requires PLT
format modifications, thus leading to ABI changes [44]. For
backward-edge protection in user space, the Linux kernel
6.6 introduced CET shadow stack support on corresponding
platforms [112]. Applications need to signal shadow stack
compatibility by setting the SHSTK flag in the Executable and
Linking Format (ELF) note, and the kernel must be configured
with the X86_USER_SHADOW_STACK flag [60].

The build configuration of shipped kernels and applications
usually depends on the Linux distribution. Because there are
many different Linux distributions and their market share is
hard to quantify [35], we exemplarily pick the most recent De-
bian, Ubuntu, Fedora Workstation, and Arch Linux releases as
representatives of widespread distributions. As of September
2023, none of them ship a kernel recent enough to support the
CET shadow stack, and none enables CONFIG_CFI_CLANG by
default. On the application side, these distributions set the
-fcf-protection build flag by default to produce shadow
stack and IBT protected binaries, even though kernel support
for neither feature is available yet [25, 26, 28, 53]. Clang’s
CFI scheme is not specified, probably because it is tied to
Clang and unusable with other prevalent compilers such as
GCC. On major Linux distributions, fully working mitigation
combinations are not deployed yet. For this reason, we refrain
from running a binary analysis study on Linux distributions.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 199

Table 4: Windows 11 Insider Preview CFI coverage

File Type Unprotected Only WCFG XFG EC Size

Exe 2.68% 11.59% 85.73% 1.37 [G.M.]
DLL 2.62% 11.68% 85.70% 1.37 [G.M.]
Sys. DLL 0.91% 2.06% 97.04% 1.38 [G.M.]
Combined 2.63% 11.66 % 85.70% 1.37 [G.M.]

The Sys. DLL column covers all .DLL files located in
C:\Windows\System32\ and subdirectories thereof.

5.3 Windows Study

We study the Windows 11 Insider Preview developer
build 23440 with respect to WCFG and XFG coverage.
WCFG-related metadata in the Portable Executable (PE)
header allows us to reliably detect WCFG and XFG
usage. The former can be detected by checking the
DllCharacteristics field [77], while XFG protection is
indicated by the GuardFlags field of the load configu-
ration. All XFG-instrumented functions are listed in the
GuardCFFunctionTable in the load configuration and have
the corresponding bit set in the flags part of their entry [75].
Hence, we use the following approach: First, we traverse the
GuardCFFunctionTable and extract all entries with flag-bit
0x08 set. Then, for each entry, we extract the 8 bytes repre-
senting the type hash, which precedes the address indicated
by its address part. As a result, we obtain the set of XFG-
instrumented functions and their type hashes.

WCFG and XFG Coverage First, we measure WCFG and
XFG coverage by enumerating all PE files compiled for x64
with either a .dll or .exe extension. We restrict files to these
extensions to exclude files that share the PE format but are
irrelevant to our study, such as .mui files used for multilin-
gual user interfaces. Additionally, we ignore files without ex-
ecutable sections since they do not require protection. Virtual
DLLs are one example of such files [124]. Table 4 gives an
overview of the distribution of protection schemes. Contrary
to the results from our Android study, the majority of analyzed
files on Windows are compiled with XFG instrumentation.

Equivalence Class Sizes The geometric mean equivalence
class size is similar to the one we observed on Android (cf. Ta-
ble 7, second column), even though slightly lower. Besides
Windows 11 being a codebase unrelated to Android, a con-
tributing factor to this difference could be that not every
protected function in an XFG-instrumented PE file is nec-
essarily XFG protected, as WCFG can be used to protect
individual functions. We found that, on average, 95.94% of
GuardCFFunctionTable entries were marked as XFG pro-
tected for files with XFG instrumentation. This means that the
on average remaining 4.06% of targets must be considered
members of every XFG equivalence class in the correspond-
ing file. The entire distribution of equivalence class sizes is
depicted in Figure 7 in the appendix and looks similar to the
distribution on Android (cf. Figure 5).

Backwards-edge Protection on Windows WCFG and XFG
only protect forward-edge control-flow transfers. Microsoft
tested a software-based shadow stack called Return Flow
Guard but found it affected by information leakage attacks and
an exploitable race condition [14]. Instead, they use hardware-
supported schemes on supported platforms: On recent x86-
based systems, the shadow stack of Intel’s CET is used to
protect backward-edge transfers [69] if the corresponding PE
file sets the CET_COMPAT extended DLL characteristics bit.

On AArch64-based systems, recent Windows on ARM
builds support PA for protecting return addresses [121]. Our
analysis of the insider preview dev build 23419 yields a PA file
coverage of 92 %. To calculate this, we enumerate all .exe
and .dll files for AArch64 and search them for PA-related
instructions. Then, we filter out cases of instructions that only
appear incidentally in executable sections. The remaining in-
structions consist of the PACIBSP and AUTIBSP pair used for
signing and authenticating the return address with the stack
pointer as context and the B key, and the XPACLRI instruction
for stripping PACs from the link register. Windows 11 on
ARM uses the basic PA scheme, in which each return address
is tied to the stack pointer value at function entry (refer to Sec-
tion 4.2.1). Since better designs exist (e.g. [57, 67]), it seems
that the current implementation was deemed sufficiently se-
cure, or the complexity or runtime overhead of such solutions
was found unacceptable.

Bypassing XFG with Suppressed Functions WCFG sup-
ports function suppression, a feature to mark unsafe functions
that should never be called indirectly [75]. Such functions are
not placed into the WCFG function table and have no bitmap
entry to mark them as valid functions. Developers can use
this feature by using function modifiers in their code, and
Microsoft uses it internally to protect system DLLs. In such
DLLs, restricted functions are mostly related to control-flow
tasks such as stack unwinding or exception handling.

We found that even though suppressed functions do not
appear in the WCFG function table, they still have XFG type
hashes. Consequently, they are valid call targets under XFG
enforcement, as long as the corresponding call site has the
same type hash. For suppressed functions of a sufficiently
generic signature (i.e., no custom types appearing only in
specific APIs), this implies that they can be reachable by an
attacker, especially considering previously described tech-
niques to reach such call sites [38, 41]. We reported this issue
to Microsoft and expect that Microsoft will fix this in future
releases of Windows and their MSVC compiler by omitting
XFG type hashes for suppressed functions.

6 Related Work

Various CFI schemes have been treated in previous research.
Thereby lay the focus on either compatibility [123], a com-
bination of precision, security, and performance [19], tech-
niques applicable to resource-restrained embedded and real-

200 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

time processing devices [78], the precision of binary-level
techniques [114], and the security boundaries of different ap-
proaches [66]. [81] introduces a framework for comparing dif-
ferent CFI policies. Since this framework operates on source
code, it solves a different task than our analysis. Equivalent
studies also exist for hardware-based schemes [33, 65, 105].
Because these surveys mostly compare academic prototypes,
they do not address the usage of CFI in practice. In [116], CFI
equivalence classes in the Linux kernel are analyzed. Their
approach differs from ours, as they extract CFI targets by
using an instruction pattern instead of symbolic execution.
Consequently, they do not consider CDSO calls.

Several works exist that explore approaches to automated
firmware analysis. Firmalice [98] detects authentication by-
passes in binary programs automatically. It uses symbolic
execution to detect such vulnerabilities based on a general
and architecture-agnostic model characterizing them. Sim-
ilarly, [22] employs full-system emulation of Linux-based
firmware to identify vulnerabilities by checking accessible
web pages, enumerating Simple Network Management Proto-
col (SNMP) information, and attempting known exploits.

Related to memory safety, the work in [125] runs a large-
scale analysis to study the coverage of different mitigations
in embedded-device firmware. To detect present mitigations,
they use static indicators, including the occurrence of cer-
tain strings or symbols, the existence of specific ELF sec-
tions, or flags in the program header. However, they do not
consider CFI usage. Targeting specifically the Android plat-
form, [51] analyzes Android firmware to investigate its patch
level. It builds on multiple static analysis tools to detect
missing patches, app attribute misconfigurations, and cryp-
tographic misuse. To perform static analysis tasks targeting
pre-installed apps in Android firmware, the FirmwareDroid
framework [103] was proposed. It has been applied to study
advertiser tracker libraries shipped with pre-installed apps.
[37] investigates the security of such pre-installed apps, focus-
ing on privilege-escalation vulnerabilities by using a custom
static taint analysis.

7 Recommendations for Improving CFI

A comparison of the state of the art CFI research with the
schemes found in practice shows a large gap between scien-
tific implementations and their adoption. Researchers identi-
fied compatibility as a long-standing issue [123]. When look-
ing at the two instances where production systems and com-
pilers have integrated results from research efforts [44, 110],
it becomes evident that corresponding authors had direct ties
to the industry. The corresponding financial backing and in-
terest in creating solutions that are applicable to production
systems could explain why these authors underwent the effort
of submitting patches to LLVM and the Linux kernel.

The CFI schemes observed in practice are primarily coarse-
grained. With LLVM’s type-based scheme and the intro-

duction of XFG, vendors are moving towards fine-grained
schemes, which provide better security. This trend confirms
that vendors are interested in moving forward and closing the
gap between academia and industry.

Our analysis shows that equivalence classes of the fine-
grained schemes tend to be small. Compared to coarse-
grained schemes, this indicates a substantial improvement, but
outliers exist and contribute to the choices of targets available
to adversaries. Existing metrics for measuring CFI protection
are insufficient to address this problem, therefore adding to
the difficulty in evaluating the benefits of these mitigations.

We found that in the Android ecosystem, popular vendors
rolled out CFI support differently over time. This indicates
that even if there is a build environment that supports CFI
and that is well-maintained and tested, adoption to real-world
systems takes time. We strongly encourage vendors to ensure
that CFI is applied to all binaries. From the vendor’s perspec-
tive, system libraries should be shipped with CFI enabled to
allow developers to benefit from compiling programs with
CFI. Our tools will support vendors in analyzing their systems
for potential gaps in CFI support, which might arise due to
passing wrong compiler options in subprojects.

8 Conclusion

Our results show that CFI roll-out is not yet a finished process.
We found the CFI coverage on Android lacking, especially
regarding system-provided shared libraries. In these cases,
CFI follows an all-or-nothing principle, meaning that secu-
rity benefits are basically non-existent without a complete
deployment. While the WCFG/XFG coverage we observed
on Windows was better, it remains to be seen how long it takes
until commercial off-the-shelf software builds are properly
shipped with XFG protection once XFG is officially released.

With the increasing adoption of CFI, the hurdle for ad-
versaries grows, who, in the best case, need to develop new
exploitation techniques for each vulnerable program, hence
raising the required effort and cost of attacks. In addition,
specific bugs that would lead to arbitrary code execution with-
out CFI can become unexploitable with CFI protection being
applied, requiring adversaries to find stronger primitives. We
hope to see CFI fully deployed in the future, along with more
effective protection guarantees.

Acknowledgments
We thank the anonymous reviewers and the artifact evalua-
tors for their helpful suggestions. This work has been funded
by the German Research Foundation (DFG) in the project
CRUST (grant number: 503199853).

Availability
The scripts described in the paper are published here:
github.com/seemoo-lab/woot24_cfi_coverage_tools/

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 201

https://github.com/seemoo-lab/woot24_cfi_coverage_tools/

References
[1] Armv8.5-A memory tagging extension. https://developer.arm.

com/-/media/Arm%20Developer%20Community/PDF/Arm_Memo
ry_Tagging_Extension_Whitepaper.pdf. Whitepaper.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, CCS ’05, pages 340–353, New
York, NY, USA, 2005. Association for Computing Machinery.

[3] National Security Agency. Ghidra. https://ghidra-sre.org/,
March 2019.

[4] Android Open Source Project. AOSP - Control Flow Integrity. https:
//source.android.com/docs/security/test/cfi, 2022.

[5] Android Open Source Project. AOSP - Kernel Control Flow Integrity.
https://source.android.com/docs/security/test/kcfi,
2022.

[6] Android Open Source Project. AOSP - ShadowCallStack. https:
//source.android.com/docs/security/test/shadow-call-s
tack, 2022.

[7] Android Open Source Project. AOSP - Homepage. https://sour
ce.android.com/, 2023.

[8] Android Open Source Project. AOSP - Arm Memory Tagging Exten-
sion. https://source.android.com/docs/security/test/me
mory-safety/arm-mte, 2024.

[9] AppBrain. Top android phone manufacturers. https://web.arch
ive.org/web/20230317081510/https://www.appbrain.com/s
tats/top-manufacturers, 2023.

[10] Apple. Apple LLVM fork - pointer authentication documentation.
https://github.com/apple/llvm-project/blob/d43163879b
db9576fff7a5a269d36920eee4ac29/clang/docs/PointerAut
hentication.rst.

[11] Apple. Apple platform security. https://help.apple.com/pdf/s
ecurity/en_US/apple-platform-security-guide.pdf, May
2022.

[12] ARM Holdings. Arm architecture reference manual for a-profile
architecture. https://developer.arm.com/documentation/dd
i0487/ha/?lang=en, February 2022.

[13] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3), May 2018.

[14] Joe Bialek. The evolution of CFI attacks and defenses. https:
//github.com/Microsoft/MSRC-Security-Research/blob/m
aster/presentations/2018_02_OffensiveCon/The%20Evolu
tion%20of%20CFI%20Attacks%20and%20Defenses.pdf, 2018.

[15] Andrea Biondo, Mauro Conti, and Daniele Lain. Back To The Epi-
logue: Evading Control Flow Guard via Unaligned Targets. In NDSS,
San Diego, California, February 2018. Internet Society.

[16] Mark Brand. First handset with mte on the market. https://goog
leprojectzero.blogspot.com/2023/11/first-handset-wit
h-mte-on-market.html, 2023.

[17] David Brash. Armv8-a Architecture: 2016 Additions. https://co
mmunity.arm.com/developer/ip-products/processors/b/p
rocessors-ip-blog/posts/armv8-a-architecture-2016-a
dditions, 2016.

[18] Michael D. Brown and Santosh Pande. Is less really more? towards
better metrics for measuring security improvements realized through
software debloating. In Proceedings of the 12th USENIX Conference
on Cyber Security Experimentation and Test, CSET’19, page 5, USA,
2019. USENIX Association.

[19] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Preci-
sion, security, and performance. ACM Comput. Surv., 50(1), April
2017.

[20] Nathan Burow, Xinping Zhang, and Mathias Payer. SoK: Shining
Light on Shadow Stacks. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 985–999, 2019.

[21] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R. Gross. Control-Flow bending: On the effectiveness
of Control-Flow integrity. In 24th USENIX Security Symposium
(USENIX Security 15), pages 161–176, Washington, D.C., August
2015. USENIX Association.

[22] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley.
Towards Automated Dynamic Analysis for Linux-based Embedded
Firmware. In Proceedings 2016 Network and Distributed System
Security Symposium. Internet Society, 2016.

[23] Long Cheng, Hans Liljestrand, Md Salman Ahmed, Thomas Nyman,
Trent Jaeger, N. Asokan, and Danfeng Yao. Exploitation techniques
and defenses for data-oriented attacks. In 2019 IEEE Cybersecurity
Development (SecDev), pages 114–128, 2019.

[24] Nick Christoulakis, George Christou, Elias Athanasopoulos, and
Sotiris Ioannidis. HCFI: Hardware-enforced control-flow integrity. In
Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, CODASPY ’16, pages 38–49, New York, NY,
USA, 2016. Association for Computing Machinery.

[25] Arch Linux Community. makepkg.conf. https://gitlab.archl
inux.org/archlinux/packaging/packages/pacman/-/blob/5
fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf.

[26] Debian Community. Debian dpkg-buildflags. https://manpages.d
ebian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.htm
l.

[27] GrapheneOS Community. Grapheneos. https://grapheneos.org
/.

[28] Ubuntu Community. Compilerflags - default flags. https://wiki.u
buntu.com/ToolChain/CompilerFlags.

[29] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. Losing control: On the effectiveness of control-flow
integrity under stack attacks. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15,
pages 952–963, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[30] John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Com-
plete control-flow integrity for commodity operating system kernels.
In 2014 IEEE Symposium on Security and Privacy, pages 292–307,
2014.

[31] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Mon-
rose. Stitching the gadgets: On the ineffectiveness of Coarse-Grained
Control-Flow integrity protection. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 401–416, San Diego, CA, August
2014. USENIX Association.

[32] Ramon de C Valle. Tracking issue for LLVM control flow integrity
(CFI) support for rust. https://github.com/rust-lang/rust/i
ssues/89653, 2023.

[33] Ruan de Clercq and Ingrid Verbauwhede. A survey of hardware-based
control flow integrity (CFI). CoRR, abs/1706.07257, 2017.

[34] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. Efficient protection of Path-Sensitive control security.
In 26th USENIX Security Symposium (USENIX Security 17), pages
131–148, Vancouver, BC, August 2017. USENIX Association.

[35] DistroWatch. Distrowatch page hit ranking. https://distrowatch.
com/dwres.php?resource=popularity.

[36] Victor Duta, Fabian Freyer, Fabio Pagani, Marius Muench, and Cris-
tiano Giuffrida. Let me unwind that for you: Exceptions to backward-
edge protection. In NDSS, 2023.

202 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://ghidra-sre.org/
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/
https://source.android.com/
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://web.archive.org/web/20230317081510/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20230317081510/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20230317081510/https://www.appbrain.com/stats/top-manufacturers
https://github.com/apple/llvm-project/blob/d43163879bdb9576fff7a5a269d36920eee4ac29/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/d43163879bdb9576fff7a5a269d36920eee4ac29/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/d43163879bdb9576fff7a5a269d36920eee4ac29/clang/docs/PointerAuthentication.rst
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://gitlab.archlinux.org/archlinux/packaging/packages/pacman/-/blob/5fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf
https://gitlab.archlinux.org/archlinux/packaging/packages/pacman/-/blob/5fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf
https://gitlab.archlinux.org/archlinux/packaging/packages/pacman/-/blob/5fc0f6312b17abf707318c6909275721dab75a54/makepkg.conf
https://manpages.debian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.html
https://manpages.debian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.html
https://manpages.debian.org/unstable/dpkg-dev/dpkg-buildflags.1.en.html
https://grapheneos.org/
https://grapheneos.org/
https://wiki.ubuntu.com/ToolChain/CompilerFlags
https://wiki.ubuntu.com/ToolChain/CompilerFlags
https://github.com/rust-lang/rust/issues/89653
https://github.com/rust-lang/rust/issues/89653
https://distrowatch.com/dwres.php?resource=popularity
https://distrowatch.com/dwres.php?resource=popularity

[37] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo,
Qingchuan Zhao, and Zhiqiang Lin. FIRMSCOPE: Automatic un-
covering of Privilege-Escalation vulnerabilities in Pre-Installed apps
in android firmware. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2379–2396. USENIX Association, August 2020.

[38] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Mar-
tin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control
jujutsu: On the weaknesses of fine-grained control flow integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 901–913, New York, NY,
USA, 2015. Association for Computing Machinery.

[39] Francisco Falcon. How the MSVC compiler generates XFG function
prototype hashes. https://web.archive.org/web/20230518
085024/https://blog.quarkslab.com/how-the-msvc-com
piler-generates-xfg-function-prototype-hashes.html,
November 2020.

[40] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. Ptauth:
Temporal memory safety via robust points-to authentication. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1037–
1054, 2021.

[41] Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William
Robertson, Engin Kirda, and Hamed Okhravi. On the effectiveness
of type-based control flow integrity. In Proceedings of the 34th An-
nual Computer Security Applications Conference, ACSAC ’18, pages
28–39, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[42] Andreas Follner, Alexandre Bartel, and Eric Bodden. Analyzing
the gadgets. In Proceedings of the 8th International Symposium on
Engineering Secure Software and Systems - Volume 9639, ESSoS
2016, page 155–172, Berlin, Heidelberg, 2016. Springer-Verlag.

[43] Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza
Sadeghi. CFInsight: A Comprehensive Metric for CFI Policies. In
Proceedings 2022 Network and Distributed System Security Sympo-
sium. Internet Society, 2022.

[44] Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis
Atlidakis, and Vasileios P. Kemerlis. Fineibt: Fine-grain control-flow
enforcement with indirect branch tracking, 2023.

[45] Alex Gaynor. What science can tell us about C and C++’s security.
https://alexgaynor.net/2020/may/27/science-on-memor
y-unsafety-and-security/, May 2020.

[46] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. Fine-
grained control-flow integrity for kernel software. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages
179–194, 2016.

[47] E.K. Goktas, A. Oikonomopoulos, Robert Gawlik, Benjamin Kol-
lenda, I. Athanasopoulos, C. Giuffrida, G. Portokalidis, and H.J. Bos.
Bypassing Clang’s SafeStack for Fun and Profit. In Black Hat Europe,
November 2016.

[48] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In Proceedings 2017 Network and Distributed System Security Sym-
posium. Internet Society, 2017.

[49] GRSecurity. Frequently asked questions about rap. https://grse
curity.net/rap_faq, 2023.

[50] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. Out of control: Overcoming control-flow integrity. In 2014
IEEE Symposium on Security and Privacy, pages 575–589, 2014.

[51] Qinsheng Hou, Wenrui Diao, Yanhao Wang, Chenglin Mao, Lingyun
Ying, Song Liu, Xiaofeng Liu, Yuanzhi Li, Shanqing Guo, Meining
Nie, and Haixin Duan. Can we trust the phone vendors? comprehen-
sive security measurements on the android firmware ecosystem. IEEE
Transactions on Software Engineering, 49(7):3901–3921, 2023.

[52] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. Enforcing unique
code target property for control-flow integrity. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 1470–1486, New York, NY, USA, 2018.
Association for Computing Machinery.

[53] Red Hat Inc. Using rpm build flags. https://src.fedoraproject.
org/rpms/redhat-rpm-config/blob/f39/f/buildflags.md.

[54] Intel. Control flow enforcement technology. https://www.intel.
com/content/dam/develop/external/us/en/documents/cat
c17-introduction-intel-cet-844137.pdf, December 2017.

[55] Intel. New intel vpro platform portfolio. https://www.intel.com/
content/www/us/en/products/docs/processors/core/12th
-gen-vpro-desktop-processors-brief.html, June 2022.

[56] Intel. Intel® 64 and ia-32 architectures software developer manuals.
https://www.intel.com/content/www/us/en/developer/ar
ticles/technical/intel-sdm.html, 2023.

[57] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. Tightly seal your sensitive pointers with
pactight, 2022.

[58] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. Block oriented programming: Automating data-only attacks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 1868–1882, New York,
NY, USA, 2018. Association for Computing Machinery.

[59] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Safedispatch:
Securing c++ virtual calls from memory corruption attacks. In NDSS,
01 2014.

[60] The kernel development community. Control-flow enforcement tech-
nology (cet) shadow stack. https://www.kernel.org/doc/html/
v6.6-rc2/arch/x86/shstk.html.

[61] Mustakimur Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and
Jie Yang. Origin-sensitive control flow integrity. In 28th USENIX
Security Symposium (USENIX Security 19), pages 195–211, Santa
Clara, CA, August 2019. USENIX Association.

[62] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin
Zhou, and Yueqiang Cheng. Adaptive call-site sensitive control flow
integrity. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 95–110, 2019.

[63] Hyungseok Kim, Junoh Lee, Soomin Kim, Seungil Jung, and Sang Kil
Cha. How’d security benefit reverse engineers? : The implication of
intel cet on function identification. In 2022 52nd Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), pages 559–566, 2022.

[64] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. Code-Pointer integrity. In 11th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), pages 147–163, Broomfield, CO, October 2014.
USENIX Association.

[65] Senyang Li, Weike Wang, Wenxin Li, and Dexue Zhang. Hardware-
Based Software Control Flow Integrity: Review on the State-of-the-
Art Implementation Technology. 11:133255–133280.

[66] Yuan Li, Mingzhe Wang, Chao Zhang, Xingman Chen, Songtao Yang,
and Ying Liu. Finding cracks in shields: On the security of control
flow integrity mechanisms. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1821–
1835, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[67] Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg,
and N. Asokan. Pacstack: an authenticated call stack, 2019.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 203

https://web.archive.org/web/20230518085024/https://blog.quarkslab.com/how-the-msvc-compiler-generates-xfg-function-prototype-hashes.html
https://web.archive.org/web/20230518085024/https://blog.quarkslab.com/how-the-msvc-compiler-generates-xfg-function-prototype-hashes.html
https://web.archive.org/web/20230518085024/https://blog.quarkslab.com/how-the-msvc-compiler-generates-xfg-function-prototype-hashes.html
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://grsecurity.net/rap_faq
https://grsecurity.net/rap_faq
https://src.fedoraproject.org/rpms/redhat-rpm-config/blob/f39/f/buildflags.md
https://src.fedoraproject.org/rpms/redhat-rpm-config/blob/f39/f/buildflags.md
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/www/us/en/products/docs/processors/core/12th-gen-vpro-desktop-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/12th-gen-vpro-desktop-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/12th-gen-vpro-desktop-processors-brief.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.kernel.org/doc/html/v6.6-rc2/arch/x86/shstk.html
https://www.kernel.org/doc/html/v6.6-rc2/arch/x86/shstk.html

[68] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. PAC it up: Towards Pointer Integrity
using ARM Pointer Authentication. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 177–194, Santa Clara, CA, August
2019. USENIX Association.

[69] Jin Lin. Developer guidance for hardware-enforced stack protection.
https://techcommunity.microsoft.com/t5/windows-kerne
l-internals-blog/developer-guidance-for-hardware-enf
orced-stack-protection/ba-p/2163340, 2021.

[70] Linus Torvalds. The linux kernel: extract-ikconfig. https://github
.com/torvalds/linux/blob/6465e260f48790807eef06b583b
38ca9789b6072/scripts/extract-ikconfig.

[71] LWN.net. Kernel release status. https://lwn.net/Articles/924
113/.

[72] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maz-
ières. CCFI: Cryptographically enforced control flow integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 941–951, New York, NY,
USA, 2015. Association for Computing Machinery.

[73] Connor McGarr. Exploit development: Between a rock and a (xtended
flow) guard place: Examining XFG. https://web.archive.org/
web/20231024102105/https://connormcgarr.github.io/exa
mining-xfg/, August 2020.

[74] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. Cross-
Language Attacks. In Proceedings 2022 Network and Distributed
System Security Symposium. Internet Society, 2022.

[75] Microsoft. Pe metadata. https://learn.microsoft.com/en-us/
windows/win32/secbp/pe-metadata, June 2021.

[76] Microsoft. Control flow guard for platform security. https://docs
.microsoft.com/en-us/windows/win32/secbp/control-flo
w-guard, 2022.

[77] Microsoft. Pe format. https://learn.microsoft.com/en-us/wi
ndows/win32/debug/pe-format, October 2022.

[78] Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. Survey of
Control-flow Integrity Techniques for Real-time Embedded Systems.
21(4):41:1–41:32.

[79] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios P
Kemerlis. Drop the rop fine-grained control-flow integrity for the
linux kernel. Black Hat Asia, 2017.

[80] Alan Mujumdar. Armv8.1-m pointer authentication and branch target
identification extension. https://community.arm.com/arm-com
munity-blogs/b/architectures-and-processors-blog/post
s/armv8-1-m-pointer-authentication-and-branch-targe
t-identification-extension, 2021.

[81] Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens
Grossklags, and Claudia Eckert. Analyzing control flow integrity with
LLVM-CFI. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, pages 584–597, New York, NY,
USA, 2019. Association for Computing Machinery.

[82] Ben Niu and Gang Tan. Modular control-flow integrity. SIGPLAN
Not., 49(6):577–587, June 2014.

[83] Ben Niu and Gang Tan. Per-input control-flow integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 914–926, New York, NY,
USA, 2015. Association for Computing Machinery.

[84] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giuffrida. Poking holes in information hiding. In 25th
USENIX Security Symposium (USENIX Security 16), pages 121–138,
Austin, TX, August 2016. USENIX Association.

[85] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever wanted to
know about x86/x64 binary disassembly but were afraid to ask. In
2021 IEEE Symposium on Security and Privacy (SP), pages 833–851,
2021.

[86] Michalis Papaevripides and Elias Athanasopoulos. Exploiting mixed
binaries. ACM Trans. Priv. Secur., 24(2), January 2021.

[87] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-grained
control-flow integrity through binary hardening. In Magnus Almgren,
Vincenzo Gulisano, and Federico Maggi, editors, Detection of Intru-
sions and Malware, and Vulnerability Assessment, pages 144–164,
Cham, 2015. Springer International Publishing.

[88] Manish Prasad and Tzi cker Chiueh. A binary rewriting defense
against stack based buffer overflow attacks. In USENIX Annual Techni-
cal Conference, General Track, pages 211–224. USENIX Association,
June 2003.

[89] Android Open Source Project. Increase the size of the shadow call
stack guard region to 16mb. https://android-review.googleso
urce.com/c/platform/bionic/+/891622.

[90] Android Open Source Project. bionic. https://android.google
source.com/platform/bionic, November 2022.

[91] Android Open Source Project. Configuring art. https://source.a
ndroid.com/docs/core/runtime/configure, October 2022.

[92] LLVM Project. Branch target identification code-generation pass.
https://github.com/llvm/llvm-project/commit/4bc81028
d48c0ab07e7b429d2a98ed6d15140a23.

[93] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program.
Lang. Syst., 16(5):1467–1471, September 1994.

[94] Robert Schilling, Pascal Nasahl, and Stefan Mangard. Fipac: Thwart-
ing fault- and software-induced control-flow attacks with arm pointer
authentication. In Josep Balasch and Colin O’Flynn, editors, Con-
structive Side-Channel Analysis and Secure Design, pages 100–124,
Cham, 2022. Springer International Publishing.

[95] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in
c++ applications. In 2015 IEEE Symposium on Security and Privacy,
pages 745–762, 2015.

[96] Qualcomm Product Security. Pointer Authentication on ARMv8.3
- Design and Analysis of the New Software Security Instructions.
Technical report, Qualcomm Technologies, Inc., 5775 Morehouse
Drive, San Diego, CA 92121, U.S.A., January 2017. Available here:
https://www.qualcomm.com/media/documents/files/white
paper-pointer-authentication-on-armv8-3.pdf.

[97] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. Security analy-
sis of processor instruction set architecture for enforcing control-flow
integrity. In Proceedings of the 8th International Workshop on Hard-
ware and Architectural Support for Security and Privacy, HASP ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[98] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice - Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware. In Pro-
ceedings 2015 Network and Distributed System Security Symposium.
Internet Society, 2015.

[99] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[100] StatCounter. Operating system market share worldwide – jan 2020-
jan 2023. https://gs.statcounter.com/os-market-share#m
onthly-202001-202301, March 2023.

[101] Jeffrey Vander Stoep. Memory safe languages in android 13. https:
//security.googleblog.com/2022/12/memory-safe-languag
es-in-android-13.html, December 2022.

204 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://github.com/torvalds/linux/blob/6465e260f48790807eef06b583b38ca9789b6072/scripts/extract-ikconfig
https://github.com/torvalds/linux/blob/6465e260f48790807eef06b583b38ca9789b6072/scripts/extract-ikconfig
https://github.com/torvalds/linux/blob/6465e260f48790807eef06b583b38ca9789b6072/scripts/extract-ikconfig
https://lwn.net/Articles/924113/
https://lwn.net/Articles/924113/
https://web.archive.org/web/20231024102105/https://connormcgarr.github.io/examining-xfg/
https://web.archive.org/web/20231024102105/https://connormcgarr.github.io/examining-xfg/
https://web.archive.org/web/20231024102105/https://connormcgarr.github.io/examining-xfg/
https://learn.microsoft.com/en-us/windows/win32/secbp/pe-metadata
https://learn.microsoft.com/en-us/windows/win32/secbp/pe-metadata
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://android-review.googlesource.com/c/platform/bionic/+/891622
https://android-review.googlesource.com/c/platform/bionic/+/891622
https://android.googlesource.com/platform/bionic
https://android.googlesource.com/platform/bionic
https://source.android.com/docs/core/runtime/configure
https://source.android.com/docs/core/runtime/configure
https://github.com/llvm/llvm-project/commit/4bc81028d48c0ab07e7b429d2a98ed6d15140a23
https://github.com/llvm/llvm-project/commit/4bc81028d48c0ab07e7b429d2a98ed6d15140a23
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://gs.statcounter.com/os-market-share#monthly-202001-202301
https://gs.statcounter.com/os-market-share#monthly-202001-202301
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

[102] Ke Sun, Ya Ou, Yahnhui Zhao, Xiaomin Song, and Xiaoning Li. Never
let your guard down: Finding unguarded gates to bypass control flow
guard with big data. https://www.youtube.com/watch?v=oD0r
KvJcGbs, March 2017. BlackHat Asia 2017 conference talk.

[103] Thomas Sutter and Bernhard Tellenbach. FirmwareDroid: Towards
Automated Static Analysis of Pre-Installed Android Apps. In 2023
IEEE/ACM 10th International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), pages 12–22, 2023.

[104] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok:
Eternal war in memory. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, SP ’13, pages 48–62, USA, 2013. IEEE
Computer Society.

[105] Stefan Tauner and Mario Telesklav. Comparative analysis and en-
hancement of CFG-based hardware-assisted CFI schemes. ACM Trans.
Embed. Comput. Syst., 20(5s), September 2021.

[106] The Clang Team. Clang Documentation - SafeStack. https://clan
g.llvm.org/docs/SafeStack.html.

[107] The Clang Team. Clang documentation - control flow integrity. ht
tps://clang.llvm.org/docs/ControlFlowIntegrity.html,
2023.

[108] The Clang Team. Control flow integrity design documentation. https:
//clang.llvm.org/docs/ControlFlowIntegrityDesign.html,
2022.

[109] The Clang Team. Shadowcallstack. https://clang.llvm.org/d
ocs/ShadowCallStack.html, 2023.

[110] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-
edge control-flow integrity in gcc & LLVM. In 23rd USENIX security
symposium (USENIX security 14), pages 941–955, 2014.

[111] Sami Tolvanen. Linux kernel - add support for clang cfi. https:
//github.com/torvalds/linux/commit/cf68fffb66d60d962
09446bfc4a15291dc5a5d41.

[112] Linus Torvalds. Merge tag ’x86_shstk_for_6.6-rc1’. https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.g
it/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd
2e.

[113] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. On the expressiveness of return-into-libc
attacks. In Robin Sommer, Davide Balzarotti, and Gregor Maier, edi-
tors, Recent Advances in Intrusion Detection, pages 121–141, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[114] Ruturaj K. Vaidya and Prasad A. Kulkarni. Assessing the effectiveness
of binary-level cfi techniques. http://arxiv.org/abs/2401.071
48, 2024.

[115] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Prac-
tical context-sensitive CFI. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15,
pages 927–940, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[116] Jonathan Vexler. Characterization of forward-edge control-flow in-
tegrity targets in LLVM-compiled linux. https://cs.brown.edu/r
esearch/pubs/theses/masters/2020/vexler.jonathan.pdf,
2020.

[117] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and
Dengguo Feng. Binary code continent: Finer-grained control flow
integrity for stripped binaries. In Proceedings of the 31st Annual Com-
puter Security Applications Conference, ACSAC ’15, pages 331–340,
New York, NY, USA, 2015. Association for Computing Machinery.

[118] Wenhao Wang, Xiaoyang Xu, and Kevin W. Hamlen. Object flow
integrity. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 1909–1924,
New York, NY, USA, 2017. Association for Computing Machinery.

[119] Zhe Wang, Chenggang Wu, Yinqian Zhang, Bowen Tang, Pen-Chung
Yew, Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and
Zhiping Shi. SafeHidden: An efficient and secure information hiding
technique using re-randomization. In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 1239–1256, Santa Clara, CA,
August 2019. USENIX Association.

[120] David Weston. Advancing windows security. https://raw.github
usercontent.com/dwizzzle/Presentations/master/Blueha
t%20Shanghai%20-%20Advancing%20Windows%20Security.pdf,
2019. Presented at Bluehat Shanghai 2019.

[121] David Weston. Mwc 2022: The next microsoft pluton device + pac
technology. https://web.archive.org/web/20221104181427/h
ttps://blogs.windows.com/windowsexperience/2022/02/28
/mwc-2022-the-next-microsoft-pluton-device-pac-techn
ology/, February 2022.

[122] Jianhao Xu, Luca Di Bartolomeo, Flavio Toffalini, Bing Mao, and
Mathias Payer. Warpattack: Bypassing CFI through compiler-
introduced double-fetches, 2023.

[123] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen,
and Zhiqiang Lin. Confirm: Evaluating compatibility and relevance of
control-flow integrity protections for modern software. In Proceedings
of the 28th USENIX Conference on Security Symposium, SEC’19,
pages 1805–1821, USA, August 2019. USENIX Association.

[124] Pavel Yosifovich, Mark E. Russinovich, Alex Ionescu, and David A.
Solomon. Windows Internals, Part 1: System architecture, processes,
threads, memory management, and more. Microsoft Press, 7 edition,
2017.

[125] Ruotong Yu, Francesca Del Nin, Yuchen Zhang, Shan Huang, Pallavi
Kaliyar, Sarah Zakto, Mauro Conti, Georgios Portokalidis, and Jun
Xu. Building Embedded Systems Like It’s 1996. In Proceedings
2022 Network and Distributed System Security Symposium. Internet
Society, 2022.

[126] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun,
and Kui Ren. ARM Pointer Authentication based Forward-Edge and
Backward-Edge Control Flow Integrity for Kernels, 2019.

[127] Mingwei Zhang and R. Sekar. Control flow integrity for cots binaries.
In Proceedings of the 22nd USENIX Conference on Security, SEC’13,
pages 337–352, USA, 2013. USENIX Association.

[128] Philipp Zieris and Julian Horsch. A leak-resilient dual stack scheme
for backward-edge control-flow integrity. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, ASI-
ACCS ’18, pages 369–380, New York, NY, USA, 2018. Association
for Computing Machinery.

[129] Changwei Zou, Yaoqing Gao, and Jingling Xue. Practical Software-
Based Shadow Stacks on x86-64. ACM Transactions on Architecture
and Code Optimization, 19(4):1–26, 2022.

[130] Changwei Zou, Xudong Wang, Yaoqing Gao, and Jingling Xue. Buddy
stacks: Protecting return addresses with efficient thread-local storage
and runtime re-randomization. ACM Trans. Softw. Eng. Methodol.,
31(2), mar 2022.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 205

https://www.youtube.com/watch?v=oD0rKvJcGbs
https://www.youtube.com/watch?v=oD0rKvJcGbs
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://github.com/torvalds/linux/commit/cf68fffb66d60d96209446bfc4a15291dc5a5d41
https://github.com/torvalds/linux/commit/cf68fffb66d60d96209446bfc4a15291dc5a5d41
https://github.com/torvalds/linux/commit/cf68fffb66d60d96209446bfc4a15291dc5a5d41
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df57721f9a63e8a1fb9b9b2e70de4aa4c7e0cd2e
http://arxiv.org/abs/2401.07148
http://arxiv.org/abs/2401.07148
https://cs.brown.edu/research/pubs/theses/masters/2020/vexler.jonathan.pdf
https://cs.brown.edu/research/pubs/theses/masters/2020/vexler.jonathan.pdf
https://raw.githubusercontent.com/dwizzzle/Presentations/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://raw.githubusercontent.com/dwizzzle/Presentations/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://raw.githubusercontent.com/dwizzzle/Presentations/master/Bluehat%20Shanghai%20-%20Advancing%20Windows%20Security.pdf
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/
https://web.archive.org/web/20221104181427/https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022-the-next-microsoft-pluton-device-pac-technology/

A Appendix

This appendix contains a discussion of how type-based CFI
schemes can aid binary analysis tasks and a description and
Proof of Concept (PoC) of the race condition in LLVM’s
CDSO CFI shadow mapping. Furthermore, it accommodates
measurement data that did not fit into the main parts of the
paper: Figure 6 shows how the CFI coverage changed over
time with regards to the S20 and Mi 10 firmware images.
Table 5 continues Table 2 with measurements for the Mi 10
firmware, Table 6 is an extended version of Table 3 covering
all firmware images, Table 7 contains additional measurement
data covering geometric means of equivalence class sizes in
different categories, and Table 8 specifies the exact versions
of the Android images we look at.

A.1 Using CFI to Aid Binary Analysis
Security aside, CFI can also unintentionally help analyze
binary programs. For example, it has been shown that the
ENDBR instructions used for Intel’s IBT feature can be used
to improve function boundary detection [63]. We argue that
type-based schemes such as LLVM CFI or XFG also aid
binary analysis by allowing to infer function addresses and
information about their signatures. We propose the following
approach:

1. Pre-compute type identifiers for common type signatures
and classes and store them for fast look-up.

2. Find and annotate indirectly-callable functions with their
corresponding type identifier. For LLVM CFI, the type
identifier can be obtained by symbolically executing the
__cfi_check function (details in Section 5.1.1). For
XFG, this is done by extracting the type identifier that
precedes the function.

3. Group annotated functions by their type identifiers.

4. Look up identifiers in the pre-computed data set, and if
found, mark the function with the corresponding type. If
some function in a set has a known signature, the same
type can be applied to all other functions in the same set.
The same principle can be applied to manually assigned
signatures, which can also be propagated to functions in
the same set.

A fundamental limitation of this approach is that only
indirectly-callable functions can be analyzed, as only they
will have the CFI-related metadata. More specifically, func-
tions that are neither exported nor address-taken will not have
jump tables or type hashes, respectively. A second issue is
that type identifiers can collide, producing the same identifier
for different types. Our approach would then produce wrong
function signatures. Even though such collisions are unlikely,
they are possible. However, we still think our approach is an

interesting enhancement of typical binary analysis tools and
leave a thorough evaluation for future work.

void thread_func(uintptr_t target) {
// Simulate vulnerability to overwrite shadow mapping

entry
reinterpret_cast <uintptr_t>(target) =

0xffffffffffffffff;
}

int main() {
// Simulate leak of allocation address
uintptr_t alloc = reinterpret_cast <uintptr_t >(

mmap(nullptr ,
SIZE , PROT_READ | PROT_WRITE ,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE , 0,

0));
std::cout << "Allocation at: "

<< std::hex << alloc << std::endl;

// Calculate the address where the mapping entry for
// target_func is located
uintptr_t target = (alloc + ((reinterpret_cast <

uintptr_t >(&target_func) >> kShadowGranularity)
<< 1) - DISTANCE);

std::cout << "Target at: " << std::hex << target <<
std::endl

<< "Shadow base at: "
<< std::hex << (alloc - DISTANCE) << std::

endl;

// Start a thread to overwrite the target ,
// and trigger shadow mapping update
std::thread t = std::thread(thread_func , target);
// The .so file is arbitrary
void *handle = dlopen("/usr/lib/p7zip/7z.so", 0);
t.join();

// Simulate an arbitrary write to redirect the
// function pointer to the target_function
int (*func_ptr)(int) = foo;
func_ptr = reinterpret_cast <int (*)(int)>(&

target_func);
func_ptr(5); // This call should fail under LLVM CFI

}

Listing 1: Proof of concept for CDSO CFI race condition
bypass

A.2 LLVM CDSO CFI race condition
LLVM’s compiler runtime and Android’s C standard library
bionic [90] handle this by first allocating a new area for
the shadow mapping, writing the desired values, and then
re-mapping this new area to the previous shadow mapping
address. This process opens up a timing window in which the
newly allocated mapping is writable.

We successfully exploit this race condition to bypass CFI
from within a C++ program, based on an experiment in which
the adversary triggers a call to dlopen and then immediately
starts a thread for writing to the shadow mapping afterward.
A PoC for this bypass is shown in the appendix in Listing 1.
Such issues indicate that an approach using embedded labels
like Window’s XFG is a more elegant solution, especially
with respect to CDSO checks, but it is incompatible with
execute-only memory.

206 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Android 10 Android 11 Android 12 Android 13

Release

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

C
ov
er
ag

e
P
er
ce
n
ta
ge

Protection Mechanism

Prot. Binaries

Prot. Libraries

PA prot. Binaries

PA prot. Libraries

(a) S20 Releases

Android 10 Android 11 Android 12 Android 13

Release

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

C
ov
er
ag

e
P
er
ce
n
ta
ge

Protection Mechanism

Prot. Binaries

Prot. Libraries

PA prot. Binaries

PA prot. Libraries

(b) Mi 10 Releases

Figure 6: CFI coverage development over different Android releases. Bars represent the arithmetic mean over the analysed
images within an Android release.

Table 5: CFI coverage of Android firmware images (continuation of Table 2)

Files Total [count] LLVM CFI Protected [%] Shadow Stack Protected [%] Pointer Auth. Protected [%]

Vendor & Version Binaries Libraries Kernel Binaries Libraries Kernel Kernel Binaries Libraries Kernel Binaries Libraries Kernel
Modules Modules Modules Modules

Mi 10 2020-03-21 10 384 1987 41 10.94 14.09 0 ✗ 0 0.15 0 0 0 0
Mi 10 2020-07-15 10 382 1987 42 10.99 14.14 0 ✗ 0 0.15 0 0 0 0
Mi 10 2020-10-20 10 382 1992 42 10.99 14.11 0 ✗ 0 0.15 0 0 0 0
Mi 10 2021-01-10 11 383 1542 42 17.75 27.43 0 ✗ 0 0.19 0 0 0 0
Mi 10 2021-07-07 11 385 1534 42 17.66 27.57 0 ✗ 0 0.2 0 0 0 0
Mi 10 2022-01-20 11 385 1542 42 17.4 27.5 0 ✗ 0 0.19 0 0 0 0
Mi 10 2022-04-20 12 396 1681 40 16.67 27.31 0 ✗ 0 0.12 0 43.43 37.54 0
Mi 10 2023-01-12 12 397 1688 40 16.88 27.19 0 ✗ 0 0.12 0 43.58 37.38 0
Mi 10 2023-04-03 13 428 1668 40 15.42 28.72 0 ✗ 0 0.06 0 44.39 38.67 0
Mi 10 2023-05-17 13 428 1668 40 15.42 28.72 0 ✗ 0 0.06 0 44.39 38.67 0

100 101 102 103 104

Equivalence Class Size (log scale)

100

101

102

103

104

105

106

N
u
m
b
er

of
o
cc
u
rr
en
ce
s
(l
og

sc
al
e)

Figure 7: Equivalence class size distribution on the Win-
dows 11 Insider Preview build 23440.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 207

Table 6: Unprotected library dependencies in binaries.

Vendor & Device Min [%] Mean [%] Max [%]

GSI 10 83.78 92.84 100.0
GSI 11 75.24 86.93 100.0
GSI 12 61.76 83.56 100.0
GSI 13 58.97 83.12 100.0
GSI 14 63.41 82.46 100.0

Xiaomi 13 24.14 75.83 100.0
Google Pixel 7 58.97 84.65 100.0
GrapheneOS Pixel 7 58.97 84.65 100.0
Oppo Reno 8 5G 61.76 87.0 100.0
Samsung Galaxy S22 60.98 87.13 100.0
Vivo V25 58.97 88.48 100.0

S20 2020-02-19 81.41 89.37 100.0
S20 2020-05-15 81.41 89.37 100.0
S20 2020-10-14 86.36 93.97 100.0
S20 2020-11-23 77.14 88.73 100.0
S20 2021-05-17 77.14 88.73 100.0
S20 2021-10-20 77.14 88.73 100.0
S20 2021-12-23 61.76 87.38 100.0
S20 2022-04-26 61.76 87.48 100.0
S20 2022-09-27 61.76 87.48 100.0
S20 2022-10-24 60.98 87.4 100.0
S20 2023-02-20 60.98 87.42 100.0
S20 2023-07-26 60.98 87.42 100.0

Mi 10 2020-03-21 77.97 93.81 100.0
Mi 10 2020-07-15 77.97 93.8 100.0
Mi 10 2020-10-20 77.97 93.8 100.0
Mi 10 2021-01-10 53.57 87.03 100.0
Mi 10 2021-07-07 53.57 87.0 100.0
Mi 10 2022-01-20 53.57 86.94 100.0
Mi 10 2022-04-20 49.36 87.14 100.0
Mi 10 2023-01-12 49.36 86.66 100.0
Mi 10 2023-04-03 47.49 86.13 100.0
Mi 10 2023-05-17 47.49 86.13 100.0

Table 7: Geometric mean of equivalence class sizes.

Firmware All
without deps.

All
with deps.

Reachable
without deps.

Reachable
with deps.

GSI 10 1.52251 1.48887 1.61912 2.17204
GSI 11 1.53914 1.47219 1.74867 2.24668
GSI 12 1.5913 1.40786 1.81712 2.35598
GSI 13 1.5868 1.42263 1.91317 2.54419
GSI 14 1.55852 1.49571 1.88483 2.53512

Xiaomi 13 1.26808 1.31866 1.42438 2.06797
Google P7 1.47118 1.41269 1.74687 1.9628
Reno 8 1.47902 1.40975 1.73381 1.93443
Galaxy S22 1.44893 1.42762 1.7376 1.93009
Vivo V25 1.46451 1.42683 1.76094 1.99112
GrapheneOS 1.46739 1.41381 1.74092 1.95775

S20 2020-02-19 1.44735 1.43 1.60504 1.76194
S20 2020-05-15 1.44887 1.43365 1.60284 1.76729
S20 2020-10-14 1.44793 1.47095 1.60507 1.71205
S20 2020-11-23 1.46341 1.46212 1.64564 1.81048
S20 2021-05-17 1.46006 1.4641 1.64128 1.81521
S20 2021-10-20 1.46704 1.46407 1.64932 1.82339
S20 2021-12-23 1.47126 1.4107 1.67733 1.8489
S20 2022-04-26 1.47519 1.41253 1.68565 1.85759
S20 2022-09-27 1.47654 1.41281 1.68332 1.84906
S20 2022-10-24 1.48012 1.42268 1.71563 1.89752
S20 2023-02-20 1.47762 1.42254 1.70653 1.8927
S20 2023-07-26 1.47624 1.42209 1.71574 1.89804

Mi 10 2020-03-21 1.34242 1.3812 1.38852 1.55355
Mi 10 2020-07-15 1.3431 1.37911 1.38709 1.54917
Mi 10 2020-10-20 1.33849 1.37826 1.38092 1.54222
Mi 10 2021-01-10 1.38289 1.41024 1.45177 1.65537
Mi 10 2021-07-07 1.3849 1.41137 1.45473 1.65985
Mi 10 2022-01-20 1.36369 1.40777 1.42972 1.6782
Mi 10 2022-04-20 1.33301 1.37841 1.40426 1.53657
Mi 10 2023-01-12 1.33273 1.3783 1.39999 1.53187
Mi 10 2023-04-03 1.34791 1.37218 1.44178 1.66612
Mi 10 2023-05-17 1.34805 1.37145 1.4436 1.67142

208 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Table 8: Analysed Android Firmware Images

Vendor Device Android Release Date Firmware Identifier URL (full URL on-hover)

GSI n/a 10 October 2019 gsi_gms_arm64-exp-QJR1 dl.google.com
GSI n/a 11 September 2020 gsi_gms_arm64-exp-RP1A dl.google.com
GSI n/a 12 July 2022 gsi_gms_arm64-exp-SQ3A dl.google.com
GSI n/a 13 April 2023 gsi_gms_arm64-exp-T3B3 dl.google.com
GSI n/a 14 August 2023 gsi_gms_arm64-exp-UPB5 dl.google.com

Google Pixel 7 13 March 2023 panther-t3b2.230316.003-factory-c65097bc dl.google.com
GrapheneOS Pixel 7 13 September 2023 2023091800 releases.grapheneos.org
Vivo V25 13 January 2023 PD2215F_EX_A_13.1.13.5.W30.V000L1 in-sysup-txdl.vivoglobal.com
Samsung Galaxy S22 13 January 2023 S901BXXU3CWAI_S901BOXM3CWAI_EUX www.sammobile.com
Xiaomi Xiaomi 13 13 February 2023 fuxi_eea_global_V14.0.15.0.TMCEUXM bigota.d.miui.com
Oppo Reno 8 5G 13 November 2022 CPH2359_MT6893_EX_11_A.18_221121 oppostockrom.com

Samsung Galaxy S20 10 February 2020 G980FXXU1ATBM samfw.com
Samsung Galaxy S20 10 May 2020 G980FXXU2ATE6 samfw.com
Samsung Galaxy S20 10 October 2020 G980FXXU5BTJ3 samfw.com
Samsung Galaxy S20 11 November 2020 G980FXXU5CTKG samfw.com
Samsung Galaxy S20 11 May 2021 G980FXXS8DUE4 samfw.com
Samsung Galaxy S20 11 October 2021 G980FXXSCDUJ5 samfw.com
Samsung Galaxy S20 12 December 2021 G980FXXSCEUL7 samfw.com
Samsung Galaxy S20 12 April 2022 G980FXXUEFVDB samfw.com
Samsung Galaxy S20 12 September 2022 G980FXXSFFVIB samfw.com
Samsung Galaxy S20 13 October 2022 G980FXXUFGVJE samfw.com
Samsung Galaxy S20 13 February 2023 G980FXXSFHWB1 samfw.com
Samsung Galaxy S20 13 July 2023 G980FXXSIHWGA samfw.com

Xiaomi Mi 10 10 March 2020 V11.0.9.0.QJBEUXM bigota.d.miui.com
Xiaomi Mi 10 10 July 2020 V11.0.18.0.QJBEUXM bigota.d.miui.com
Xiaomi Mi 10 10 October 2020 V12.0.6.0.QJBEUXM bigota.d.miui.com
Xiaomi Mi 10 11 January 2021 V12.2.4.0.RJBEUXM bigota.d.miui.com
Xiaomi Mi 10 11 July 2021 V12.5.2.0.RJBEUXM bigota.d.miui.com
Xiaomi Mi 10 11 January 2022 V12.5.8.0.RJBEUXM bigota.d.miui.com
Xiaomi Mi 10 12 April 2022 V13.0.4.0.SJBEUXM bigota.d.miui.com
Xiaomi Mi 10 12 January 2023 V13.0.10.0.SJBEUXM bigota.d.miui.com
Xiaomi Mi 10 13 April 2023 V14.0.1.0.TJBEUXM bigota.d.miui.com
Xiaomi Mi 10 13 May 2023 V14.0.2.0.TJBEUXM bigota.d.miui.com

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 209

https://dl.google.com/developers/android/qt/images/gsi/gsi_gms_arm64-exp-QJR1.191112.001-6004257.zip
https://dl.google.com/developers/android/rvc/images/gsi/gsi_gms_arm64-exp-RP1A.200720.009-6720564-c8273882.zip
https://dl.google.com/developers/android/sc/images/gsi/gsi_gms_arm64-exp-SQ3A.220705.003.A1-8672226-7230b502.zip
https://dl.google.com/developers/android/tm/images/gsi/gsi_gms_arm64-exp-T3B3.230413.003-9957835-c059e7b4.zip
https://dl.google.com/developers/android/udc/images/gsi/gsi_gms_arm64-exp-UPB5.230623.003.A1-10615600-57105b63.zip
https://dl.google.com/developers/android/tm/images/factory/panther-t3b2.230316.003-factory-c65097bc.zip
https://releases.grapheneos.org/panther-factory-2023091800.zip
https://in-sysup-txdl.vivoglobal.com/upgrade/official/officialFiles/PD2215F_EX_A_13.1.13.5.W30.V000L1-update-full_1672816959.zip
https://www.sammobile.com/samsung/galaxy-s22/firmware/SM-S901B/EUX/download/S901BXXU3CWAI/1724673/
https://bigota.d.miui.com/V14.0.15.0.TMCEUXM/fuxi_eea_global_images_V14.0.15.0.TMCEUXM_20230203.0000.00_13.0_eea_af5681bb33.tgz
https://oppostockrom.com/oppo-reno-8-5g-cph2359
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU1ATBM
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU2ATE6
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU5BTJ3
https://samfw.com/firmware/SM-G980F/BTB/G980FXXU5CTKG
https://samfw.com/firmware/SM-G980F/BTB/G980FXXS8DUE4
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSCDUJ5
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSCEUL7
https://samfw.com/firmware/SM-G980F/BTB/G980FXXUEFVDB
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSFFVIB
https://samfw.com/firmware/SM-G980F/BTB/G980FXXUFGVJE
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSFHWB1
https://samfw.com/firmware/SM-G980F/BTB/G980FXXSIHWGA
https://bigota.d.miui.com/V11.0.9.0.QJBEUXM/umi_eea_global_images_V11.0.9.0.QJBEUXM_20200321.0000.00_10.0_eea_3060ffeca1.tgz
https://bigota.d.miui.com/V11.0.18.0.QJBEUXM/umi_eea_global_images_V11.0.18.0.QJBEUXM_20200715.0000.00_10.0_eea_c682b1e206.tgz
https://bigota.d.miui.com/V12.0.6.0.QJBEUXM/umi_eea_global_images_V12.0.6.0.QJBEUXM_20201020.0000.00_10.0_eea_e0f755c9d5.tgz
https://bigota.d.miui.com/V12.2.4.0.RJBEUXM/umi_eea_global_images_V12.2.4.0.RJBEUXM_20210110.0000.00_11.0_eea_65d048ed43.tgz
https://bigota.d.miui.com/V12.5.2.0.RJBEUXM/umi_eea_global_images_V12.5.2.0.RJBEUXM_20210707.0000.00_11.0_eea_01274d1bee.tgz
https://bigota.d.miui.com/V12.5.8.0.RJBEUXM/umi_eea_global_images_V12.5.8.0.RJBEUXM_20220120.0000.00_11.0_eea_2ec979f62b.tgz
https://bigota.d.miui.com/V13.0.4.0.SJBEUXM/umi_eea_global_images_V13.0.4.0.SJBEUXM_20220420.0000.00_12.0_eea_0c3218f31e.tgz
https://bigota.d.miui.com/V13.0.10.0.SJBEUXM/umi_eea_global_images_V13.0.10.0.SJBEUXM_20230112.0000.00_12.0_eea_5e2cd50523.tgz
https://bigota.d.miui.com/V14.0.1.0.TJBEUXM/umi_eea_global_images_V14.0.1.0.TJBEUXM_20230403.0000.00_13.0_eea_d0f38bfd24.tgz
https://bigota.d.miui.com/V14.0.2.0.TJBEUXM/umi_eea_global_images_V14.0.2.0.TJBEUXM_20230517.0000.00_13.0_eea_0495336d47.tgz

Exploiting Android’s Hardened Memory Allocator

Philipp Mao Elias Valentin Boschung Marcel Busch Mathias Payer
EPFL, Lausanne, Switzerland

Abstract
Most memory corruptions occur on the heap. To harden

userspace applications and prevent heap-based exploitation,
Google has developed Scudo. Since Android 11, Scudo has
replaced jemalloc as the default heap implementation for all
native code on Android. Scudo mitigates exploitation attempts
of common heap vulnerabilities.

We present an in-depth study of the security of Scudo on
Android by analyzing Scudo’s internals and systematizing
Scudo’s security measures. Based on these insights we con-
struct two new exploitation techniques that ultimately trick
Scudo into allocating a chunk at an attacker’s chosen address.
These techniques demonstrate — given adequate memory cor-
ruption primitives — that an attacker can leverage Scudo to
gain arbitrary memory write. To showcase the practicality of
our findings, we backport an n-day vulnerability to Android
14 and use it to exploit the Android system server.

Our exploitation techniques can be used to target any appli-
cation using the Scudo allocator. While one of our techniques
is fixed in newer Scudo versions, the second technique will
stay applicable as it is based on how Scudo handles larger
chunks.

1 Introduction

Most modern critical memory corruption vulnerabilities
are heap related [36]. On Android, multiple publicly doc-
umented examples demonstrate the feasibility of exploit-
ing a heap-based vulnerability to gain arbitrary code execu-
tion [14, 27, 30]. To protect userspace processes against heap
vulnerabilities, Google has introduced the hardened Scudo
allocator in Android 11 [49].

Since then, Scudo has become the default allocator for
native userspace code in the Android Open Source Project.
Unless explicitly modified by the vendor, all userspace pro-
cesses, including apps and higher-privileged system services
use Scudo.

Scudo is explicitly designed to increase the cost and com-
plexity of heap-based exploits [3]. To protect itself from at-

tacks, Scudo implements security measures to ensure the in-
tegrity of inline heap metadata and to prevent a predictable
heap layout.

Exploitation techniques that target the allocator to esca-
late a heap-bound memory corruption vulnerability into an
arbitrary memory write primitive or code execution have a
long tradition. The security community has compiled a large
compendium of such techniques for allocators like ptmal-
loc [5, 9, 29, 31, 43] (the glibc allocator) or jemalloc [6, 44]
(Android’s previous default allocator). Only by understanding
these techniques can an analyst assess the criticality and ex-
ploitability of a heap-bound memory corruption vulnerability.
However, Scudo has avoided scrutiny. So far, no comprehen-
sive study on techniques targeting Scudo exists.

In this work, we explore the limitations of Scudo’s protec-
tions. In particular, we find that Android’s userspace architec-
ture significantly weakens Scudo’s security. All app processes
and several system services are forked from a single process
(the Zygote process) [21] and end up sharing the same address
space layout and allocator state. The allocator state contains
the secrets used to protect inline heap metadata and randomize
allocation addresses. In a scenario where one Zygote-forked
process attacks another such process, the allocator’s secrets
are shared between the attacker and the target process. This
effectively bypasses any protection relying on the confiden-
tiality of these secrets. Stripped of these security measures
Scudo becomes a promising target for exploitation.

We present two exploitation techniques targeting Scudo.
In the context of attacking Zygote-forked Android processes,
our techniques only require a sufficiently powerful memory
corruption primitive, which allows manipulating inline heap
metadata, to gain arbitrary memory write. Furthermore, these
techniques can be applied to any program utilizing the Scudo
allocator. However, in a more generic attack scenario, an
additional memory leak primitive is required.

To demonstrate that our findings apply to realistic scenarios,
we backport a known vulnerability (CVE-2015-1528 [39])
to Android 14. The vulnerability is a heap under/overflow
in Android’s Binder deserialization. We show that in this

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 211

scenario the heap underflow can be leveraged by a malicious
app to achieve code execution in the system server, using our
exploitation techniques.

In summary, we make the following contributions:

• Analysis and systematization of Scudo’s security mea-
sures.

• Discovery of two exploitation techniques that target
Scudo.

• Exploitation case study utilizing our techniques to
achieve arbitrary code execution in the system server
on Android 14.

• Discussion of possible mitigations, memory corrup-
tion primitives required to leverage our techniques, and
Scudo’s impact on Android userspace security.

• Development of a gdb plugin and python library to help
in analyzing and exploiting Scudo.

We disclosed our findings to the Scudo maintainers. One
of our techniques has been fixed in Android 14. While we
proposed a further extension to Scudo, which mitigates our
second exploitation technique, it was not merged due to per-
formance concerns. Consequently, Scudo remains susceptible
to our second technique. We will open-source our tooling for
Scudo along with our exploits.

2 Scudo Security Measures

Scudo is a drop-in replacement for the glibc memory allocator,
exposing the same API (e.g., malloc, free). As a security-
hardened allocator, it implements four security measures: (i)
isolation, (ii) randomization, (iii) protection, and (iv) separa-
tion. In this section, we present these security measures and
discuss how they protect from exploiting heap-based vulnera-
bilities.

To give concrete examples of the security measures impact,
we use the example program in Listing 1, which uses the
Scudo allocator. The program reads the attacker’s input into
the tmp buffer (Line 8) in a loop, allocates a 0x18 sized chunk
(Line 11), copies data from tmp into the chunk (Line 13),
and then frees a specific chunk based on the value of status
(Lines 14 - 16). The attacker controls the values of the status
and size variables. This results in two security vulnerabilities,
a heap-based overflow on Line 13 and a double free on Lines
14 and 15.

Isolation. Based on the requested allocation size, chunks
are either handled as primary or secondary chunks. Primary
chunks are placed into dedicated heap memory regions, while
secondary chunks are allocated separately in their own mem-
ory region. To handle primary chunks, Scudo maps multiple

1 int main(){
2 char tmp[0x100];
3 void∗ class_0_secondary_chunk = malloc(0x20000);
4 void∗ class_1_chunk = malloc(0x8);
5 void∗ class_2_chunk = malloc(0x18);
6 printf("victim:%p\n", class_2_chunk);
7 while(1){
8 read(0, tmp, 0x100);
9 int status = ∗(int∗)tmp;

10 int size = ∗(int∗)(tmp+sizeof(int));
11 char∗ chunk = (char∗)malloc(0x18);
12 printf("address:%p\n", chunk);
13 memcpy(chunk, tmp+sizeof(int)∗2, size);
14 if(status & 0x2){free(chunk);}
15 if(status & 0x4){free(chunk);break;}
16 if(status & 0x8){free(class_2_chunk);}
17 }
18 }

Listing 1: A vulnerable example program with a heap buffer
overflow and a double free (both values of the size and
status variable are under the attacker’s control). The at-
tacker’s input is read from standard input.

memory regions. Each of these regions is assigned a size
range, and chunks sized within the specific range will be allo-
cated from the corresponding region. Zero permission guard
pages are used to separate these regions. In Scudo, these size
ranges are referred to as class IDs. For primary chunks the
class ID depends on the size, see Table 5 in the Appendix
for a mapping between classes and size ranges. For exam-
ple, a chunk of size 0x18 is assigned the class ID 2. The
class ID-specific regions only hold chunks. Allocator-internal
metadata such as lists of freed chunks or the information on
memory regions are stored in a separate region protected by
guard pages, and libc’s writable section.

In Lines 3-5 of Listing 1, chunks of different sizes are allo-
cated, resulting in a heap memory layout shown in Listing 2.
Thus, the heap buffer overflow in Listing 1 can only over-
write memory inside the [Class 2 region] memory region
and cannot directly overwrite chunks of other size classes or
allocator-internal metadata.

Security Measure Isolate:
Chunks are allocated in dedicated isolated memory
regions. Furthermore, allocator-internal metadata is
stored in separate memory regions from chunks.

Randomization. The chunks inside a region are allocated
at random offsets. When a region is first mapped, several
addresses where a chunk may be allocated are placed into a
so-called TransferBatch. The order in which these addresses
are returned from the TransferBatch is randomized. This ran-
domization is achieved by shuffling the addresses in the Trans-
ferBatch using a seed stored in the allocator. This randomiza-

212 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

size permission
...
0x00001000 --- [Secondary guard]
0x01001000 rw- [Class 0 secondary chunk]
0x00001000 --- [Secondary guard]
...
0xa0006000 --- [Guard and reserve]
0x00040000 rw- [Primary chunk free lists]
0x2ffbf000 --- [Guard and reserve]
0x00040000 rw- [Class 1 region]
0x2ffc0000 --- [Guard and reserve]
0x00040000 rw- [Class 2 region]
0x0ffcb000 --- [Guard and reserve]
...
0x00044000 r-- libc.so
0x00094000 r-x libc.so
0x00004000 r-- libc.so
0x00002000 rw- libc.so
0x00452000 rw- [Allocator metadata]
...

Listing 2: An example memory map of Scudo relevant regions.
Marked in blue are regions where Scudo stores free lists
and other allocator-internal metadata. Marked in orange are
regions where chunks are stored. In this example, a single
secondary chunk was allocated, and at least one chunk of class
IDs 1 and 2 were allocated. Scudo memory regions containing
chunks are surrounded by 0 permission guard pages.

tion ensures that addresses of consecutively allocated chunks
cannot be predicted, effectively removing the foundation for
any heap feng shui attempts. Figure 1 shows the output when
running the program in Listing 1 twice for five loop iterations
with the same input. As can be seen, the addresses of chunks
allocated after one another are not consecutive and also differ
between program executions.

Security Measure Randomize:
Addresses of consecutive allocations are randomized.

Protection. When allocating a chunk, Scudo places a chunk
header at address returned pointer-0x10. The chunk
header is shown in Table 1. The relevant fields are the
ClassId, State, and Checksum. The ClassId stores the
chunk’s class ID. The State field tracks if the chunk is cur-
rently in use or has been freed. To protect this header, Scudo
stores a truncated CRC32 checksum of the header fields in the
Checksum field. The checksum is computed using the chunk’s
address, the header, and a 32-bit cookie value, which is ran-
domly generated when the program starts. Listing 3 shows
how the checksum is computed. Any time Scudo interacts

> ./example < input
victim: 0x7fd4f720f650
address:0x7fd4f720e510
address:0x7fd4f720f750
address:0x7fd4f720f190
address:0x7fd4f720e4d0
address:0x7fd4f720efd0

> ./example < input
victim: 0x7fd4f7208b50
address:0x7fd4f7208390
address:0x7fd4f7209250
address:0x7fd4f7208990
address:0x7fd4f7209bd0
address:0x7fd4f7209190

Figure 1: The output of running the example program in
Listing 1 two times to show Scudo randomizing allocation
addresses. Note that for this example ASLR was disabled to
show the chunk offsets in the same memory region changing
between runs.

bits Field

8 ClassId
2 State
2 OriginOrWasZeroed
20 SizeOrUnusedBytes
16 Offset
16 Checksum

Table 1: The fields and corresponding sizes in the
Scudo chunk header. The OriginOrWasZeroed field indi-
cates the origin of the chunk, e.g., malloc or new. The
SizeOrUnusedBytes field indicates the exact chunk size.
Offset is filled with zeros.

with a chunk, it recomputes the checksum and compares it
with the Checksum field to ensure the integrity of the chunk
header. In the example program in Listing 1, if the attacker
blindly overwrites the chunk header of the class_2_chunk
with the heap overflow, Scudo will abort when freeing the
chunk (Line 16) as the checksum will not match the header
contents. By ensuring that the State field has the expected
value, i.e., the chunk currently being freed is not already free,
Scudo prevents double-free attacks. In Lising 1, if an attacker
sends a payload that results in a status of 0x6, this triggers
a double free (Lines 14-15). However, Scudo immediately
aborts on Line 15 as it detects the double free using the State
field.

Security Measure Protect:
The chunk header, stored inline on the heap, is pro-
tected by a checksum.

Separation. Secondary chunks have the same chunk header
as primary chunks, with the ClassId field set to 0. Addition-
ally, secondary chunks have an extended header beginning
at returned pointer - 0x40, see Table 2 for an overview
of the fields. This extended secondary chunk header stores
pointers to a linked list in next and prev of allocated sec-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 213

short checksum(long address, long header, int cookie){
int intermediate = CRC32(cookie, address);
intermediate = CRC32(intermediate, header);
return = (short) (intermediate & (intermediate >> 16)) & 0xffff;

}

Listing 3: Pseudocode of how Scudo computes a chunk’s
checksum. Address points to the chunk, header is the chunk
header without the checksum and cookie is a secret, set when
the allocator is initialized.

bytes Field Checksum

0x8 Prev ✗
0x8 Next ✗
0x8 CommitBase ✗
0x8 CommitSize ✗
0x8 MapBase ✗
0x8 MapSize ✗
0x8 Scudo Chunk header ✓

Table 2: The fields and corresponding sizes in the secondary
chunk header for 64-bit programs. Only the Scudo chunk
header is protected by a checksum.

ondary chunks. It also stores the mapping’s base address
and size, with and without the guard pages respectively in
MapBase, MapSize, CommitBase, and CommitSize. Impor-
tantly, the secondary chunk header is not protected by a
checksum. Instead, Scudo relies on the fact that only one
chunk is stored in the mapping and that the mapping is sur-
rounded by guard pages to protect the extended header. The
chunk header and secondary chunk header are the only in-
stances of Scudo storing metadata inline on the heap. In
Listing 1, the chunk class_0_secondary_chunk is allo-
cated on Line 3 and its secondary chunk header is stored at
class_0_secondary_chunk-0x40. In Listing 2 this chunk
resides in the [Class 0 secondary chunk] memory re-
gion.

Security Measure Separate:
Pointers stored inline are placed in separate mappings
and protected by guard pages.

3 Threat Model

In our threat model, a malicious attacker-controlled Android
app aims to escalate privileges by attacking another app or
system service on the same device. The device is running an
Android version using Scudo.

The attacker’s goal is to gain code execution in the target
process by corrupting the target’s memory. Due to Android’s

ZYGOTE
fork()fork()

SCUDO

SENSORSERVICE

SCUDO

EXPLOIT
BINDER IPC

setresuid(u0_a123) setresuid(system)

MALICIOUS APP SYSTEM SERVER

Figure 2: The malicious app is attacking the vulnerable Sen-
sorService running in the system server. The app uses Binder
IPC to communicate with the SensorService. Both the app
and system server are forked from Zygote.

separation of userspace processes, the attacker cannot directly
manipulate the target’s memory. Instead, the attacker relies on
the target’s exposed functionality to interact with the target’s
memory. Furthermore, the target contains memory corruption
vulnerabilities triggerable by the attacker. There are many
examples of such memory corruption vulnerabilities in apps
(CVE-2019-11932 and CVE-2021-24041 [14, 42]), or sys-
tem services (CVE-2015-1528, Stagefright, CVE-2020-0026,
CVE-2019-2136, and CVE-2022-39907 [10, 25, 39–41]). See
Figure 2 for a concrete example of our threat model.

The attacker plans to use these vulnerabilities to bypass
Scudo’s four security measures and leverage Scudo to achieve
an arbitrary memory write for subsequent code execution. In
the following sections, we discuss how in the context of our
threat model each of Scudo’s security measures is broken.

4 Compromising Protect and Randomize

Both security measures Randomize and Protect rely on the
confidentiality of Scudo metadata and ASLR (Address Space
Layout Randomization). Concretely, if an attacker can leak
the contents of the TransferBatch or the seed used to shuf-
fle the TransferBatch, the security measure Randomize is
compromised. With the leaked information, the attacker can
pinpoint exactly where Scudo will allocate future chunks. To
compromise the security measure Protect, the attacker needs
to first compromise the security measure Randomize or leak
the address of the target chunk in another way. Additionally,
the attacker also needs to obtain the cookie to calculate the
checksum correctly.

In our threat model both security measures Randomize
and Protect are immediately compromised. On Android, all
apps as well as several system services are forked from the
same Zygote process. This reduces the startup time and re-
duces memory consumption by sharing RAM pages used for
framework code and resources [21] but comes at a devastat-
ing cost to security [32]. As a consequence, most Android
userspace processes share the same ASLR layout, including
Scudo regions. Furthermore, the Zygote process allocates sev-

214 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

eral chunks initializing the Scudo allocator i.e., setting the
cookie and TransferBatch randomization seed. After forking
all of this allocator state is preserved. A malicious app can pre-
dict exactly where chunks of other Zygote-forked processes
will be allocated by using its allocator as an oracle, which
breaks security measure Randomize. To break security mea-
sure Protect, the malicious app can simply read out its Scudo
cookie and forge valid checksums for any chunk header.

Security measures Randomize and Protect are com-
promised in an attack scenario in which a malicious
Android app is attacking another Zygote-forked pro-
cess.

Going forward, we assume that the attacker has compro-
mised the security measures Randomize and Protect.

5 Arbitrary Write

The holy grail of heap exploitation is to coerce the alloca-
tor into allocating a chunk at an attacker’s chosen address.
This can lead to code execution for example by allocating
a chunk on the stack and writing a ROP (Return Oriented
Programming) chain to the chunk. Since the security mea-
sures Randomize and Protect are bypassed, only the measures
Isolate and Separate stand in the way of an arbitrary write.
In classical ptmalloc heap exploitation, an arbitrary write is
usually achieved by manipulating inline pointers. However, as
shown in Section 2 the security measure Separate separates
inline pointers from the rest of the heap. The only instance
of Scudo storing pointers inline is in the secondary chunk
header, which is stored in memory regions separated from the
rest of the heap.

To go further we assume the attacker to have access to a
memory corruption primitive which allows manipulating the
header of a victim chunk. This memory corruption primitive
is limited to Scudo’s primary heap regions. An example of
such a primitive is a heap buffer overflow that overwrites the
chunk header of a subsequent victim chunk. After bypass-
ing the security measure Protect, the attacker can freely set
any fields of the overflown chunk header (Table 1) and cal-
culate a valid checksum. When the victim chunk is freed,
the checksum verification will succeed and Scudo will parse
attacker-controlled metadata. An example of such a primi-
tive is shown in Listing 1. The vulnerable program allows an
attacker to overwrite the chunk header of class_2_chunk us-
ing the heap buffer overflow. Since the attacker has broken the
Randomize security measure, the attacker can keep allocating
chunks in a loop until the overflowing chunk is just below the
class_2_chunk. Subsequently the class_2_chunk can be
freed (Line 16) by setting status to 0x8.

Both, manipulating the State and ClassId fields, are in-
teresting for the attacker. By manipulating the State field, a
double free can be turned into a UAF (Use After Free). In this

...
0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000
0xb6fd000000020102 0x0000000000000000
0x6f77206f6c6c6568 0x0000000a21646c72
0x0000000000000000 0x0000000000000000
...

Before Overflow

...
0x4141414141414141 0x4141414141414141
0x4141414141414141 0x4141414141414141
0x4141414141414141 0x4141414141414141
0x4141414141414141 0x4141414141414141
0x3c4e000000000100 0x0000000000000000
0x6f77206f6c6c6568 0x0000000a21646c72
0x0000000000000000 0x0000000000000000
...

After Overflow

Checksum: 0xb6fd
State: allocated
ClassId: 2

Primary Chunk

Prev: 0x41414141...
Next: 0x41414141...
CommitBase: 0x41414141...
CommitSize: 0x41414141...
MapBase: 0x41414141...
MapSize: 0x41414141...
Checksum: 0x3c4e
State: allocated
ClassId: 0

Fake Secondary Chunk

Figure 3: A heap buffer overflow, which overwrites a chunk
header and changes a primary chunk’s ClassId to 0, defeats
security measure Separate. Note that the figure shows lower
addresses at the top, growing downwards.

scenario, the chunk is first freed, the attacker then overwrites
the header and changes the State field from freed back to
allocated. The chunk is then freed again and ends up in
the free list twice, setting up the UAF. However, the UAF is
only interesting if attacking the application’s data is in scope
since the UAF does not give access to any Scudo metadata.
As opposed to ptmalloc where a UAF may allow overwriting
pointers to other free chunks.

More interesting for the attacker is manipulating the
ClassId field. By changing the ClassId of a primary chunk
to 0, the class ID of secondary chunks, the attacker effectively
places the secondary chunk header inline on the heap render-
ing the security measure Separate ineffective. In the scenario
of an overflow, the secondary chunk header is fully under
the attacker’s control. Figure 3 illustrates this phenomenon.
Before the overflow, the victim chunk is simply a primary
chunk with ClassId 2. After the overflow, the victim chunk
is replaced by a fake secondary chunk with a bogus secondary
chunk header. Freeing the overflown victim chunk causes
a segfault as Scudo attempts to read the linked list entry at
0x4141414141414141.

To compromise security measure Separate an attacker
needs access to a memory corruption primitive which
allows the creation of faked secondary chunks.

In the following sections, we present two exploitation tech-
niques, Forged CommitBase and Safe Unlink. Both tech-
niques manipulate this newly created and inlined secondary
chunk header in different ways to achieve an arbitrary memory
write, thus breaking security measure Isolate.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 215

5.1 Forged CommitBase
The Forged CommitBase technique manipulates the
CommitBase header field of the inlined secondary header to
achieve an arbitrary memory write.

The CommitBase field of the secondary chunk header
stores a pointer to the start of the secondary chunk (includ-
ing the secondary chunk header). After freeing the secondary
chunk, the CommitBase is stored in the free list of secondary
chunks. When this secondary chunk is used to serve an allo-
cation request, Scudo uses the CommitBase stored in the free
list to determine where this chunk is located.

By cleverly setting the CommitBase of the faked secondary
header to the desired target address, the attacker can bring
Scudo to allocate a secondary chunk at the desired address,
breaking security measure Isolate.

Figure 4 shows the sequence of events taking place in this
exploit and the relevant fields of the faked secondary chunk.
At 1 the attacker overwrites the primary chunk’s header
and places the fake secondary chunk on the heap, using a
memory corruption primitive (for example an overflow). The
CommitBase is set to the target address (0x7fffffffd840).
As discussed previously, Prev and Next are pointers to entries
in a linked list. For the free to succeed, these pointers need
to be valid. Fortunately, Scudo checks if the pointers are null.
If they are, the unlinking step is skipped. At 2 the fake
secondary chunk is freed, and the CommitBase address is
placed into the secondary chunk free list. At 3 a secondary
chunk is requested, which Scudo serves from the secondary
free list. Since Scudo uses the address stored in the free
list, the newly allocated chunk is located on the stack (at
0x7fffffffd840). Note that the attacker is free to choose
any CommitBase address.

For this exploit to succeed, at least one secondary chunk
needs to be allocated at the time of freeing. Otherwise, the
counter of secondary chunks in use is flipped to -1 and Scudo
will crash on the next secondary chunk allocation.

Security measure Isolate can be bypassed by manip-
ulating the CommitBase field of a secondary chunk
header.

In the next section we present an alternative technique,
which achieves an arbitrary write by manipulating different
secondary chunk header fields.

5.2 Safe Unlink
In contrast to the previous technique, our second technique

(Safe Unlink) leverages the unlinking taking place when a
secondary chunk is freed to obtain an arbitrary memory write.

In glibc heap exploitation, the "unsafe unlink" attack [45]
for newer libc versions exploits a linked list unlink to achieve
arbitrary memory write. This technique is almost directly
applicable to the unlinking taking place when the secondary

PRIMARY SCUDO REGION

STACKFREE LIST (SECONDARY)

Checksum: 0xb6fd
State: allocated
ClassId: 2

Primary Chunk Prev: 0x0
Next: 0x0
CommitBase: 0x7fffffffd840
CommitSize: 0x20000
Checksum: 0x3c4e
State: allocated
ClassId: 0

Faked Secondary Chunk

Size: 0

Size: 1
Chunk 0: 0x7fffffffd840

Size: 0

Prev: ...
Next: ...
CommitBase: 0x7fffffffd840
CommitSize: 0x20000
Checksum: 0x9d13
State: allocated
ClassId: 0

Stack Secondary Chunk

3

1

3

2

2

Figure 4: The attacker overwrites a primary chunk’s header
and modifies the CommitBase. After freeing the chunk, a
stack address is placed into the secondary chunk free list.
Allocating from the secondary chunk free list then allocates a
chunk on the stack. (0x7fffffffd840 is a stack address in
this example.)

struct PerClass {
short Count;
short MaxCount;
void∗ Chunks[MaxCount];

};

Listing 4: The PerClass free list, which stores class-specific
free chunks. Count tracks the number of entries in the list.
MaxCount is the maximum number of chunks that may be
stored in the list. Chunks is an array of pointers, pointing to
the address of the free chunks headers.

chunk is freed. Just like newer glibc versions, Scudo diligently
checks the integrity of the linked list, see Listing 8 in the Ap-
pendix. To leverage this safe unlink, the attacker needs to
create a fake linked list. While the glibc exploitation tech-
nique relies on an application-specific pointer, for Scudo, we
will leverage allocator metadata to fake a linked list with two
entries. One entry is the secondary chunk header, the other
entry is placed inside the PerClass structure. The PerClass
structure is a free list storing pointers to free chunks of a spe-
cific class ID. Listing 4 shows the structure of the PerClass
free list. It holds the number of chunks, the maximum number
of chunks, and a list of pointers to free chunks.

By cleverly forging primary chunks overlapping the fake
secondary header and freeing these chunks, the attacker can
place pointers to the fake secondary header into the PerClass
structure. Figure 5 shows the attacker-created fake linked list
before and after unlinking. After unlinking, an address point-
ing to the free list will be inserted into the free list itself.

216 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

BEFORE UNLINKING AFTER UNLINKING

&CHUNK

&PERCLASS

Prev: &PERCLASS+0x8
Next: &PERCLASS+0x8
ClassId: 0

Faked Secondary Chunk

Count: 2
MaxCount: ...
Chunk 0: &CHUNK+0x0
Chunk 1: &CHUNK+0x0

PerClass Free List

&CHUNK

&PERCLASS

Prev: &PERCLASS+0x8
Next: &PERCLASS+0x8
ClassId: 0

Faked Secondary Chunk

Count: 2
MaxCount: ...
Chunk 0: &PERCLASS+0x8
Chunk 1: &PERCLASS+0x8

PerClass Free List

Figure 5: The attacker created linked list with two entries.
The linked list is created by freeing fake chunks that overlap
the secondary chunk header and adjusting the Next and Prev
pointers to point into the PerClass free list. The attacker
knows the address of the PerClass free list due to mitigations
Randomize and Protect being broken.

Allocating from this PerClass free list returns a chunk over-
lapping the free list. The attacker thus gains control over the
free list and can control the addresses of future allocations.

In order to create the fake linked list, the attacker needs
more powerful memory corruption primitives. Besides be-
ing able to forge a secondary chunk, the attacker is also
able to trigger two frees at address fake secondary chunk
header +0x10. An example of such a primitive is a con-
trolled free in which the attacker can corrupt a pointer and
then have that pointer freed. Furthermore, the attacker can
trigger the memory corruption primitive multiple times, i.e.,
overwriting the fake secondary header three times.

Figure 6 shows the steps needed to set up the fake linked
list. At 1 the attacker writes a primary chunk header with a
chosen ClassId and allocated state to the address where
the fake secondary header starts. This fake primary chunk
header overlaps with the Next field of the fake secondary
header. The fake primary chunk is then freed at 2 . Effec-
tively, the address of the fake secondary’s CommitBase en-
try (fake secondary chunk header + 0x10) is passed to
free. Consequently, the address of the fake secondary chunk
header is placed into the PerClass structure for the chosen
ClassId. (Note that Scudo tracks chunks in the PerClass
free list by the address of the chunk’s header.) The attacker
then repeats the previous steps (3 and 4). Now the address
of the fake secondary chunk header is twice at consecutive
positions in the PerClass free list. Finally at 5 , the attacker
sets up the fake secondary chunk header to complete the
fake linked list. Both Next and Prev are modified to point to
the first instance of the fake secondary chunk address in the
PerClass structure. With this the fake linked list, as seen in
Figure 5, has been set up. The attacker knows the location

&CHUNK

Prev: ...
Next: ...
ClassId: 2

Prev: Fake Chunk Header
Next: 0x0
ClassId: ...

Prev: Fake Chunk Header
Next: 0x0
ClassId: ...

Prev: &PERCLASS+0x8
Next: &PERCLASS+0x8
ClassId: 0

1

3

5

&PERCLASS

Count: 2
MaxCount: ...
Chunk 0: &CHUNK+0x0
Chunk 1: &CHUNK+0x0

Count: 1
MaxCount: ...
Chunk 0: &CHUNK+0x0

Count: 0
MaxCount: ...

2

4

2

4

Figure 6: The steps to forge a fake linked list between the
secondary chunk header and the PerClass free list. &CHUNK
is the address of the fake secondary chunk header. &PERCLASS
is the address of the PerClass free list.

of the PerClass structure because of measures Randomize
and Protect being broken. The CommitBase, CommitSize,
MapBase, and MapBase fields of the chunk header are not
relevant to this exploit. Only the chunk header needs to be
overwritten to have ClassId 0.

After the secondary chunk is freed, the attacker can allo-
cate a chunk overlapping the PerClass structure, effectively
allowing the attacker to insert any addresses into the free list,
breaking the Isolate mitigation.

Security measure Isolate can be bypassed by manipu-
lating the Prev and Next fields of a secondary chunk
header along with cleverly freeing fake chunks into a
PerClass free list.

6 Exploitation Case Study

We demonstrate our findings by reintroducing an n-day vul-
nerability and exploiting the system server on an Android
Virtual Device running Android 14 using our techniques.

The Android system server is the first process forked from
the Zygote process. It starts all system services, either start-
ing the service in a separate process or starting a new thread
running the service inside the system server. The system
server is an interesting target for escalating privileges from
an app. Firstly, each service running inside the system server
is exposed over Binder IPC to normal apps. Binder is the
Android-specific IPC mechanism, which facilitates communi-
cation between Android apps and Android services. In total,
the system server exposes around 42 services [18]. Secondly,
the system server runs as the high-privileged system user,
just slightly less powerful than root. Third, the system server

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 217

restarts after crashing giving the attacker multiple exploitation
attempts. Finally, the system server is forked from Zygote,
and thus Scudo’s security measures Randomize and Protect
are ineffective in our attack scenario as described in Section 4.

To provide the attacker app with a memory corruption
primitive to defeat security measures Isolate and Separate,
we backport CVE-2015-1528 [39] to Android 14. CVE-
2015-1528 is a heap underflow or overflow in the Binder
data deserialization due to missing sanity checks. Listing 5
shows the relevant code and the code changes reintroducing
the vulnerability. The native_handle_create function al-
locates the native_handle object whose size depends on
the numFds and numInts arguments. Both of these argu-
ments are read from the attacker-controlled Binder data. Since
the sanity check on the arguments is removed, an attacker
can trigger a heap underflow by setting numFds to a neg-
ative number, which will cause the first argument of read
in readNativeHandle to point behind the allocated chunk.
Likewise, by setting numInts to a negative number, a heap
overflow is triggered in the loop which reads file descriptors
from the Binder data. The change in the loop removes an
early exit if reading the file descriptor from the Binder data
fails.

At Black Hat USA 2015, Gong [27] used this vulnerability
to exploit the system server. In the exploit, Gong coerced
jemalloc to allocate a chunk on the stack. Almost ten years
and one secure allocator later we will show how the same
vulnerability remains exploitable in Scudo.

6.1 SensorService

Unlike Gong, who targeted the WindowsManagerService in
the system server, we will target the SensorService. Listing 6
shows the relevant code in the SensorService’s onTransact
function. The onTransact function is the service’s call-
back to handle incoming Binder requests. Both the data
and code argument to the function are fully under the
attacker’s control. By setting the code of the Binder re-
quest to CREATE_SENSOR_DIRECT_CONNECTION, the attacker
can trigger the vulnerable readNativeHandle function. Af-
ter the vulnerable function, the descriptors in the newly
created native_handle object are tagged with fdsan. Fd-
san is a file descriptor sanitizer implemented to detect
use-after-close or double-closes [4]. Since Android 11, fd-
san aborts the process if an issue is discovered. Con-
cretely, if we pass numFds greater than zero, we need to
ensure no duplicate integers are present as otherwise fd-
san will abort in native_handle_close_with_tag. The
createSensorDirectConnection function contains the ac-
tual implementation to handle the binder request, we can exit
early from this function by setting the format variable, read
from the Binder data to an invalid value. Finally, the allocated
native_handle object is freed.

—/libcutils/native_handle.c

native_handle_t∗ native_handle_create(int numFds, int numInts)
{
- if (numFds < 0 || numInts < 0 || numFds > kMaxNativeFds
- || numInts > kMaxNativeInts){return NULL;}

native_handle_t∗ h = malloc(
sizeof(native_handle_t) + sizeof(int)∗(numFds+numInts));

if (h) {
h−>version = sizeof(native_handle_t);
h−>numFds = numFds;
h−>numInts = numInts;

}
return h;

}

—/libs/binder/Parcel.cpp

native_handle∗ Parcel::readNativeHandle() const
{

int numFds, numInts; status_t err;
err = readInt32(&numFds);
if (err = NO_ERROR) return 0;
err = readInt32(&numInts);
if (err = NO_ERROR) return 0;

native_handle∗ h = native_handle_create(numFds, numInts);
//may lead to a buffer overflow if numInts is negative
for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {

h−>data[i] = dup(readFileDescriptor());
- if (h->data[i] < 0) {
- for (int j = 0; j < i; j++) {
- close(h->data[j])}
- native_handle_delete(h);
- return nullptr;}
+ if (h->data[i] < 0) err = BAD_VALUE;

}
//may lead to a buffer underflow if numFds is negative
err = read(h−>data + numFds, sizeof(int)∗numInts);
if (err = NO_ERROR) {

native_handle_close(h);
native_handle_delete(h);
h = 0;

}
return h;

}

Listing 5: The code changes to reintroduce CVE-2015-1528.

In summary, we can get a chunk of any size allocated,
trigger a controlled heap underflow or overflow orig-
inating from that chunk, and have the chunk freed
right afterward. Finally, all of these primitives are
accessible via Binder by an unprivileged app.

6.2 Exploitation Over Binder
To gain code execution in the system server context, our ma-
licious app sends two Binder requests to the SensorService.
The first Binder request leverages the heap underflow to place
a stack address into the secondary chunk-free list as described
in Section 5.1. The second Binder request allocates this sec-
ondary chunk and writes a ROP chain to the stack.

Forging a secondary chunk Table 3 shows the data
sent in the first Binder request. The first five fields

218 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

status_t BnSensorServer::onTransact(uint32_t code,
const Parcel& data, Parcel∗ reply, uint32_t flags)

{
switch(code) {

case CREATE_SENSOR_DIRECT_CONNECTION: {
CHECK_INTERFACE(ISensorServer, data, reply);
String16& opPackageName = data.readString16();
const int deviceId = data.readInt32();
uint32_t size = data.readUint32();
int32_t type = data.readInt32();
int32_t format = data.readInt32();
native_handle_t *resource = data.readNativeHandle();
if (resource == nullptr) {

return BAD_VALUE;
}
native_handle_set_fdsan_tag(resource);
sp<ISensorEventConnection> ch =

createSensorDirectConnection(...);
native_handle_close_with_tag(resource);
native_handle_delete(resource);
reply−>writeStrongBinder(IInterface::asBinder(ch));
return NO_ERROR;

}
...

}

Listing 6: The relevant parts of the SensorService’s
onTransact function [17]. Marked in red is the function
call that will trigger the heap memory corruption.

read by the system server from the Binder request are
not relevant to our exploit and only serve to make
the createSensorDirectConnection function exit early
(opPackageName until format). NrFds is set to -5-9*2
(-23). -5 moves the underflow start just before the allocated
chunk header and -9*2 moves the underflow start to the begin-
ning of the faked secondary chunk header. The remaining data
is then written to the heap in readNativeHandle (Occurs in
the read function, which reads sizeof(int)*numInts to
the heap). The remaining data contains the secondary chunk
header (Prev until MapSize), the chunk header to overwrite
the original header (FakeHeader and zeros) and filler data
(filler) such that the chunk is allocated from a specific
primary chunk class.

Both Next and Prev are set to zero to avoid unlinking.
The CommitBase is set to the target stack address and the
CommitSize is set to the size of a secondary chunk, we use
0x20000. To correctly craft the overwritten chunk header
(FakeHeader) with ClassId 0, we need both the address of
the chunk and the cookie. The cookie can be directly read
from the memory of our own app. Although we know ex-
actly at which addresses Scudo will allocate chunks, using
the allocator of our own app as an oracle, predicting the
native_handle’s allocated address is complicated by the
non-determinism of the system server (at least 40 threads
each handling Binder requests). We found that allocating a
primary chunk of ClassId 32 (the largest class for primary

Type Value Name

String "wow" opPackageName
int 20 deviceId
int 20 size
int 20 type
int 20 format
int -23 nrFds
int 0x3f56 numInts
long 0x0 Prev
long 0x0 Next
long 0x7ffdd0b564a8 CommitBase
long 0x20000 CommitSize
long 0x7ffdd0b564a8 MapBase
long 0x20000 MapSize
long 0x507a000000008100 FakeHeader
long 0x0 zeros
char* 0xfd00 * "A" filler

Table 3: Example of the first Binder request sent to exploit the
system server. 0x7ffdd0b564a8 is the target stack address.

chunks) allowed us to correctly predict the chunk’s address
around one out of ten times. Both numInts and filler serve
to set the size of the allocated native_handle object.

The CommitBase in our fake secondary chunk header
points to the main thread’s stack. The main thread in the
system server runs in an infinite loop polling for messages.
When writing to the stack, we will overwrite the stored return
address of the android:Looper:pollOnce function. Our tar-
get stack address is around 0x20000 (our CommitSize) below
where the return address is stored. Note that we do not directly
point our chunk at the return address. Doing so would cause
ReadNativeHandle to inadvertently write over the stack’s
maximum address causing a segfault.

For the first Binder request, we do not need to worry
about fdsan because nrFds will be negative and the loop
which reads file descriptors from the Binder data in
readNativeHandle iterates zero times.

After receiving this Binder request, the
BnSensorServer::onTransact function is called. Then,
the readNativeHanlde function is called, which in turn
calls native_handle_create. Our native_handle chunk
is allocated, and the heap underflow is triggered, replacing the
original primary chunk with our fake secondary chunk. Right
afterward, this chunk is freed and the target stack address is
placed into the secondary free list. The details of creating the
fake secondary chunk and placing the stack address into the
secondary chunk free list can be found in Section 5.1.

Writing to the stack Table 4 shows the second Binder
request sent to the system server. numInts is set to the
size of the ROP chain divided by four. nrFds is set to

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 219

Type Value Name

String "wow" opPackageName
int 20 deviceId
int 20 size
int 20 type
int 20 format
int 0x7fe2 nrFds
int 30 numInts
long[15] ... ROPChain

Table 4: Example of the second Binder request sent to exploit
the system server.

the difference between the allocation size 0x20000 and
the size of the ROP chain divided by four. When allocat-
ing memory in native_handle_create for this 0x20000-
sized native_handle object, the chunk is allocated from
the secondary free list and placed on the main thread’s
stack. In readNativeHandle, the ROP chain (ROPChain)
is written to the stack starting at the stored return ad-
dress of the android:Looper:pollOnce function. Af-
ter the ROP chain has been written to the stack, there
is a race between the main thread returning from the
android:Looper:pollOnce function and the SensorService
calling native_handle_close_with_tag. If the SensorSer-
vice wins, the process is aborted by fdsan, due to duplicate
integers being passed as file descriptors to fdsan. Instead, if
the main thread wins, the first gadget of the ROP chain clob-
bers the nrFds field of the stack-allocated native_handle,
setting it to a negative number and thus avoiding fdsan at-
tempting to close any file descriptors. After clobbering nrFds,
the ROP chain simply prints to logcat. Figure 7 shows the log-
cat output after successful exploitation. The exploit succeeds
after around ten attempts.

7 Discussion

In this section, we discuss our presented exploitation tech-
niques focusing on mitigations, generalization, and trade-offs.

Mitigations Independent from our research, the safe unlink
exploitation technique as described in Section 5.2 has been
fixed in Android 14. The fix changes the PerClass free list
to store offsets, relative to the primary chunk heap region,
instead of pointers. This makes building the fake linked list
impossible by freeing chunks. Note that it is still possible to
try and construct a safe unlink exploit by targeting application-
specific objects to build the linked list. However, we did not
find a suitable target inside of Scudo that could be used to
build the fake linked list after this fix.

To prevent attackers from creating fake inlined secondary
chunks, as described in Section 5, we propose an extension to

Scudo which tracks allocated secondary chunks in an isolated
memory region. Any time a secondary chunk is freed, our
mitigation would check that a secondary chunk was allocated
before at the address to be freed. We opened a pull request on
the LLVM repository (where the Scudo source is hosted) to
add the proposed mitigation to Scudo [11]. However, the re-
quest was not merged due to performance concerns. Without
fundamentally changing how secondary chunks are handled
or accepting the performance penalty, Scudo will remain vul-
nerable to these types of attacks.

Generalizing our Exploitation Techniques Our exploita-
tion techniques presented in Section 5 apply to any program
using Scudo. Both our techniques require the attacker to know
the exact address of the victim chunk, whose class ID will be
changed.

In Section 4, we show how the typical threat model on
Android renders the security measures Randomize and Protect
ineffective. With Randomize broken the attacker knows the
addresses and order of allocations for all chunks. However,
this may not be enough for a sufficiently complex program to
exactly predict the address of the victim chunk. Chunks may
be freed and reallocated in a non-deterministic matter. For
example for our case study in Section 6, we can only predict
the address of our victim chunk one out of ten times. Thus,
to apply our techniques to complex targets, either the target
program restarts after crashing or the attacker has another way
to probe the heap state, such as a program-specific memory
leak vulnerability.

In a generic scenario, the attacker needs a powerful memory
leak primitive akin to an arbitrary read to break both security
measures Randomize and Protect. To break Randomize, the
attacker needs to use this primitive to read the seed used to
shuffle the TransferBatch or directly leak chunk addresses.
To break Protect, the attacker needs to either read the cookie
directly or leak both a chunk’s header and its address. Using
this header and address, the attacker can brute force a valid
cookie using the code in Listing 3. The brute force attack
is viable since the cookie is only 16 bits long. After obtain-
ing a valid cookie, the attacker can forge valid Scudo chunk
headers.

Required Memory Corruption Primitives Both our pre-
sented exploits (Forged CommitBase and Safe Unlink) require
a memory corruption primitive that allows forging a fake sec-
ondary chunk. The fake secondary chunk can be forged either
by overwriting an existing chunk’s header or by passing a
controlled pointer to free, pointing to a fake secondary chunk.

Both a heap underflow and overflow are examples of prim-
itives that can overwrite an existing chunk’s header. For our
case study, we choose a heap underflow primitive. When tar-
geting the system server’s SensorService, we are only able
to control one chunk. The heap underflow allows us to reli-
ably overwrite only what is needed, i.e., that chunk’s header.

220 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

...
30963 31252 E SensorService: Ashmem direct channel requires a memory region to be supplied
30963 30981 D CompatibilityChangeReporter: Compat change id reported: 218533173; UID 10142; state: ENABLED
30963 30981 D CompatibilityChangeReporter: Compat change id reported: 262645982; UID 10142; state: DISABLED
30963 31379 W Parcel : Attempt to read object from Parcel 0x7ebd2a8acaa0 at offset 104 that is not in the object list
30963 30963 I H3Ll0 : FR0m_5y5T3M_53rV3r

Listing 7: The logcat output of the system server after successful exploitation, marked in orange is the logcat print triggered by
the ROP chain.

Instead, if we used a heap overflow, we would have needed
to overwrite chunks used by other Binder threads, increasing
the complexity and reducing the reliability of our exploit.

An alternative to overwriting existing chunks is freeing
fake attacker-created chunks. For this primitive the attacker
needs to be able to control a pointer passed to free, which
points to an attacker-controlled memory location. In glibc
heap exploitation, the “House of Spirit” [46] leverages this
primitive to insert the modified pointer into the free list, as-
suming the attacker was previously able to write a chunk
header at that pointer’s location. The “House of Spirit” is
only feasible if the attacker can already write to the start and
end of the target memory address. However, in Scudo, the
primitive can be used to achieve an arbitrary write primitive.
This primitive becomes even more appealing for Scudo ex-
ploitation because it is not influenced by random allocations,
as the attacker chooses the location of the chunks.

In summary, the ideal memory corruption primitive to ex-
ploit Scudo is an attacker-controlled free. For the heap un-
derflow or overflow, the preference heavily depends on how
the target application handles the underflown or overflown
chunk.

Manipulating Scudo Chunk Header Fields The Scudo
chunk header has six fields, see Table 1. In Section 5 we dis-
cussed how manipulating header fields is only possible if the
Checksum field is set properly and how the State field can
be manipulated to induce double frees and use-after-frees. For
our exploitation techniques, we overwrite the ClassId field
to create a fake secondary chunk. However, for exploitation
scenarios where our techniques are not applicable, there ex-
ists an alternative way of manipulating the ClassId field to
achieve a heap overflow. Instead of changing the ClassId to
0, which transforms the primary chunk to a secondary chunk,
an attacker can change the primary chunk’s size by replacing
the original class ID with a larger one. Once that chunk is
freed, it is placed into the PerClass free list of that larger
primary chunk class ID. After said chunk is allocated from
the free list, the chunk will overlap other smaller chunks, lead-
ing to a heap overflow in the Scudo memory region of the
original chunk’s class ID. For the remaining header fields,
OriginWasZeroed, SizeOrUnusedBytes, and Offset, we
did find a way to manipulate them in a useful manner.

ARM MTE ARM MTE (Memory Tagging Extension) [16]
is a hardware security feature. Scudo has added support for
MTE early on and in October 2023 the first Android devices
supporting MTE running Scudo were released [13].

MTE uses the top bits of pointers to tag memory regions.
A new instruction allows assigning a tag to a memory region.
After a memory region has been tagged, the region can only
be accessed with pointers whose top bits match the assigned
tag. Tag mismatches result in a segmentation fault.

Allocators can leverage MTE to detect illegal memory ac-
cesses to the heap. By assigning tags to the body of allocated
chunks, allocators can probabilistically prevent heap over-
flows or use-after-frees.

If enabled, Scudo tags the body of primary chunks on allo-
cation and deallocation. The body of secondary chunks is not
tagged. The chunk headers are assigned predictable tags (0
and 2 for the chunk headers of primary and secondary chunks
respectively, 1 for the secondary chunk header).

With these tagged headers our exploitation techniques are
mostly mitigated. Bypassing the Separate security measure, as
described in Section 5, without crashing due to a tag mismatch
is now limited to two specific scenarios. Overwriting the
header of an existing primary chunk to create a fake secondary
chunk is only possible if there is a chunk just before the
overwritten chunk header and that chunk has tag 1, matching
the tag assigned to the secondary chunk header. Alternatively,
a fake secondary chunk may be forged by creating it on the
border between two memory regions tagged with 1 and 2. The
secondary chunk header is written to the lower memory region
tagged with 1 and the chunk header to the region tagged with
2. Then an arbitrary free, freeing the address just after the
forged chunk header passes MTE checks.

Bypassing security measure Isolate is only possible with
the forged CommitBase technique as the safe unlink technique
requires overlaying primary chunk headers (tagged with 0)
over the fake secondary chunk header (tagged with 1). The
forged CommitBase technique is further hampered by the fact
that it needs to point to an address, whose first 0x30 bytes
are tagged 1. Otherwise, Scudo crashes as it tries to write the
secondary chunk header to the target address with a pointer
tagged 1.

In conclusion, ARM MTE almost completely mitigates our
exploitation techniques.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 221

Zygote Forking To the best of our knowledge, Android
is the only significant production deployment of Scudo. As
discussed in Section 4, both security measures Randomize
and Protect are rendered useless for Android userspace pro-
cesses that are forked from Zygote. Without these security
measures, Scudo’s security becomes similar to that of the
standard glibc allocator (predictable allocations and inline
metadata that may be manipulated), while still incurring a
performance overhead (calculating the checksum). This issue
affects any Android userspace memory allocator and can only
be solved by moving away from Zygote-forked userspace
processes. Table 7 in the Appendix shows the userspace pro-
cesses running on our stock emulator. 33 userspace processes
are Zygote-forked (around 30% of all userspace processes),
out of which seven processes run as a higher-privileged user.
Note that the remaining processes are system apps, which are
usually assigned special privileges.

Quarantine An optional Scudo feature is the quarantine
which delays freed chunks from being allocated again right
away. This can make Use-After-Frees harder to exploit but
incurs a heavy performance penalty [34]. Related work has
shown how the additional complexity and metadata intro-
duced by the quarantine can be exploited for an arbitrary
write primitive [24, 50]. Since the quarantine is disabled by
default and disabled on Android, we omit it from this work.

Scudo deployment Although Scudo is the default allocator
in Android’s libc, vendors may choose to utilize jemalloc or
implement their allocator. To understand if vendors choose to
deploy Scudo we analyzed the firmware of recently released
phones. We picked 15 devices, whose firmware is easily avail-
able, and analyzed the symbols in the shipped libc binary.
Table 6 in the Appendix lists the analyzed devices. Overall
out of the 15 devices, 6 devices use Scudo. Of the remain-
ing 9 use jemalloc. From this sample of firmware, it is clear
that Scudo is deployed in production but has not replaced
jemalloc.

Case Study We backported and exploited the system server
on the Android emulator running an x86 image1. Most An-
droid production devices are ARM-based, however, we de-
signed a data-only exploit. The only part of the exploit that
needs to be changed for an ARM device is the ROP chain. Fur-
thermore, the emulator provides high fidelity for the Android
userspace [22].

8 Related Work

The security community has recently started showing an in-
terest in Scudo. Un1fuzz [50] gives an overview of Scudo
internals and presents two exploits against Scudo quarantine.

1Android emulator image: system-images;android-34;google_apis;x86_64

Cesare demonstrates how to compute the cookie with z3 after
leaking the chunk header and the chunk header’s address [15].
More recently multiple blogs have been published detailing
the inner workings of Scudo [7, 12, 20]. Concurrently to us,
Ecob discovered the forged CommitBase exploit and pre-
sented his findings at Bsides Canberra [24]. In this work, we
systematize Scudo’s security mechanisms, put these mecha-
nisms in the context of the Android userspace, present two
exploits and demonstrate our findings against a real target.

Besides Scudo, allocators have long been a target. Re-
searchers have demonstrated exploits against the glibc al-
locator [5, 9, 29, 31, 43] and jemalloc [6, 44]. These works
serve as an inspiration to us and we hope to extend the com-
munity’s compendium of exploitation techniques with our
Scudo specific techniques.

HeapHopper [23] and ArchHeap [54] are systems to au-
tomatically discover heap exploitation primitives. These sys-
tems mainly focus on dlmalloc or ptmalloc. ArchHeap in-
cluded Scudo in its evaluation but failed to discover any ex-
ploitation primitives.

Other works have focussed on manipulating the heap’s
layout [28, 33, 51]. The systems proposed by these works
analyze the target program to identify heap manipulation
primitives. In our work we focus solely on Scudo and leave
identifying the heap manipulation primitives out of scope.

There has been a large body of work on building secure
allocators [2, 8, 19, 35, 38, 47, 48] or securing existing allo-
cators [1, 26, 37, 52, 53]. Unlike these works, we focus on
dissecting the security measures of an existing, widely de-
ployed allocator.

9 Conclusion

We investigated the security of Scudo, Android’s hardened
memory allocator. We have found that a large part of Scudo’s
security measures are rendered ineffective by Android’s
userspace architecture in the context of our attacker model.
Given a memory corruption vulnerability, we demonstrate
two exploits which manipulate Scudo into allocating a chunk
at an attacker’s chosen address.

To demonstrate that our findings are indeed practical, we
backported an n-day memory corruption vulnerability to An-
droid 14 and exploited the highly privileged system server
from the context of an unprivileged app, achieving a privilege
escalation.

In the process of researching Scudo we have developed
a gdb plugin, which allows inspecting Scudo chunks and
free lists, and a python library to forge Scudo chunk head-
ers. We open-source all these tools along with the code and
artifacts of our exploitation case study at https://github.
com/HexHive/scudo-exploitation.

222 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/HexHive/scudo-exploitation
https://github.com/HexHive/scudo-exploitation

Acknowledgments

We thank the anonymous reviewers and artifact evaluation
committee for their feedback on the paper This work was sup-
ported, in part, by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 850868), SNSF
PCEGP2_186974, and DARPA HR001119S0089-AMP-FP-
034

References

[1] Sam Ainsworth and Timothy M Jones. Markus: Drop-in
use-after-free prevention for low-level languages. In
2020 IEEE Symposium on Security and Privacy (SP),
pages 578–591. IEEE, 2020.

[2] Periklis Akritidis et al. Cling: A memory allocator to
mitigate dangling pointers. In 19th USENIX Security
Symposium (USENIX Security 10), 2010.

[3] android developers.googleblog.com. System
hardening in android 11. https://android-
developers.googleblog.com/2020/06/system-
hardening-in-android-11.html, 2020. Accessed:
January 2024.

[4] android.googlesource.com. fdsan. https:
//android.googlesource.com/platform/bionic/
+/master/docs/fdsan.md, 2024. Accessed: January
2024.

[5] anonymous. Once upon a free()... http://
phrack.org/issues/57/9.html, 2001. Accessed: Jan-
uary 2024.

[6] huku argp. Pseudomonarchia jemallocum. http:
//www.phrack.org/issues/68/10.html#article,
2012. Accessed: January 2024.

[7] Jacob Bech. Advancing cybersecurity: Introduction to
the scudo allocator. https://vectorize.re/blog/
internals/introduction-to-scudo/, 2023. Ac-
cessed: January 2024.

[8] Emery D Berger and Benjamin G Zorn. Diehard: Prob-
abilistic memory safety for unsafe languages. Acm sig-
plan notices, 41(6):158–168, 2006.

[9] blackngel. Malloc des-maleficarum. http://
phrack.org/issues/66/10.html, 2009. Accessed:
January 2024.

[10] blog.thalium.re. The fuzzing guide to the
galaxy: An attempt with android system services.
https://blog.thalium.re/posts/fuzzing-
samsung-system-services/#cve-2022-39907,
2023. Accessed: March 2024.

[11] Elias Boschung. Mitigation pull request. https:
//github.com/llvm/llvm-project/pull/75295,
2023. Accessed: January 2024.

[12] Rodrigo Branco. Scudo hardened allocator
— unofficial internals documentation. https:
//www.l3harris.com/newsroom/editorial/2023/
10/scudo-hardened-allocator-unofficial-
internals-documentation, 2023. Accessed:
January 2024.

[13] Mark Brand. First handset with mte on the market.
https://googleprojectzero.blogspot.com/2023/
11/first-handset-with-mte-on-market.html,
2023. Accessed: March 2024.

[14] Valerio Brussani. Whatsapp 2.19.216 remote code
execution. http://packetstormsecurity.com/
files/154867/Whatsapp-2.19.216-Remote-Code-
Execution.html, 2019. Accessed: January 2024.

[15] Dr. Silvio Cesare. Breaking secure checksums in the
scudo allocator. https://blog.infosectcbr.com.au/
2020/04/breaking-secure-checksums-in-
scudo_8.html, 2020. Accessed: January 2024.

[16] community.arm.com. Memory tagging extension:
Enhancing memory safety through architecture.
https://community.arm.com/arm-community-
blogs/b/architectures-and-processors-blog/
posts/enhancing-memory-safety, 2019. Accessed:
January 2024.

[17] cs.android.com. Android sensorservice source.
https://cs.android.com/android/platform/
superproject/main/+/main:frameworks/native/
libs/sensor/ISensorServer.cpp, 2024. Accessed:
January 2024.

[18] cs.android.com. Android system server source.
https://cs.android.com/android/platform/
superproject/main/+/main:frameworks/
base/services/java/com/android/server/
SystemServer.java;l=250?q=systemserver.&sq=
&ss=android%2Fplatform%2Fsuperproject%
2Fmain, 2024. Accessed: January 2024.

[19] Thurston HY Dang, Petros Maniatis, and David Wagner.
Oscar: A practical page-permissions-based scheme for
thwarting dangling pointers. In 26th USENIX security
symposium (USENIX security 17), pages 815–832, 2017.

[20] Kevin Denis. Behind the shield: Unmasking
scudo’s defenses. https://www.synacktiv.com/
publications/behind-the-shield-unmasking-
scudos-defenses, 2023. Accessed: January 2024.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 223

https://android-developers.googleblog.com/2020/06/system-hardening-in-android-11.html
https://android-developers.googleblog.com/2020/06/system-hardening-in-android-11.html
https://android-developers.googleblog.com/2020/06/system-hardening-in-android-11.html
https://android.googlesource.com/platform/bionic/+/master/docs/fdsan.md
https://android.googlesource.com/platform/bionic/+/master/docs/fdsan.md
https://android.googlesource.com/platform/bionic/+/master/docs/fdsan.md
http://phrack.org/issues/57/9.html
http://phrack.org/issues/57/9.html
http://www.phrack.org/issues/68/10.html#article
http://www.phrack.org/issues/68/10.html#article
https://vectorize.re/blog/internals/introduction-to-scudo/
https://vectorize.re/blog/internals/introduction-to-scudo/
http://phrack.org/issues/66/10.html
http://phrack.org/issues/66/10.html
https://blog.thalium.re/posts/fuzzing-samsung-system-services/#cve-2022-39907
https://blog.thalium.re/posts/fuzzing-samsung-system-services/#cve-2022-39907
https://github.com/llvm/llvm-project/pull/75295
https://github.com/llvm/llvm-project/pull/75295
https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-documentation
https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-documentation
https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-documentation
https://www.l3harris.com/newsroom/editorial/2023/10/scudo-hardened-allocator-unofficial-internals-documentation
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handset-with-mte-on-market.html
http://packetstormsecurity.com/files/154867/Whatsapp-2.19.216-Remote-Code-Execution.html
http://packetstormsecurity.com/files/154867/Whatsapp-2.19.216-Remote-Code-Execution.html
http://packetstormsecurity.com/files/154867/Whatsapp-2.19.216-Remote-Code-Execution.html
https://blog.infosectcbr.com.au/2020/04/breaking-secure-checksums-in-scudo_8.html
https://blog.infosectcbr.com.au/2020/04/breaking-secure-checksums-in-scudo_8.html
https://blog.infosectcbr.com.au/2020/04/breaking-secure-checksums-in-scudo_8.html
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/native/libs/sensor/ISensorServer.cpp
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/native/libs/sensor/ISensorServer.cpp
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/native/libs/sensor/ISensorServer.cpp
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/java/com/android/server/SystemServer.java;l=250?q=systemserver.&sq=&ss=android%2Fplatform%2Fsuperproject%2Fmain
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/java/com/android/server/SystemServer.java;l=250?q=systemserver.&sq=&ss=android%2Fplatform%2Fsuperproject%2Fmain
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/java/com/android/server/SystemServer.java;l=250?q=systemserver.&sq=&ss=android%2Fplatform%2Fsuperproject%2Fmain
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/java/com/android/server/SystemServer.java;l=250?q=systemserver.&sq=&ss=android%2Fplatform%2Fsuperproject%2Fmain
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/java/com/android/server/SystemServer.java;l=250?q=systemserver.&sq=&ss=android%2Fplatform%2Fsuperproject%2Fmain
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/java/com/android/server/SystemServer.java;l=250?q=systemserver.&sq=&ss=android%2Fplatform%2Fsuperproject%2Fmain
https://www.synacktiv.com/publications/behind-the-shield-unmasking-scudos-defenses
https://www.synacktiv.com/publications/behind-the-shield-unmasking-scudos-defenses
https://www.synacktiv.com/publications/behind-the-shield-unmasking-scudos-defenses

[21] developer.android.com. Overview of memory man-
agement. https://developer.android.com/topic/
performance/memory-overview#SharingRAM, 2024.
Accessed: January 2024.

[22] developer.android.com. Run apps on the android emula-
tor. https://developer.android.com/studio/run/
emulator, 2024. Accessed: January 2024.

[23] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Heaphopper: Bringing bounded model checking to
heap implementation security. In 27th USENIX Security
Symposium (USENIX Security 18), pages 99–116, 2018.

[24] Zac Ecob. Scudo allocator exploitation. In Bsides Cran-
berra, Australia, Sidney, September 2023.

[25] en.wikipedia.org. Stagefright (bug). https://
en.wikipedia.org/wiki/Stagefright_(bug), 2023.
Accessed: March 2024.

[26] Reza Mirzazade farkhani, Mansour Ahmadi, and Long
Lu. PTAuth: Temporal memory safety via robust points-
to authentication. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1037–1054. USENIX As-
sociation, August 2021.

[27] Guang Gong. Exploiting heap corruption due to
integer overflow in android libcutils. https://
www.blackhat.com/docs/us-15/materials/us-15-
Gong-Fuzzing-Android-System-Services-By-
Binder-Call-To-Escalate-Privilege-wp.pdf,
2015. Accessed: January 2024.

[28] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic heap layout manipulation for exploitation. In
27th USENIX Security Symposium (USENIX Security
18), pages 763–779, 2018.

[29] jp. Advanced doug lea’s malloc exploits. http:
//phrack.org/issues/61/6.html, 2003. Accessed:
January 2024.

[30] Mateusz Jurczyk. Mms exploit part 1-5. https://
googleprojectzero.blogspot.com/2020/07/mms-
exploit-part-1-introduction-to-qmage.html,
2020. Accessed: January 2024.

[31] Michel "MaXX" Kaempf. Vudo malloc tricks. http:
//phrack.org/issues/57/8.html, 2001. Accessed:
January 2024.

[32] Byoungyoung Lee, Long Lu, Tielei Wang, Taesoo Kim,
and Wenke Lee. From zygote to morula: Fortifying
weakened aslr on android. In 2014 IEEE Symposium on
Security and Privacy, pages 424–439. IEEE, 2014.

[33] Runhao Li, Bin Zhang, Jiongyi Chen, Wenfeng Lin,
Chao Feng, and Chaojing Tang. Towards automatic and
precise heap layout manipulation for general-purpose
programs. In NDSS, 2023.

[34] llvm.org. Scudo hardened allocator. https:
//llvm.org/docs/ScudoHardenedAllocator.html,
2024. Accessed: January 2024.

[35] Vitaliy B Lvin, Gene Novark, Emery D Berger, and
Benjamin G Zorn. Archipelago: trading address space
for reliability and security. ACM SIGARCH Computer
Architecture News, 36(1):115–124, 2008.

[36] Matt Miller. Root cause of microsoft rce cves
by patch year. https://twitter.com/epakskape/
status/984481101937651713/photo/1, 2018. Ac-
cessed: February 2024.

[37] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced tem-
poral safety for c. In Proceedings of the 2010 inter-
national symposium on Memory management, pages
31–40, 2010.

[38] Gene Novark and Emery D Berger. Dieharder: securing
the heap. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 573–584,
2010.

[39] nvd.nist.gov. Cve-2015-1528. https:
//nvd.nist.gov/vuln/detail/CVE-2015-1528,
2015. Accessed: January 2024.

[40] nvd.nist.gov. Cve-2019-2136. https:
//nvd.nist.gov/vuln/detail/CVE-2019-2136,
2019. Accessed: March 2024.

[41] nvd.nist.gov. Cve-2020-0026. https:
//nvd.nist.gov/vuln/detail/CVE-2020-0026,
2020. Accessed: March 2024.

[42] nvd.nist.gov. Cve-2021-24041. https:
//nvd.nist.gov/vuln/detail/CVE-2021-24041,
2021. Accessed: March 2024.

[43] Phantasmal Phantasmagoria. The malloc malefi-
carum. https://seclists.org/bugtraq/2005/
Oct/118, 2005. Accessed: January 2024.

[44] Shmarya Rubenstein. A tale of two mallocs: On android
libc allocators. In INFILITRATE 2018, United States,
Miami Beach, April 2018.

[45] how2heap shellphish. unsafe_unlink. https:
//github.com/shellphish/how2heap/blob/
master/glibc_2.38/unsafe_unlink.c, 2020. Ac-
cessed: January 2024.

224 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege-wp.pdf
http://phrack.org/issues/61/6.html
http://phrack.org/issues/61/6.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
http://phrack.org/issues/57/8.html
http://phrack.org/issues/57/8.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://twitter.com/epakskape/status/984481101937651713/photo/1
https://twitter.com/epakskape/status/984481101937651713/photo/1
https://nvd.nist.gov/vuln/detail/CVE-2015-1528
https://nvd.nist.gov/vuln/detail/CVE-2015-1528
https://nvd.nist.gov/vuln/detail/CVE-2019-2136
https://nvd.nist.gov/vuln/detail/CVE-2019-2136
https://nvd.nist.gov/vuln/detail/CVE-2020-0026
https://nvd.nist.gov/vuln/detail/CVE-2020-0026
https://nvd.nist.gov/vuln/detail/CVE-2021-24041
https://nvd.nist.gov/vuln/detail/CVE-2021-24041
https://seclists.org/bugtraq/2005/Oct/118
https://seclists.org/bugtraq/2005/Oct/118
https://github.com/shellphish/how2heap/blob/master/glibc_2.38/unsafe_unlink.c
https://github.com/shellphish/how2heap/blob/master/glibc_2.38/unsafe_unlink.c
https://github.com/shellphish/how2heap/blob/master/glibc_2.38/unsafe_unlink.c

[46] how2heap shellphish. house_of_spirit. https:
//github.com/shellphish/how2heap/blob/
master/glibc_2.31/house_of_spirit.c, 2022.
Accessed: January 2024.

[47] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang
Lin, and Tongping Liu. Freeguard: A faster secure heap
allocator. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2389–2403, 2017.

[48] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin,
and Tongping Liu. Guarder: A tunable secure allocator.
In 27th USENIX Security Symposium (USENIX Security
18), pages 117–133, 2018.

[49] source.android.com. Scudo. https://
source.android.com/docs/security/test/scudo,
2024. Accessed: January 2024.

[50] un1fuzz.github.io. Scudo internals, attacking
scudo’s quarantine. https://un1fuzz.github.io/
index.html, 2020. Accessed: January 2024.

[51] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang,
Xiaorui Gong, and Wei Zou. Maze: Towards automated
heap feng shui. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1647–1664, 2021.

[52] Brian Wickman, Hong Hu, Insu Yun, Daehee Jang, Jung-
Won Lim, Sanidhya Kashyap, and Taesoo Kim. Prevent-
ing use-after-free attacks with fast forward allocation.
In 30th USENIX Security Symposium (USENIX Security
21), pages 2453–2470, 2021.

[53] Carter Yagemann, Simon P Chung, Brendan Saltafor-
maggio, and Wenke Lee. Pumm: Preventing use-after-
free using execution unit partitioning. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 823–
840, 2023.

[54] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic
techniques to systematically discover new heap exploita-
tion primitives. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1111–1128, 2020.

Appendix

ClassId Size Start Size End

1 0x0 0x10
2 0x11 0x20
3 0x21 0x30
4 0x31 0x40
5 0x41 0x50
6 0x51 0x60
7 0x61 0x80
8 0x81 0xa0
9 0xa1 0xb0
10 0xb1 0xd0
11 0xd1 0x110
12 0x111 0x150
13 0x151 0x1b0
14 0x1b1 0x240
15 0x241 0x310
16 0x311 0x440
17 0x441 0x660
18 0x661 0x820
19 0x821 0xa00
20 0xa01 0xc20
21 0xc21 0x1000
22 0x1001 0x1200
23 0x1201 0x1bc0
24 0x1bc1 0x2200
25 0x2201 0x2d80
26 0x2d81 0x3780
27 0x3781 0x4000
28 0x4001 0x4800
29 0x4801 0x5a00
30 0x5a01 0x7300
31 0x7301 0x8200
32 0x8201 0x10000
0 0x10001 ...

Table 5: Chunk sizes and the corresponding class ID on An-
droid 14.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 225

https://github.com/shellphish/how2heap/blob/master/glibc_2.31/house_of_spirit.c
https://github.com/shellphish/how2heap/blob/master/glibc_2.31/house_of_spirit.c
https://github.com/shellphish/how2heap/blob/master/glibc_2.31/house_of_spirit.c
https://source.android.com/docs/security/test/scudo
https://source.android.com/docs/security/test/scudo
https://un1fuzz.github.io/index.html
https://un1fuzz.github.io/index.html

void remove(T ∗X) {
T ∗Prev = X−>Prev;
T ∗Next = X−>Next;
if (Prev) {

CHECK_EQ(Prev−>Next, X);
Prev−>Next = Next;

}
if (Next) {

CHECK_EQ(Next−>Prev, X);
Next−>Prev = Prev;

}
Size = Size −1;

}

Listing 8: Excerpt from the Scudo source code, which un-
links the secondary chunk from the linked list of allocated
secondary chunks. Scudo checks the integrity of the linked
list with the CHECK_EQ macro. The CHECK_EQ macro aborts if
the arguments are not equal.

Device Date Allocator

Samsung S24 2/2024 Scudo
Samsung S23 Ultra 1/2024 jemalloc
Samsung M14 5G 12/2023 jemalloc
Samsung A34 5G 10/2023 Scudo
Samsung Galaxy Z Fold 5 2/2024 jemalloc
Google Pixel 8 2/2024 Scudo
Google Pixel Fold 2/2024 Scudo
Xiaomi Redmi Note 13 5G 2/2024 jemalloc
Xiaomi Redmi 12 5G 12/2023 jemalloc
Xiaomi Redmi 13C 5G 1/2024 jemalloc
Xiaomi Redmi Note 12 4G 11/2023 jemalloc
Vivo y35 1/2024 Scudo
Vivo y73 1/2024 Scudo
Oppo A96 5G 6/2023 jemalloc
Oppo Reno 8 Pro 1/2024 jemalloc

Table 6: The analyzed firmware to understand if vendors de-
ploy Scudo. The Date column denotes the firmware’s release
date. Out of the 15 devices, 6 use the Scudo allocator. The
remaining 9 use jemalloc.

226 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

User Name

system system_server
u0_a160 com.android.systemui
webview_zygote webview_zygote
network_stack com.android.networkstack.process
bluetooth com.google.android.bluetooth
secure_element com.android.se
radio com.android.phone
u0_a172 com.google.android.ext.services
u0_a158 com.google.android.apps.nexuslauncher
u0_a169 com.google.android.permissioncontroller
u0_a129 com.google.android.gms.persistent
u0_a142 com.google.android.inputmethod.latin
u0_a129 com.google.android.gms
u0_a127 com.google.android.as
u0_a131 com.google.android.googlequicksearchbox:interactor
u0_a130 com.google.android.apps.messaging:rcs
system com.android.emulator.multidisplay
u0_a131 com.google.android.googlequicksearchbox:search
u0_a130 com.google.android.apps.messaging
u0_a129 com.google.android.gms.unstable
u0_a185 com.google.android.providers.media.module
u0_a129 com.google.process.gservices
u0_a92 android.process.media
u0_a154 com.google.android.gm
u0_a184 com.google.android.rkpdapp
u0_a175 com.google.android.adservices.api
u0_a129 com.google.process.gapps
u0_a81 android.process.acore
u0_a144 com.google.android.apps.photos
u0_a173 com.google.android.devicelockcontroller
u0_a124 com.google.android.settings.intelligence
u0_a151 com.google.android.contacts
u0_a162 com.google.android.apps.wallpaper

Table 7: The 33 userspace processes which are forked from Zygote on the Android 14 emulator
(system-images;android-34;google_apis;x86_64). Overall there are 107 userspace processes out of which 33
(30%) are Zygote-forked. 7 (6%) Zygote-forked processes are running as higher-privileged users. Note that the remaining
processes are mostly privileged system apps. Compromising such an app from a normal app still escalates the attacker’s
privileges. Any additional, user-installed app will also be Zyote-forked.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 227

Breaking Espressif’s ESP32 V3:
Program Counter Control with Computed Values using Fault Injection

Jeroen Delvaux1, Cristofaro Mune2, Mario Romero1, Niek Timmers2 ∗
1 {Jeroen.Delvaux, Mario.Romero}@tii.ae, Technology Innovation Institute, Abu Dhabi, UAE

2 {cristofaro, niek}@raelize.com, Raelize, Rotterdam, The Netherlands

Abstract

Espressif introduced the ESP32 V3, a low-cost System-on-
Chip (SoC) with wireless connectivity, as a response to earlier
hardware revisions that were susceptible to Fault Injection
(FI) attacks. Despite its FI countermeasures, we are the first to
bypass all security features of the ESP32 V3 with an FI attack,
including Secure Boot and Flash Encryption. First, we alter
encrypted flash contents to set the 32-bit outcome of a Cyclic
Redundancy Check (CRC) on the bootloader signature to an
arbitrary value, which we then load into the Program Counter
(PC) register of the Central Processing Unit (CPU) using a
single Electromagnetic (EM) glitch. This allows us to jump
to Download Mode in Read-Only Memory (ROM), which
provides arbitrary code execution and access to unencrypted
flash contents. As far as we know, this is the first successful
FI attack, bypassing both Secure Boot and Flash Encryption
with a single glitch, on a target with FI countermeasures. As
the vulnerabilities are in hardware, they cannot be fixed, and
a new hardware revision would be required. In response to
our findings, Espressif issued a Security Advisory, AR2023-
005, and requested a Common Vulnerabilities and Exposures
(CVE) identifier, CVE-2023-35818.

1 Introduction

Espressif’s ESP32 is a low-end System-on-Chip (SoC) with
Wi-Fi and Bluetooth connectivity, which sparked commercial
use in millions of embedded devices. Notable security features
such as Secure Boot and Flash Encryption are supported. As
shown in Fig. 1, the Secure Boot implements a chain of trust
where code stored in internal Read-Only Memory (ROM)
authenticates bootloader code stored in external Flash. The
latter, in turn, authenticates application code stored in Flash. A
chain of trust is needed as the ROM is made by Espressif and
the flash contents are made by customers of Espressif. Note

∗The four authors contributed equally and are ordered alphabetically by
last name.

that Flash is a Multi-Time Programmable (MTP) Non-Volatile
Memory (NVM).

ROM code Bootloader Application

Verifies Verifies

Stored in FlashStored in ROM

Figure 1: Chain of trust in a Secure Boot.

Vulnerabilities in the ROM code are particularly worrisome
because (i) they compromise the entire chain, and (ii) they
cannot be fixed by a software patch. The same holds for
vulnerabilities that are purely in hardware. In this work, we
attain this worst-case scenario of breaking the chain at the
root. We leverage several weaknesses in the design of the
ROM code through ElectroMagnetic Fault Injection (EMFI),
which corrupts the executed instructions. Before listing our
precise contributions, we situate our work into a brief history
of FI attacks on the ESP32.

1.1 History of FI Attacks on ESP32
The first version of the chip, the ESP32-V1, was released in
2016, and its CPU implements the Xtensa Instruction Set Ar-
chitecture (ISA) [32]. The following FI attacks were reported:

• In 2019, Riscure and LimitedResults [22] independently
disclosed the first FI attack on the ESP32-V1: the di-
gest verification of Secure Boot was skipped through a
precisely timed voltage glitch (CVE-2019-15894) [12].
If Flash Encryption is disabled, this allows executing a
modified bootloader.

• Still in 2019, LimitedResults [22] reported a second FI at-
tack using supply-voltage glitching (CVE-2019-17391):
bits stored in electronic fuses (eFuses), which is One-
Time Programmable (OTP) NVM configured by Espres-
sif’s customers, are corrupted while being transferred

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 229

to shadow registers. By corrupting read-protection bits
stored in eFuses, keys that are also stored in eFuses, can
be read out. In 2020, Raelize reproduced this attack using
EMFI instead of voltage glitching [27].

• In 2020, Raelize reported an FI attack to bypass Secure
Boot with Flash Encryption enabled, leveraging a pecu-
liarity of the ROM to leave the Universal Asynchronous
Receiver-Transmitter (UART) bootloader permanently
enabled (CVE-2020-13629) [28]. For their attack, they
leveraged retained data in the internal SRAM across
warm resets, in order to control the PC register of the
CPU.

In response to the above FI attacks, Espressif hardened
the security design of the ESP32 and released ESP32 Chip
Revision v3.0 in 2020 [7]. At the time of writing this paper,
this is the latest revision. For the sake of brevity, we refer to
this revision as ESP32 V3. Compared to the ESP32 V1, four
significant changes are made:

• Secure Boot transitioned from symmetric-key cryptogra-
phy, i.e., the Advanced Encryption Standard (AES), to
public-key cryptography, i.e., Rivest–Shamir–Adleman
(RSA) signatures. The ESP32 V3 only stores the public
key; the private key is stored externally.

• While analyzing the ROM code, which was publicly
released by Espressif as an ELF file [9], we identified
the insertion of numerous redundancies, e.g., eFuse bits
are read out multiple times. Such redundancies are often
used as FI countermeasures [2, 24, 35].

• The UART bootloader can now be disabled using a dedi-
cated eFuse bit.

• Enabling Flash Encryption is encouraged as part of the
newly introduced Release Mode. Stated otherwise, the
security of a chip with Flash Encryption disabled is con-
sidered suboptimal.

To the best of our knowledge, Espressif has not made any
statements about potential hardware countermeasures. De-
spite the above FI countermeasures, several FI attacks were
reported on the ESP32 V3:

• In 2022, Ledger’s Donjon [1] reported the first FI at-
tack on the ESP32 V3, targeting a hardware accelerator
of the Advanced Encryption Standard (AES) used for
decrypting the Flash contents [14]. Through Body Bias-
ing Injection (BBI), a fault analysis recovered the AES
key. The same result was also achieved with a pure Side-
Channel Attack (SCA): power-consumption traces were
found to be correlated with Hamming distances between
consecutive AES states. However, the authors were un-
successful in retrieving the AES key with EM-FI, likely

because of redundancies in the ROM code. More pre-
cisely, corrupting multiple OTP transfers with multiple
EM pulses was found to be infeasible.

• In 2023, we were the second to report an FI attack on the
ESP32 V3, albeit the first to succeed with EM-FI. The
benefit is that EM-FI is less invasive than BBI, i.e., the
latter technique requires opening the plastic chip pack-
aging so that a microprobe can reach the backside of the
die [26]. The prime reason for our attack to succeed is
that only a single EM pulse is required, i.e., the complex-
ity of jointly optimizing the glitch parameters of multiple
pulses is avoided. Instead of AES and OTP transfers, we
target ROM code running on the CPU, shortly before
the RSA signature of the Flash contents is verified. This
article describes this attack in more detail.

Several new releases of the ESP32 use RISC-V as ISA
instead of Xtensa. In 2023, Courdesses [3] combined SCA
and FI to achieve arbitrary code execution on two of these
releases: the ESP32-C3 and the ESP32-C6 [15]. First, a power
analysis recovered the AES key that encrypts the first 128-
byte block of the Flash, which allows to insert arbitrary code
into this block. Next, a voltage glitch bypasses Secure Boot
such that the inserted code is executed. More precisely, the
glitch causes a stack buffer to overflow, thereby overwriting a
function return address with a pointer to the code.

1.2 Contributions
We present a novel FI attack against the ESP32 V3, which
chains multiple vulnerabilities and uses a single EMFI glitch
to access the decrypted flash contents. Our attack works on
the most secure configuration and bypasses all countermea-
sures. Using commercially available tooling, our attack can
be reproduced in minutes once effective glitch parameters
such as timing and location are found.

By modifying the encrypted flash contents, we force the
ROM’s Cyclic Redundancy Check (CRC32) outcome to an
arbitrary 32-bit value, which is then loaded into the CPU’s
Program Counter (PC) using an EM glitch. This way, we
redirect the code execution to the ROM’s Download Mode,
which provides access to the decrypted flash contents. We
are the first to load a computed value into the PC register of
a CPU using a glitch. Moreover, as far as we know, this is
the first example of a successful bypass of both Secure Boot
and Flash Encryption using a single glitch, on a target with
FI countermeasures.

1.3 Disclosure Timeline
The attack described in this paper was responsibly disclosed:

• A technical report specifying the attack was sent to
Espressif on April 7, 2023.

230 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

• Espressif requested a Common Vulnerabilities and Expo-
sures (CVE) identifier, which was created as CVE-2023-
35818 on June 17, 2023.

• Espressif published Security Advisory AR2023-005 on
its website on July 11, 2023 [16].

• Espressif transferred a bug bounty of USD 2229 on
September 25, 2023.

1.4 Structure
The remainder of this paper is structured as follows. Sec-
tion 2 provides preliminaries on the ESP32 V3. Section 3
provides the theory of our attack. Section 4 provides practical
experiments. Section 5 concludes this work.

2 Preliminaries on Espressif’s ESP32 V3

2.1 System Overview
As is shown in Fig. 2, the ESP32 V3 chip communicates with
an external MTP NVM in the form of a Serial Peripheral In-
terface (SPI) Flash chip. This Flash chip stores the bootloader
and the application, which can be signed and/or encrypted.
The symmetric encryption key is stored in OTP NVM in the
form of fuses. The public key for verifying signatures is stored
in Flash, and to protect its integrity, a hash digest of the public
key is stored in OTP NVM.

SRAM

Crypto
accelerators

Xtensa
CPU

FusesROM

SPI
Flash

Figure 2: Relevant components of the ESP32 V3.

2.2 Xtensa Instruction Set Architecture
The CPU implements the Xtensa ISA [32]. Instructions are
encoded in a 24-bit format, or if it concerns a common use
case, in a so-called narrow (n) 16-bit format that can freely
be intermixed with the 24-bit format. For example, the 24-bit
move instruction movi, which sets a register to a 12-bit con-
stant, has a 16-bit alternative movi.n, which sets a register
to a 7-bit constant.

The ISA features 64 general-purpose registers of 32 bits
each. However, only 16 registers are visible at any given time
through a rotating window, and are labeled a0 to a15. As
illustrated in Fig. 3, the window moves back and forth with
each function return and function call respectively. For any
given subroutine, the return address is stored in register a0,
the stack pointer is stored in register a1, and the input/output

operands are stored in registers a2 to a7. Hence, a caller that
causes the window to shift with 8 registers, as is the case for
the call8 instruction, passes operands in registers a10 to
a15 to physically match the subroutine.

call8retw.n a0
a1

a
0a
1

Figure 3: Xtensa rotating window, where the caller and the
subprogram are colored orange and cyan respectively.

Given that the shift in window can be either 4, 8, or 12
registers, the two most significant bits of a0 encode the shift,
whereas the 29 least significant bits determine the return ad-
dress.

2.3 Secure Boot V2

Once an ESP32-based product is fully developed and ready
for commercial release, Espressif recommends configuring
the chip in Release Mode. Consequentially, Secure Boot and
Flash Encryption are both enabled. As illustrated in Fig. 4, the
order of operations for constructing the Flash contents is sign-
then-encrypt, not encrypt-then-sign. We make abstraction of
the application in Fig. 1, given that a forgery of the bootloader
inherently compromises the application. Below, the crypto-
graphic algorithms for Secure Boot and Flash Encryption are
specified.

bootloader

signature

checksum

e7

RSA-PSS

CRC32

AES

Figure 4: Signed and encrypted Flash data.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 231

2.3.1 Secure Boot: Digital Signatures

Signatures are based on the RSA public-key algorithm, whilst
adopting recommendations from Public-Key Cryptography
Standards (PKCS) version 2.2, which is published as Request
for Comments (RFC) 8017 [21]. More precisely, RSA-3072
is used, in which the public modulus and the signature are
each 3072 bits, or 384 bytes. Instead of signing the bootloader
image itself, the image is first fed into a Secure Hash Algo-
rithm (SHA) and its digest is signed instead. More precisely,
SHA-256 is used, which has a digest of 256 bits, or 32 bytes.
The digest is encoded by the Probabilistic Signature Scheme
(PSS).

As detailed in Table 1, the produced signature block con-
tains 1216 bytes, starting with the magic byte 0xe7 and end-
ing with a 32-bit checksum. The magic byte is aligned with a 4
KB boundary, i.e., its physical address is an integer multiple of
0x4000. The public key of RSA is part of the signature block
and consists of a modulus, an exponent, and pre-calculated
constants that accelerate verification. A SHA-256 digest of
the public key is burned into eFuses. The CRC is computed
over the 1196 preceding bytes.

Table 1: Signature block format [6].

Offset
(bytes)

Size
(bytes) Description

0 1 Magic byte, 0xe7
1 1 Version number, 0x02
2 2 Zero padding, 0x0000
4 32 SHA-256 digest of image

36 384 RSA public modulus
420 4 RSA public exponent
424 384 Pre-calculated constant
808 4 Pre-calculated constant
812 384 Signature

1196 4 CRC32
1200 16 Zero padding, 0x00...00

As can be seen from the publicly released ROM code [9],
verification at boot time consists of five consecutive checks.
If any of them fails, an error message is printed via UART,
and the device is reset. The first check compares the first byte
of the signature block to the magic byte 0xe7. The second
check compares the recomputed CRC-32 checksum to its
stored counterpart. The third check compares the recomputed
SHA-256 digest of the public key to its counterpart stored in
fuses. The fourth check compares the recomputed SHA-256
digest of the bootloader image to its stored counterpart. The
fifth and last check is the verification of the RSA signature.

2.3.2 Flash Encryption

Flash encryption [5] relies on AES-256. The 256-bit key is
stored in eFuses. Espressif adopted a custom mode of oper-

ation which is fully parallelizable, i.e., consecutive 128-bit
blocks can be encrypted independently of one another, and the
same holds for the decryption. Note that this entails random
access.

The key for each 128-bit block is derived by XORing the
master key stored in eFuses with the physical address of the
256-bit block. Hence, each derived key encrypts two adjacent
blocks. For performance reasons: Flash encryption, which
is an infrequent operation, uses AES decryption, whereas
Flash decryption, which happens on every boot, uses AES
encryption.

3 Theory of the Attack

3.1 PC Control Through FI
Originally, PC control through FI was performed in absence
of Flash encryption, which is an easier setting than ours. We
first describe the original technique, and then introduce our
workaround for tackling Flash encryption.

3.1.1 Without Flash Encryption

In 2016, Timmers et al. [34] described an FI attack that sets
the PC register to a controlled value on CPUs implementing
ARM’s AArch32 execution state. These controlled values
originate from a source that is under control of an attacker,
e.g., unencrypted flash. In ARM’s AArch32 execution state,
the PC register can be used as a destination register for many
instructions, which was found to be ideal. Only a single load
instruction needs to be corrupted by a glitch in order to load
a controlled value directly into the PC register. An effective
approach [33] is described below:

• Overwrite the original bootloader in flash with a code
payload and sled of pointers. These pointers point to the
destination address in executable memory at which the
code payload is be copied to.

• As a result, when the device is powered, the ROM code
will copy the code payload and the pointers to the same
destination as the original bootloader. Then, assuming
Secure Boot is enabled, the signature check would fail
and the target is reset.

• For the attack, a glitch is injected after the code pay-
load is copied, but while the pointers are being copied.
This glitch modifies the destination operand of a load
instruction such that a controlled value is loaded into the
PC register. This effectively executes the code payload
well-before the signature is verified.

The above approach is also possible on CPU architectures
where the PC register is not directly addressable, including
ARM’s AArch64 and Xtensa. For these type of architectures,

232 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

the PC register can only be controlled indirectly, e.g., by cor-
rupting the operand of a branch, jump or return instruction.

3.1.2 With Flash Encryption

On modern SoC where Flash contents are encrypted, the tech-
nique in Section 3.1.1 might still work, on the condition that
the CPU operates directly on ciphertext. Then, a controlled
value can be loaded into the PC register simply by overwriting
the ciphertext.

However, on the ESP32, the flash contents are decrypted on-
the-fly by a hardware implementation of AES. This process is
done completely transparent to the CPU, which never operates
on the encrypted contents, only on the decrypted contents.
Therefore, any modification in the external flash will end
up in the context of the CPU as gibberish. In theory, a brute-
force attack on the 32-bit address space might still be possible,
i.e., the ciphertext is randomly manipulated until the pointer
of interest is found. In practice though, the time needed for
performing this search is likely excessive, given that devices
typically take a few milliseconds to boot.

Therefore, we decided to find another method for slipping
in one or more controlled values, which we intend to load into
the PC register using a glitch. On the ESP32 V1, Raelize [28]
leveraged the UART bootloader, which could not be disabled.
However, Espressif patched this vulnerability on the ESP32
V3. We decided to slip in a controlled 32-bit value into the
context of the CPU by tampering with the CRC operation
that is performed over the signature block. Setting the PC
register of the CPU to the result of this CRC32 operation
using a glitch is the main novelty of this paper. Gratchoff [19]
previously described this as a potential approach, however, to
the best of our knowledge, this has never been performed in
practice.

3.2 Modifying the Flash

We demonstrate our attack on a bootloader which prints
“Hello, World!”. There is no application, as shown in Fig. 1,
because being able to execute a modified bootloader com-
promises the application by default. The boot log observed
on the UART is given in Fig. 5. Additional line breaks have
been inserted to accommodate the two-column format of this
paper.

The ROM code reports explicitly that secure boot is enabled
and the secure boot verification succeeded. Even though not
specifically reported, flash encryption is enabled as well. Any
change to the bootloader or its signature block, both of which
are stored encrypted in flash, causes an error message to be
displayed in the boot log. If the signature block is modified,
the checksum verification fails, and the error message in Fig. 6
is printed. The key observation is that that the checksum
verification is done in the plaintext domain.

ets Jul 29 2019 12:21:46
rst:0x1 (POWERON_RESET),boot:0x13
(SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,
hd_drv:0x00,wp_drv:0x00
mode:2, clock div:2

secure boot v2 enabled
secure boot verification succeeded
load:0x3fff0020 len:0xc8c
load:0x40078000 len:0x2020
load:0x40080400 len:0xeac
entry 0x40080640
I (41) boot: ESP-IDF v5.0.1-397-g3050ea656f 2nd
stage bootloader
I (41) boot: compile time 16:51:07
I (41) boot: chip revision: v3.0
I (45) boot.esp32: SPI Speed : 40MHz
I (50) boot.esp32: SPI Mode : DIO
I (54) boot.esp32: SPI Flash Size : 2MB
I (59) boot: Enabling RNG early entropy source...
Hello, World!

Figure 5: UART for a bootloader that prints “Hello, World!”.

...

secure boot v2 enabled
Sig block 0 invalid: Stored CRC 0xbaaeaf78

calculated 0xdeadbeef
secure boot verification failed

Figure 6: UART boot log where the CRC fails.

We refrain from corrupting the first 16-byte block of the
signature as this includes a byte at offset 0 which is used as a
magic value. Whenever this value is not 0xe7, the signature
block is not considered a signature block and the checksum
verification is not performed. The error message that is printed
when the magic value is modified is shown in Fig. 7.

...

secure boot v2 enabled
No signature block magic byte found at signature
sector (found 0xc3 not 0xe7). Image not V2 signed?

secure boot verification failed

Figure 7: UART boot log where the magic byte is corrupted.

By performing manipulations of the ciphertext, we can
solve a system of linear equations and set the recomputed
checksum to any 32-bit value of choice. In fact, the hexspeak
value 0xdeadbeef in Fig. 6 is no coincidence, and serves
to demonstrate this ability. For our attack, we modify this
hexpspeak value into a pointer, i.e., a memory address, which
we then load into PC using a glitch.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 233

3.3 Solving Equations

We now specify how the system of linear equations is con-
structed. As this section is mathematical, unlike the rest of
this paper, a notation system is introduced. Variables and con-
stants are denoted by characters from the Latin and Greek
alphabets respectively. Orthogonal to this convention: scalars
are denoted by regular lowercase characters, binary vectors
are denoted by bold lowercase characters, and binary matri-
ces are denoted by bold uppercase characters. All vectors are
column vectors.

We leverage that CRC-32 is an affine function, as formal-
ized in Eq. (1), where ⊕ denotes XORing and where constant
γγγ∈ {0,1}32 only depends on the size of the input xxx. For inputs
xxx ∈ {0,1}9568, which corresponds to the first 1196 bytes of
the signature block, it holds that γγγ = 0x6b691bc6. Given
that γγγ, eventually, cancels out, its value is inconsequential.

CRC-32(xxx1⊕ xxx2) = CRC-32(xxx1)⊕CRC-32(xxx2)⊕ γγγ. (1)

Input xxx ∈ {0,1}9568 spans 75 AES plaintext blocks ppp ∈
{0,1}128, as formalized in Eq. (2) where ∥ is the concatena-
tion operator. The first block, ppp0, contains the magic byte
0xe7. The last block, ppp74, shares only 96 bits with xxx, and
the 32 excluded bits comprise the stored checksum sssstored =
CRC-32(xxx).

xxx ≜ ppp0 ∥ ppp1 ∥ · · · ∥ ppp73 ∥ (ppp74 mod 296). (2)

The external Flash contains the corresponding ciphertexts
ccc0, ccc1, · · · , ccc74, which we can alter. The first block, ccc0, is unal-
tered. Otherwise, the magic byte is not found with probability
255/256, and the UART boot log is uninformative, as shown
in Fig. 7.

Instead, we consecutively alter blocks ccc1 to ccc32. In the first
iteration, we overwrite ccc1 with a value ccc⋆1 that is selected
uniformly at random from {0,1}128. Consequentially, the cor-
responding plaintext block ppp1 changes to an unknown value
ppp⋆1 ≜ ppp1⊕ eee1. By booting the ESP32 with this modification,
and parsing the UART log, we obtain the checksum difference
ddd1 ≜ ssscalculated,1⊕ sssstored. From linearity in Eq. (1), it follows
that the difference ddd1 only depends on plaintext error eee1, as
specified in Eq. (3). Nevertheless, eee1 ∈ {0,1}128 cannot be
recovered from ddd1 ∈ {0,1}32 due to the 96-bit difference in
length, i.e., there are many eee1’s that result in the same ddd1.
This is fine: eee1 does not need to be recovered, and we merely
store the pair (ccc⋆1,ddd1) for further use.

ddd1 = CRC-32(0128 ∥ eee1 ∥09312)⊕ γγγ. (3)

Now, the same principle is repeated to obtain pairs (ccc⋆2,ddd2)
until (ccc⋆32,ddd32), as formalized in Eq. (4). Again, recovery of
eee2 until eee32 is unnecessary.

ddd2 = CRC-32(0256 ∥ eee2 ∥09184)⊕ γγγ.

...
ddd32 = CRC-32(04096 ∥ eee32 ∥05344)⊕ γγγ.

(4)

Instead, we linearly combine the known differences ddd1 un-
til ddd32 into a desired difference ddd ≜ ssspointer⊕ sssstored, where
ssspointer is the memory address we want to jump to. This is
achieved by solving the system of linear equations in Eq. (5)
for zzz ∈ {0,1}32. Note the absence of constant γγγ. Each bit zi
of zzz, where i ∈ [1,32], determines whether or not the corre-
sponding ciphertext block should be corrupted: if zi = 0, the
original cipertext is ccci remains in place, otherwise, the random
value ccc⋆i is used.

DDDzzz = ddd, where DDD =
(
ddd1 ddd2 · · · ddd32

)
. (5)

One problem remains though: the matrix DDD ∈ {0,1}32×32

is not necessarily invertible. Under the assumption that DDD
is selected uniformly at random from {0,1}32×32, which is
a reasonable abstraction, the probability that DDD is invertible
given in Eq. (6). The proof is straightforward and imagines
that columns are added one-by-one [25]: if the previous i−1
columns are linearly independent, the addition of column i
causes linear dependence with probability 2i−33. For exam-
ple, the first and last columns cause linear dependence with
probability 1/232 and 1/2 respectively. Logarithms help with
numerical evaluation, and result in a probability of around
28%.

Pr(rank(DDD) = 32) =
32

∏
i=1

(1−2−i)

= exp

(
32

∑
i=1

(
log(2i−1)− log(2i)

))
≈ 28%.

(6)

To ensure that DDD is invertible, we check whether its rank
increases for each column dddi that is added, as formalized in
Algorithm 1. If the rank does not increase, a new corrupted
ciphertext ccc⋆i is selected uniformly at random. As can be seen
from the invertibility proof [25], it are usually the last few
columns that require a retry. Observe that there is no need to
retake measurements if we would want to build images for
more than one pointer of interest.

Alternatives to Algorithm 1 could be devised. For example,
instead of gathering pairs (ccc⋆i ,dddi) for 32 AES blocks, pairs
could be gathered for, say, 40, blocks. From these 40 blocks,
32 blocks that result in an invertible DDD are then retained.

Although solving a system of equations is the canonical ap-
proach, it is only possible because the signature block happens
to be long. Originally, we disclosed an alternative method to
Espressif that would also have worked for small signature
blocks, at the minor inconvenience of a 32-bit brute-force

234 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Algorithm 1: Measurement for CRC insertion
Input: Original bootloader, bbb ∈ {0,1}∗
Input: Index of magic byte, m ∈ N
Input: Pointer of interest, ssspointer ∈ {0,1}32

Output: Modified bootloader, bbb⋆ ∈ {0,1}∗
1 CCC← 00032×128
2 DDD← 00032×32
3 for i← 1 to 32 do
4 bbb⋆← bbb
5 do
6 ccci←{0,1}128

7 bbb⋆[m+ i128 : m+ i128+127]← ccci
8 Program bbb⋆

9 Fetch ssscalculated and sssstored from UART
10 DDD[:, i]← ssscalculated⊕ sssstored

11 while rank(DDD) ̸= i
12 CCC[:, i]← ccci

13 bbb⋆← bbb
14 zzz← DDD−1(ssspointer⊕ sssstored)
15 for i← 1 to 32 do
16 if zzz[i] then
17 bbb⋆[m+ i128 : m+ i128+127]←CCC[:, i]

search. In this method, we perturb η≥ 4 blocks of the signa-
ture, and for each block, we select λ≥ 2 ciphertexts ccc⋆ uni-
formly at random from {0,1}128, where λη > 232. We store
pairs (ccc⋆i, j,dddi, j), where i ∈ [1,η] and j ∈ [1,λ], and where dddi, j
is given in Eq. (7).

dddi, j = CRC-32(0128·i ∥ eeei, j ∥09440−128·i)⊕ γγγ. (7)

Next, the goal is to find indices j1, j2, · · · jη ∈ [1,λ] such
that ddd1, j1 ⊕ ddd2, j2 ⊕ ·· · ⊕ dddη, jη = ddd. This search took less
than one hour on a laptop. The corresponding ciphertexts
ccc⋆1, j1 ,ccc

⋆
2, j2 , · · · ,ccc

⋆
η, jη are applied.

3.4 Attack Surface for FI
The result of the checksum operation, i.e., the pointer of inter-
est, propagates through several CPU registers before the chip,
eventually, resets. This propagation path can be followed with
relative ease, given that Espressif published the ROM code in
ELF format [9]. If the ROM code would not have been pub-
lished, the code would have to be extracted from the device
through either delayering [17, 18] or an exploit [4, 31]. The
ELF file is loaded in Ghidra, which is reverse-engineering
software that decompiles assembly instructions into C, among
other features. Our analysis reveals that the proverbial attack
surface for FI comprises three subroutines.

The first subroutine is crc32_le, which computes the
checksum, and is shown in Fig. 8. The XOR operation at

address 0x4005d019 writes the computed checksum into
register a2. If this instruction could be corrupted such that
the destination register a2 changes to the return address a0,
as formalized in Corruption 1, the pointer of interest would
be loaded into the PC register of the CPU. Given that a2 and
a0 are encoded as four-bit fields 0x2 and 0x0 respectively,
this would only require a single bit flip.

crc32_le()
0x4005cfec entry a1, 0x20
0x4005cfef movi.n a8, 0xff
0x4005cff1 xor a2, a8, a2
0x4005cff4 l32r a9, 0x4005cfe8
0x4005cff7 movi.n a8, 0x0
0x4005cff9 j 0x4005d014
0x4005cffc add.n a10, a3, a8
0x4005cffe l8ui a10, a10, 0x0
0x4005d001 addi.n a8, a8, 0x1
0x4005d003 xor a10, a10, a2
0x4005d006 extui a10, a10, 0x0, 0x8
0x4005d009 addx4 a10, a10, a9
0x4005d00c l32i.n a10, a10, 0x0
0x4005d00e srli a2, a2, 0x8
0x4005d011 xor a2, a10, a2
0x4005d014 bne a8, a4, 0x4005cffc
0x4005d017 movi.n a3, 0xff
0x4005d019 xor a2, a3, a2
0x4005d01c retw.n

Figure 8: ROM code of crc32_le.

Corruption 1. At address 0x4005d019, the instruction
xor a2, a3, a2 with encoding 0x302320 is corrupted into
xor a0, a3, a2 with encoding 0x300320.

The second potential target for FI is subroutine ets_
secure_boot_verify_signature, which is the
caller of crc32_le, and the relevant part is shown in Fig. 9.
Due to the shifting window, the pointer is returned in register
a10 after the call8 instruction at address 0x4006547e,
and is copied to register a13 at address 0x40065485. If the
contents of a10 differ from the stored checksum in register
a12, a branch is taken at address 0x40065488 to resume
normal operation. Otherwise, the subroutine ets_printf
is called at address 0x40065491 to print the CRC error
message. The unconditional jump at address 0x40065565
results in a reset.

Again, taking PC control by overwriting the return address
a0 is plausible. Most notably, the move instruction at address
0x40065485 could be corrupted such that the destination
register changes from a13 to a0, as formalized in Corrup-
tion 2. Although this entails three bit flips, the probability of

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 235

0x40065474 movi a12, 0x4ac
0x40065477 movi.n a10, 0x0
0x40065479 mov.n a11, a6
0x4006547b movi a2, 0x4ac
0x4006547e call8 crc32_le
0x40065481 add.n a2, a6, a2
0x40065483 l32i.n a12, a2, 0x0
0x40065485 mov a13, a10
0x40065488 beq a10, a12, 0x40065498
0x4006548b l32r a10, 0x40065428
0x4006548e mov a11, a7
0x40065491 call8 ets_printf
0x40065494 j 0x40065565

Figure 9: ROM-code fragment of ets_secure_boot_
verify_signature.

occurrence could be significant depending on the unknown
fault model: all flips are of the type 1→ 0, and they all occur
within a single 4-bit field. Different fields are processed by
different circuits, so there is no reason why setting an entire
field to zero would be unrealistic.

Corruption 2. At address 0x40065485, the instruction
mov a13, a10 with encoding 0x20daa0 is corrupted into
mov a0, a10 with encoding 0x200aa0.

Alternatively, it might be possible to corrupt the opcode of
the move instruction and turn it into an unconditional register
jump jx, as formalized in Corruption 3. Although this entails
four bit flips, it equates to setting two out of six fields to zero.

Corruption 3. At address 0x40065485, the instruction
mov a13, a10 with encoding 0x20daa0 is corrupted into
jx a10 with encoding 0x000aa0.

The third and last subroutine for potential FI is ets_
printf, which prints a formatted string similar to its C
counterpart printf. The pointer of interest is passed as an ar-
gument through register a13. The ROM code is not analyzed
here due to its length.

3.5 Pointers of Interest
As listed in Table 2, we jump to two ROM functions. The
first function, ets_fatal_exception_handler, pre-
pares a formatted string and calls ets_printf, as shown
in Fig. 10. The relative simplicity of a print enables us to
efficiently tune EM-FI glitch parameters later-on: the delay,
the power, and the XY coordinates. Furthermore, because
the value of five registers is printed, useful insights about the
injected fault can potentially be gained.

Once suitable glitch parameter values are found, we change
the Flash image of our target device and jump to Download

Table 2: Pointers of interest in the ROM code.

Address Function
0x40006864

ets_fatal_exception_handler
0x80006864
0x40008ceb

UartDwnLdProc
0x80008ceb

0x40006864 l32r a10, 0x3ff9e820
0x40006867 mov.n a11, a6
0x40006869 mov.n a12, a5
0x4000686b mov.n a13, a4
0x4000686d mov.n a14, a3
0x4000686f mov.n a15, a2
0x40006871 call8 ets_printf

Figure 10: ROM-code fragment of ets_fatal_
exception_handler.

Mode instead, i.e., the ROM function UartDwnLdProc.
The latter jump is more restrictive than ets_fatal_
exception_handler because three input parameters
should have proper values.

Given that the windowing mechanism of the Xtensa ISA
has a crucial role in this matter, we experiment with addresses
of the form 0x4XXXXXXX and 0x8XXXXXXX. The return
instruction retw.n uses the two most significant bits of a0
are to determine the shift in window, whereas the 29 least
significant bits determine the next PC.

3.6 Simulating Faults with GDB
Before building the FI setup and performing the attack in prac-
tice, we simulated the desired faults with Espressif’s GNU
Debugger (GDB) to confirm their effect. For this purpose, we
prepared a bootloader where the signature block is corrupted,
and the recomputed checksum is, consequentially, incorrect.
Upon flashing this bootloader, Corruption 1 and Corruption 2
are simulated as shown in Fig. 11a and Fig. 11b respectively.
In both simulations, we set a hardware breakpoint at the tar-
geted instruction and overwrite register a0 with the desired
pointer during the break.

To determine whether or not ets_fatal_exception_
handler is reached, we merely need to observe the UART
output, and check whether or not the string is printed. For
Download Mode, there is no welcome message, but we can
check whether or not an additional hardware breakpoint deep
within this mode is reached. Our conclusion is that pointers of
the form 0x8XXXXXXX result in a successful jump, whereas
pointers of the form 0x4XXXXXXX do not.

For Corruption 3, we performed similar GDB experiments.

236 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

hbreak *0x4005d01c
continue
set $a0 = 0x80006864
continue

(a) Corruption 1

hbreak *0x40065485
continue
set $a0 = 0x80006864
continue

(b) Corruption 2

Figure 11: Simulation of (a) Corruption 1 in crc32_le
and (b) Corruption 2 in ets_secure_boot_verify_
signature with GDB.

However, the conclusion is different: pointers of the forms
0x4XXXXXXX and 0x8XXXXXXX both result in a successful
jump.

4 Practical Experiments

4.1 Target Preparation
We target an ESP32-DevKitC V4 [8] with an ESP32-
WROOM-32E module [13], which is a small-sized and com-
mercially available development board produced by Espressif.
To enable EM-FI, we removed the metal shield that covers
both the ESP32 V3 chip and the SPI flash chip with a KADA
852D+ hot air gun. No-clean flux is applied to facilitate this
process.

Upon confirming that the board survived the hot air, we
manually enable the security features of the ESP32 V3 by
burning eFuses. Although Espressif provides a partially auto-
mated process, the manual approach is more convenient for
developing an attack: the security features can be enabled one
by one, instead of altogether automatically. Figure 12a shows
the eFuses for enabling Secure Boot. The SHA-256 digest
of the RSA public key is obtained from the file rsa.pem.
Figure 12b shows the eFuses for enabling Flash encryption.
The 256-bit AES key is contained in the binary file aes.bin.
Figure 12c shows the eFuses for enabling Release Mode.

Burning the eFuses for enabling Flash Encryption, as
shown in Fig. 12b, is postponed as long as possible. Although
our attack works equally well with and without Flash En-
cryption, this allows us to gradually develop the attack and
compare timing in the two cases.

Likewise, burning the eFuse for disabling Download Mode,
as shown in Fig. 12d, is postponed as long as possible. Al-
though this security feature does not preclude our attack, in
which we enter Download Mode by directly jumping to ad-
dress 0x40008ceb, one cannot easily program the external
Flash anymore after the eFuse is burned. Recall from Algo-
rithm 1 that at least 33 manipulated Flash images need to be
programmed to set the recomputed checksum to an arbitrary
pointer. Starting from a valid signed and encrypted image,
where the bootloader prints “Hello, World!”, we created four
images that correspond to the four interesting jump locations
in Table 2. Only after tuning the glitch parameters, we burn

$ espefuse.py burn_key_digest rsa.pem

$ espefuse.py burn_efuse ABS_DONE_1 1

(a) Secure Boot.

$ espefuse.py burn_key flash_encryption aes.bin

$ espefuse.py burn_efuse FLASH_CRYPT_CNT 1

$ espefuse.py burn_efuse FLASH_CRYPT_CONFIG 15

(b) Flash Encryption.

$ espefuse.py burn_efuse DISABLE_DL_ENCRYPT 1

$ espefuse.py burn_efuse DISABLE_DL_DECRYPT 1

$ espefuse.py burn_efuse DISABLE_DL_CACHE 1

$ espefuse.py write_protect_efuse FLASH_CRYPT_CNT

(c) Release Mode.

$ espefuse.py burn_efuse UART_DOWNLOAD_DIS 1

(d) Download Mode.

Figure 12: Burning eFuses for (a) enabling Secure Boot, (b)
enabling Flash Encryption, (c) enabling Release Mode, and
(d) disabling Download Mode.

the eFuse. Because the Flash is external, programming in
principle remains possible, at the minor inconvenience of
soldering an SPI programmer to the chip.

4.2 EM-FI Setup
We used Riscure’s EM-FI setup [29]. The motorized XYZ
stage is shown in Fig. 13a. We used the large red Classic
probe tip, which has a diameter of 4 mm. The targeted ESP32
V3 board is stabilized with double-sided tape. A desktop
computer communicates with the board via the Micro-USB
connector; a Windows COM port provides the serial interface.
As is shown in Fig. 13b, an electric wire is attached to the
chip-enable pin from the SPI Flash chip, thereby providing a
timing reference (i.e.trigger) for the EM glitches.

4.3 Tuning Glitch Parameters
4.3.1 Coarse Timing: Execution Trace

The most crucial glitch parameter to be tuned is the timing.
As in prior work, we use the so-called chip-enable signal of
the Flash chip as a timing reference. As shown in Fig. 14,
the chip-enable signal is observed to consist of five relatively
large blocks where data is copied from Flash to SRAM. We
used a Teledyne LeCroy WavePro 804HD oscilloscope to
take these measurements.

Next, we determine when crc32_le is executed with
respect to these five copy blocks. For this purpose, we use
Espressif’s GDB to trace the program execution. We created a

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 237

(a) XYZ stage and Spider

(b) Target and glitch amplifier

Figure 13: Riscure EM FI setup.

Vo
lta

ge
[V

].

Time [ms].

Figure 14: Blocks of data copied from Flash to SRAM. The
reset signal is colored blue; the chip-enable signal is colored
red.

Python script that starts from a hardware breakpoint in main,
and then pauses at each instruction with stepi until the
program ends. At each pause, we log the function name, the
value of the program counter, and the value of registers a0 to
a15. This whole process takes less than two hours. As shown
in Fig. 15, crc32_le is executed shortly after block #5.

memcpy
ets_printf and subroutines

crc32_le
RSA

0 0.5 1 1.5 2 2.5

·105Time [instructions].

Figure 15: Execution trace when the CRC is correct (top) and
wrong (bottom).

Remark that execution traces are only one possible method
to obtain course timing information. An unexplored alterna-
tive is SCA, e.g., by taking power-consumption measurements.
In this approach, power traces are collected for the two classes,
where the recomputed checksum is correct and wrong for the
first and second class respectively. Initially, the two classes
should be quasi indistinguishable, and shortly after crc32_
le, the classes should diverge drastically.

4.3.2 Refined Timing: FI as Virtual Oscilloscope

Next, we refine the timing by using EM-FI as a virtual oscil-
loscope [20,23,30]. We inject glitches in a large time interval
while fetching the CRC error string from UART, both with
and without Flash Encryption. Because only tiny differences
could be observed, we only show results obtained with Flash
Encryption enabled in Fig. 16 and all subsequent scatter plots.

For Fig. 16 and all subsequent plots, we adopt the color
legend from Table 3. Green dots represent the baseline, i.e.,
the fault has no observable effect in the UART output, and the
device eventually resets because the stored and recomputed
checksums are different. Yellow dots represent fault-induced
crashes, i.e., the fault and not the checksum difference causes
the target device to reset. Cyan dots indicate that the CRC
error string is deformed, e.g., characters are missing or cor-
rupted. Orange dots indicate that the CRC error string is
well-formed, but the recomputed checksum is corrupted. Pur-
ple dots indicate that the stored checksum is corrupted instead.
Pink dots indicate that the recomputed and stored checksums

238 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Delay [ns]

Po
w

er

Figure 16: FI as an oscilloscope.

are both corrupted. Red dots indicate successful PC control.

Table 3: Color legend for the scatter plots in Figs. 16 to 19.

green Nominal response.
yellow No response, i.e., a crash.
cyan Deformed CRC error string.

orange Altered recomputed checksum.
purple Altered stored checksum.
pink Altered recomputed and stored checksums.
red Successful jump.

For improved visibility, three measures are taken for all
scatter plots. Firstly, small random errors are added to the
shown pair of variables, which is also a common practice in
Riscure’s own visualization software, Spotlight. Otherwise,
most dots would coincide. Secondly, dots are drawn in the
order of the legend in Table 3. Otherwise, a small number of
red dots could be obscured by large numbers of green and
yellow dots, for example. Thirdly, dots with different colors
might be drawn with different diameters.

In Fig. 16, two regions are of particular interest. The re-
gion with the orange dots corresponds to crc32_le. The re-
gion with cyan dots is part of ets_printf. From the ROM
code execution trace analysis, we know that ets_printf
starts well before the cyan dots appear. The function ets_
secure_boot_verify_signature is likely executed
in the region between the orange and the cyan dots. This is
not visible because of the very small number of instructions
the function is composed of.

4.3.3 XY-Coordinates and Power

The XYZ-stage is used to scan the surface of the ESP32 chip.
Although the surface is approximately square, the EM-FI
probe is partially blocked by the neighboring Flash chip and
is free to move in a rectangular area of roughly 5 mm× 2 mm.

Because the Flash chip has only eight pins, displacement
though soldering is possible, but is unnecessary for the attack
to succeed. Within the rectangular area, the probe moves in a
30-by-30 grid.

Fig. 17 shows the result of our surface scan. For clar-
ity, only the green, yellow, and red dots are shown. Red
dots represent successes, i.e., the string in ets_fatal_
exception_handler is successfully printed. For this par-
ticular scan, we used the 0x8XXXXXXX address. The key
takeaway of Fig. 17 is that the probe can be placed inside
at a relatively large fraction of the chip’s surface in order to
inject a successful glitch. Stated otherwise, finding the prover-
bial needle in a haystack primarily applies to time, not space.
This is unsurprising because the CPU is relatively large and,
arguably, the centerpiece of the chip.

X [µm]

Y
[µ

m
]

Figure 17: Scan of the chip surface.

Figure 18 shows a similar scatter plot, now pairing the
glitch delay and the glitch power. The power randomly varies
between 20% and 100% of the physical maximum; 500 is
merely a scaling factor configured in software. The key take-
away of the plot is that two different instruction corruptions
result in the desired jump.

Our setup performs around 3.4 attempts per second. The
red dots can be reproduced with success rates of around 2%,
upon fixing the position (X ,Y), the delay, and the power.

4.4 Root Cause Analysis
As for virtually all FI attacks described in the literature, there
is no absolute certainty about the exact instruction corruption
that caused the attack to succeed. Nevertheless, clues can be
obtained.

The easiest available source of clues is the UART log. Re-
call that ets_fatal_exception_handler prints reg-
isters a2 to a6. By matching the printed values to the GDB
execution trace, we conclude that a2 to a6 from ets_
secure_boot_verify_signature are printed. The
addition add.n a2, a6, a2 at address 0x40065481 is con-
firmed to take place, i.e., the instruction corruptions happen
from 0x40065483 onwards. Another clue obtained from
UART is that for the second cluster of red dots in Fig. 18,
the CRC error string is printed, whereas for the first cluster,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 239

Po
w

er

Delay [ns], minus 1641 µs.

Figure 18: Delay versus power.

this print is missing. Based on the above observations, we set
forth a hypothesis for each cluster:

1. For the first cluster, we corrupt an instruction in ets_
secure_boot_verify_signature between ad-
dresses 0x40065483 and 0x40065491. This cor-
ruption causes a jump to ets_fatal_exception_
handler with immediate effect, and without shifting
the register window. The above behavior is consistent
with jx in Corruption 3, but inconsistent with overwrit-
ing the return address a0 in Corruption 2.

2. For the second cluster, we corrupt an instruction in the
beginning of ets_printf. This corruption causes a
jump to ets_fatal_exception_handler with a
delayed effect, and rotates back the window with eight
registers. This behavior is consistent with overwriting
the return address a0.

A second source of clues is the aforementioned notion of
using FI as an oscilloscope. Figure 19 covers a narrow time in-
ternal around the two clusters of red dots. Purple dots indicate
that the stored checksum is wrong, whereas the recomputed
checksum is correct. Pink dots indicate that both checksums
are wrong. We see a stripe pattern with a period of around
25 ns. This corresponds to a frequency of 40 MHz, which is
also the frequency of the external crystal oscillator.

The first cluster of reds dots is located within a purple
region, which is consistent with Corruption 3. Note that the
stored checksum is loaded right before.

4.5 Jumping to Download Mode

After having tuned our parameters, we prepare the
0x80008ceb image for Download Mode and burn the eFuse
in Fig. 12d. If successful, we can leverage this mode to read
and write memory, and execute arbitrary code.

To verify that we are successful in getting into Download
Mode, we use UART to send the packet below, which is a
command for reading memory. As defined in Espressif’s Se-
rial Line Internet Protocol (SLIP) [11], each packet begins
and ends with byte 0xc0. The second byte is 0x00 and indi-
cates that the packet is a request. The third byte is 0x0a and
indicates the nature of the request: reading data from a mem-
ory address. Byte 4 and 5, with value 0x0400, indicate that
four bytes of data are attached to this packet, i.e., the memory
address. Bytes 6 to 9, with value 0x00000000, are unused.
Bytes 10 to 13 encode the memory address 0x3f401000
in little endian. This virtual address is mapped to physical
address 0x1000 of the external Flash, where the firmware
file header is written [10], starting with a magic byte 0xe9.

c0000a0400000000000010403fc0.

The ESP32 responds with the packet below. Unlike before,
the second byte is 0x01 and indicates that the packet is a
response. The third byte is still 0x0a, repeating the nature of
the request. Again, byte 4 and 5, with value 0x0400, indicate
that four bytes of data are attached. Byte 6 to 9, with value
e9030210, are decrypted Flash contents. Figure 20 displays
the Flash contents before and after encryption, which confirms
the match.

c0010a0400e903021000000000c0.

The success rate for jumping to Download Mode is
the same as for jumping to ets_fatal_exception_
handler: roughly 2%. Because an attacker only needs to
succeed once, further optimizing this success rate is unneces-
sary.

5 Conclusion

Our work demonstrates that the ESP32 V3, even though it
is specifically hardened against FI attacks, is still vulnera-
ble. Using a single EM glitch, we were able to bypass the
SoC’s most significant security features, i.e., Secure Boot V2,
Flash Encryption, the disabling of Download Mode by burn-
ing fuses, and the enabling of Release Mode by burning fuses.
We have no reasons to believe that a skilled and resourceful at-
tacker would be unable to perform this attack on a commercial
product that incorporates an ESP32 V3 chip.

Moreover, we believe to have demonstrated an FI technique
that is versatile enough to be applied to various architectures,
which includes vendors other than Espressif. Our approach

240 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Delay [ns]

Po
w

er

Figure 19: FI as an oscilloscope, revisited.

00000000 E9 03 02 10 3C 06 08 40 EE 00 00 00 00 00 03 00<..@........
00000010 00 FF FF 00 00 00 00 01 20 00 FF 3F C4 0C 00 00?....
00000020 FF FF FF FF 28 50 04 00 FF AC 00 00 01 00 00 00(P..........
00000030 00 F0 F5 3F 00 00 00 00 04 00 00 00 05 00 00 00 ...?............
00000040 06 00 00 00 07 00 00 00 41 73 73 65 72 74 20 66Assert f
00000005 61 69 6C 65 64 20 69 6E 20 25 73 2C 20 25 73 3A ailed in %s, %s:

(a) Unencrypted.

00000000 BB C3 FC 39 C1 52 A1 1B 05 D8 E9 FF A2 4E D3 64 ...9.R.......N.d
00000010 7C 55 95 FC DC 5C AA BB AC 81 38 A1 0F 99 62 42 |U...\....8...bB
00000020 98 D1 9C 13 66 1C 49 D1 E4 C4 42 6F D9 76 24 55f.I...Bo.v$U
00000030 DD 4A C4 ED FB 01 05 18 29 02 4A 7A F4 01 4E 52 .J......).Jz..NR
00000040 C1 2C B9 02 77 6F DE 4B 72 24 1A DB 2D A9 1D 3E .,..wo.Kr$..-..>
00000005 39 E1 0D BB A3 6F BA B1 DA E5 02 A0 27 76 00 64 9....o......’v.d

(b) Encrypted.

Figure 20: Hexadecimal dump of a Flash image (a) before
encryption and (b) after encryption.

marks the first successful demonstration of loading an arbi-
trary value into the PC register of a CPU without being able
to directly control the value. Modifying ciphertext in order to
load the result of a computation on the plaintext into the PC
using a single glitch represents a previously unseen level of
complexity for such attacks.

The vulnerabilities we exploited on the ESP32 V3 require
a new hardware revision as they cannot be mitigated by a
software patch. If such a revision would be made, the attack
could be mitigated by simply not printing the checksum val-
ues on the serial interface. However, given that variations
on our FI technique are not limited to the checksum opera-
tion, the printing of any information on the serial interface

should be carefully assessed. Either way, Espressif indicated
that the attack presented in this article does not apply to the
ESP32-S2, ESP32-C3, ESP32-S3, and future chips. We did
not investigate what is different for those chips that would
yield our attack inapplicable.

Acknowledgments

We thank Espressif for establishing a smooth vulnerability-
disclosure process.

References

[1] Karim M. Abdellatif, Olivier Hériveaux, and Adrian
Thillard. Unlimited results: Breaking firmware encryp-
tion of ESP32-V3. Cryptology ePrint Archive, Paper
2023/090, January 2023. https://eprint.iacr.org/
2023/090.

[2] Hagai Bar-El, Hamid Choukri, David Naccache,
Michael Tunstall, and Claire Whelan. The sorcerer’s
apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[3] Kévin Courdesses (Courk). Fault injection attacks
against the ESP32-C3 and ESP32-C6, January
2024. https://courk.cc/esp32-c3-c6-fault-
injection#esp32-c3-c6-fault-injection [Ac-
cessed: Feb 9, 2024].

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 241

https://eprint.iacr.org/2023/090
https://eprint.iacr.org/2023/090
https://courk.cc/esp32-c3-c6-fault-injection#esp32-c3-c6-fault-injection
https://courk.cc/esp32-c3-c6-fault-injection#esp32-c3-c6-fault-injection

[4] derrek, nedwill, and naehrwert. Nintendo hacking 2016
– game over, December 2016. 33rd Chaos Commu-
nication Congress (33C3), https://media.ccc.de/
v/33c3-8344-nintendo_hacking_2016 [Accessed:
Mar 11, 2024].

[5] Espressif. ESP-IDF programming guide – flash encryp-
tion. https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/security/flash-
encryption.html [Accessed: Mar 12, 2024].

[6] Espressif. ESP-IDF programming guide – secure boot
v2. https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/security/secure-boot-
v2.html [Accessed: Mar 12, 2024].

[7] Espressif. ESP32 chip revision v3.0 – user guide.
https://www.espressif.com/sites/default/
files/documentation/esp32_chip_revision_v3_
0_user_guide_en.pdf [Accessed: Mar 12, 2024].

[8] Espressif. ESP32-DevKitC V4 getting started guide.
https://docs.espressif.com/projects/esp-
idf/en/stable/esp32/hw-reference/esp32/get-
started-devkitc.html [Accessed: Mar 12, 2024].

[9] Espressif. ESP32 series ROM ELF files.
https://github.com/espressif/esp-rom-
elfs/releases [Accessed: Mar 12, 2024].

[10] Espressif. Firmware image format. https:
//docs.espressif.com/projects/esptool/
en/latest/esp32/advanced-topics/firmware-
image-format.html [Accessed: Mar 12, 2024].

[11] Espressif. Serial protocol. https://docs.
espressif.com/projects/esptool/en/latest/
esp32/advanced-topics/serial-protocol.html
[Accessed: Mar 12, 2024].

[12] Espressif. Espressif security advisory concerning
fault injection and secure boot (cve-2019-15894),
2019. https://www.espressif.com/en/news/
Espressif_Security_Advisory_Concerning_
Fault_Injection_and_Secure_Boot [Accessed:
Mar 12, 2024].

[13] Espressif. ESP32-WROOM-32E – ESP32-
WROOM-32UE – Datasheet v1.6, 2023.
https://www.espressif.com/sites/default/
files/documentation/esp32-wroom-32e_esp32-
wroom-32ue_datasheet_en.pdf [Accessed: Mar 12,
2024].

[14] Espressif. Security advisory concerning breaking
the hardware AES core and firmware encryption
of ESP32 chip revision v3.0. Technical report,
2023. https://www.espressif.com/sites/

default/files/advisory_downloads/AR2022-
003%20Security%20Advisory%20Concerning%
20Breaking%20the%20Hardware%20AES%20Core%
20and%20Firmware%20Encryption%20of%
20ESP32%20Chip%20Revision%20v3.0%20-
%20V2.0%20EN.pdf [Accessed: Mar 12, 2024].

[15] Espressif. Security advisory concerning bypassing
secure boot and flash encryption using CPA and
FI attack on ESP32-C3 and ESP32-C6. Technical
report, 2023. https://www.espressif.com/sites/
default/files/advisory_downloads/AR2023-
007%20Security%20Advisory%20Concerning%
20Bypassing%20Secure%20Boot%20and%20Flash%
20Encryption%20using%20CPA%20and%20FI%
20attack%20on%20ESP32-C3%20and%20ESP32-
C6%20EN.pdf [Accessed: Mar 12, 2024].

[16] Espressif. Security advisory concerning bypassing
secure boot and flash encryption using EMFI. Technical
report, 2023. https://www.espressif.com/sites/
default/files/advisory_downloads/AR2023-
005%20Security%20Advisory%20Concerning%
20Bypassing%20Secure%20Boot%20and%20Flash%
20Encryption%20Using%20EMFI%20EN.pdf [Ac-
cessed: Sep 12, 2023].

[17] Travis Goodspeed. GameBoy ROM tutorial, March
2023. https://github.com/travisgoodspeed/
gbrom-tutorial [Accessed: Mar 12, 2024].

[18] Travis Goodspeed. Thread on X by @travisgoodspeed,
November 2023. https://threadreaderapp.com/
thread/1728420233050747287.html [Accessed:
Mar 12, 2024].

[19] James Gratchoff. Proving the wild jungle jump.
Technical report, University of Amsterdam, July
2015. https://www.os3.nl/_media/2014-2015/
courses/rp2/p48_report.pdf.

[20] Tim Hummel. Exploring effects of electromagnetic
fault injection on a 32-bit high speed embedded device
microprocessor. Master Thesis, University of Twente,
July 2014.

[21] Internet Engineering Task Force (IETF). RFC 8017
– PKCS #1: RSA cryptography specifications version
2.2. https://datatracker.ietf.org/doc/html/
rfc8017 [Accessed: Mar 12, 2024].

[22] LimitedResults. Fatal fury on ESP32: Time to
release hardware exploits. BlackHat Europe 2019,
December 2019. https://www.blackhat.com/eu-
19/briefings/schedule/#fatal-fury-on-esp-
time-to-release-hardware-exploits-17336.

242 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://media.ccc.de/v/33c3-8344-nintendo_hacking_2016
https://media.ccc.de/v/33c3-8344-nintendo_hacking_2016
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/hw-reference/esp32/get-started-devkitc.html
https://github.com/espressif/esp-rom-elfs/releases
https://github.com/espressif/esp-rom-elfs/releases
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/serial-protocol.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/serial-protocol.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/serial-protocol.html
https://www.espressif.com/en/news/Espressif_Security_Advisory_Concerning_Fault_Injection_and_Secure_Boot
https://www.espressif.com/en/news/Espressif_Security_Advisory_Concerning_Fault_Injection_and_Secure_Boot
https://www.espressif.com/en/news/Espressif_Security_Advisory_Concerning_Fault_Injection_and_Secure_Boot
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2022-003%20Security%20Advisory%20Concerning%20Breaking%20the%20Hardware%20AES%20Core%20and%20Firmware%20Encryption%20of%20ESP32%20Chip%20Revision%20v3.0%20-%20V2.0%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-007%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20using%20CPA%20and%20FI%20attack%20on%20ESP32-C3%20and%20ESP32-C6%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://www.espressif.com/sites/default/files/advisory_downloads/AR2023-005%20Security%20Advisory%20Concerning%20Bypassing%20Secure%20Boot%20and%20Flash%20Encryption%20Using%20EMFI%20EN.pdf
https://github.com/travisgoodspeed/gbrom-tutorial
https://github.com/travisgoodspeed/gbrom-tutorial
https://threadreaderapp.com/thread/1728420233050747287.html
https://threadreaderapp.com/thread/1728420233050747287.html
https://www.os3.nl/_media/2014-2015/courses/rp2/p48_report.pdf
https://www.os3.nl/_media/2014-2015/courses/rp2/p48_report.pdf
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017
https://www.blackhat.com/eu-19/briefings/schedule/#fatal-fury-on-esp-time-to-release-hardware-exploits-17336
https://www.blackhat.com/eu-19/briefings/schedule/#fatal-fury-on-esp-time-to-release-hardware-exploits-17336
https://www.blackhat.com/eu-19/briefings/schedule/#fatal-fury-on-esp-time-to-release-hardware-exploits-17336

[23] Nourdin Aït El Mehdi. Analyzing the resilience of mod-
ern smartphones against fault injection attacks. Master
Thesis, Delft University of Technology, June 2019.

[24] Nicolas Moro, Karine Heydemann, Emmanuelle En-
crenaz, and Bruno Robisson. Formal verification of
a software countermeasure against instruction skip at-
tacks. Journal of Cryptographic Engineering, 4:145–
156, 2014.

[25] The On-Line Encyclopedia of Integer Sequences.
A048651, July 2007. https://oeis.org/A048651
[Accessed: Mar 12, 2024].

[26] Colin O’Flynn. Low-cost body biasing injection (BBI)
attacks on WLCSP devices. In Pierre-Yvan Liardet and
Nele Mentens, editors, 19th Conference on Smart Card
Research and Advanced Applications (CARDIS 2020),
volume 12609 of Lecture Notes in Computer Science,
pages 166–180. Springer, November 2020. https://
eprint.iacr.org/2020/1228.pdf.

[27] Raelize. Breaking SoC security by glitching OTP data
transfers, 2020. https://hardwear.io/usa-2022/
speakers/cristofaro-mune.php.

[28] Raelize. Espressif ESP32: Bypassing encrypted
secure boot (CVE-2020-13629), September 2020.
https://raelize.com/blog/espressif-esp32-
bypassing-encrypted-secure-boot-cve-2020-
13629/.

[29] Riscure. EM-FI transient probe. https:
//www.riscure.com/products/em-fi-transient-
probe/ [Accessed: Mar 12, 2024].

[30] Albert Spruyt, Alyssa Milburn, and Łukasz
Chmielewski. Fault injection as an oscilloscope:
Fault correlation analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems,
2021(1):192–216, Dec. 2020.

[31] Michael Steil. 17 mistakes Microsoft made in the
Xbox security system. In 22nd Chaos Communication
Congress, 2005.

[32] Tensilica, Inc. Xtensa instruction set architecture (ISA)
– Reference manual, April 2010. https://0x04.net/
~mwk/doc/xtensa.pdf [Accessed: Mar 12, 2024].

[33] Niek Timmers and Cristofaro Mune. Using fault in-
jection to turn data transfers into arbitrary execution,
2019. https://powerofcommunity.net/poc2019/
Niek.pdf.

[34] Niek Timmers, Albert Spruyt, and Marc Witteman. Con-
trolling PC on ARM using fault injection. In Work-
shop on Fault Diagnosis and Tolerance in Cryptography

(FDTC 2016), pages 25–35. IEEE Computer Society,
August 2016.

[35] Marc Witteman and Martijn Oostdijk. Secure appli-
cation programming in the presence of side channel
attacks. In RSA conference, volume 2008, 2008.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 243

https://oeis.org/A048651
https://eprint.iacr.org/2020/1228.pdf
https://eprint.iacr.org/2020/1228.pdf
https://hardwear.io/usa-2022/speakers/cristofaro-mune.php
https://hardwear.io/usa-2022/speakers/cristofaro-mune.php
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/
https://www.riscure.com/products/em-fi-transient-probe/
https://www.riscure.com/products/em-fi-transient-probe/
https://www.riscure.com/products/em-fi-transient-probe/
https://0x04.net/~mwk/doc/xtensa.pdf
https://0x04.net/~mwk/doc/xtensa.pdf
https://powerofcommunity.net/poc2019/Niek.pdf
https://powerofcommunity.net/poc2019/Niek.pdf

Basilisk: Remote Code Execution by Laser Excitation of P–N Junctions
Without Insider Assistance

Joe Loughry
Netoir.com

joe@netoir.com

Kasper Rasmussen
University of Oxford

kasper.rasmussen@cs.ox.ac.uk

Abstract
Inadvertent photosensitivity of P–N junctions has been

known for a long time, but most of the attacks that have been
demonstrated are covert channels, requiring an adversarial
presence on the device. We show not only how it is possible
for an external attacker to bias a P–N junction with a low
power laser, without any kind of insider assistance, but also
how this kind of attack can be used to perform logic level at-
tacks on the target device and thus interfere with the device’s
operation. The technique requires precision but is feasible in
practice with off the shelf hardware, as long as the attacker
has a line of sight to the target. It can result in attacks that
include crashing a computer, change memory contents, alter
the instruction stream of a running program, alter messages on
a shared communication bus, insert new messages, or prevent
communication. Most of these attacks have never been demon-
strated before without insider assistance. We demonstrate that
under the right circumstances the attack can lead to arbitrary
code execution on the target device. We show a working proof
of concept including remote code execution, and quantitative
measurements leading to testable predictions. Mitigation of
this vulnerability is challenging and countermeasures will in
most cases require hardware changes.

1 Introduction

Semiconductors are the substrate on which most modern elec-
tronics are built. Semiconductors can be “doped”, i.e., contam-
inated, with elements that makes it either positively charged
or negatively charged, with the interface between positively-
and negatively charged sections called a P–N junction. These
junctions are the basic building blocks of all transistors and
diodes (and by extension logic gates, IC and LEDs) and are
thus present in basically every device.

In some cases these components are exposed to the outside
world, either by design in the case of LEDs, or accidentally in
case any part of a circuit board can be seen through vent holes
or other openings in a device. Exposed P–N junctions that

are electrically connected to a shared communication bus are
vulnerable to being optically “pumped” by a modulated laser
beam. The effect is to reverse the LED, turning it into a current
source, or to bridge the diode, turning it into a conductor,
thereby affecting the circuit that the component is connected
to.

The effect depends on the type of component and the sur-
rounding electric field. In photovoltaic mode, an LED in
forward bias will be reversed if sufficient optical power is
pumped into it at the right wavelength; this causes the LED
to generate a photocurrent that runs backwards through the
connected circuits of the computer, driving the connected
circuit high; in photoconductive mode, e.g., an electrostatic
discharge (ESD) protection diode in reverse bias, pumped by
an infrared laser, conducts current in the opposite direction,
grounding the bus and driving it low. The effect is transient,
and leaves no evidence behind.

We explored the feasibility of conducting such attacks in
practice and the extent to which this effect can be used by
an attacker to affect a victim system. We found it is in fact
possible to affect P–N junctions using an external light source,
in practical conditions. Further more it is possible to achieve
a range of different effects depending on what the exposed
LED or diode is connected to.

We conducted a number of experiments to determine the
parameters for a successful attack. These include the angle at
which the laser hits the diode, the power level needed and the
modulation of the laser. All experiments are done with low
cost devices that are easily available to anyone, e.g., a laser
module from a Blu-ray player.

We present two working proofs of concept. First an attack
on a live I2C bus running between commercially available
devices, and second, an attack on the CPU–memory bus on a
pedagogically minimized CPU. The first shows that we can
inject or alter messages on the I2C bus that will be accepted as
legitimate by other devices on the bus. The second gives the
attacker arbitrary execution privilege (with some interesting
constraints) on the CPU.

Mitigation of the vulnerability is not straightforward. In

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 245

most cases countermeasures will require hardware changes
and we discuss when and how this can be done in practice.

2 Photosensitivity of P–N junctions

Semiconductor P–N junctions are photosensitive because pho-
tons generate electron–hole pairs when they hit a semiconduc-
tor under the right conditions, specifically the depletion layer
that forms in the presence of an electric field between the
p-type and n-type doped regions. Electron–hole pairs form
when a photon with the right amount of energy is absorbed
by a semiconductor atom [84, p. 80]. In zero-bias mode, the
photocurrent generated is proportional to irradiance on the
P–N junction [86, Chapter 6, p. 238].

The result of this conversion depends on the electric field,
i.e., how the junction is biased. If the P–N junction, say in an
LED, is zero biased and illuminated by a suitable wavelength,
it goes into what is called photovoltaic mode. Electrons are
swept towards the anode, and holes are swept towards the
cathode. This makes the cathode positive with respect to the
anode, sending an electric current through any circuit attached
to the LED but in the opposite direction from the way that
usually makes the LED light up. The same thing happens if
the LED is forward biased, i.e., lit.

If the P–N junction is reverse biased, as in an ESD protec-
tion diode on a shared bus, it goes instead into photoconduc-
tive mode when illuminated by the laser. Here, electrons are
swept by the electric field towards the cathode, immediately
recombining with holes there, lowering the resistance to elec-
tric current and making the P–N junction into a conductor.
Because the depletion layer is widened by the reverse bias
voltage, making a larger volume where electron–hole pairs
may be created by absorption of photons, photoconductive
mode is more sensitive than photovoltaic mode.

The semiconductor used for the “P” and “N” parts of the
junction influences the best laser frequency to use to excite it.
The same 980 nm infrared photons that work well on silicon
ESD protection diodes are too low in energy (too long a wave-
length) to work effectively on, say, gallium arsenide (GaAs)
doped LEDs. However a typical 520 nm green solid-state laser
works well in that case.

3 Related Work

Unwanted photosensitivity of electronic components has been
a known issue for a long time. In 1952, the first production
IBM 701 mainframe computer failed at its unveiling when
the flashbulbs of news photographers disrupted the Williams
tube memory of the computer [10, 17, 35, 75]. Semiconductor
memory chips, if not protected from visible or ultraviolet light,
are similarly sensitive [51, 82, 89].

In 2015 a flip-chip voltage regulator on the Raspberry Pi 2
single-board computer (SBC) was found—once again when it

was being photographed for a press release before the product
introduction—to crash the computer whenever exposed to
xenon strobe camera flashes [28, 87]. Raspberry Pi 3 was
later found to suffer a similar problem with a much larger
chip-scale package integrated circuit (IC) on the back side,
a Broadcom BCM43438 Wi-Fi and Bluetooth chipset (U19)
this time [70]. In both cases, the root cause was found to be
failure to specify an opaque backside laminate (BSL) on the
chips [61].

Glass-encapsulated small signal diodes have long been
known to pick up noise from overhead fluorescent lighting
fixtures [13]. Photosensitive LEDs have been used before
for communication [23, 81] or light detection [14, 52–55] or
power delivery [1, 26, 49, 62, 63].

Other researchers have proposed ways to make a covert
channel out of this effect. All such efforts require an in-
sider with the ability to run a listening process on the tar-
get device [41]. This is not an unreasonable assumption, as
STUXNET surely proved [19, 40], but what separates those
efforts from this paper is that Basilisk does not require partic-
ipation or cooperation by an insider.1

Most of the remaining published research related to com-
promising optical emanations (optical TEMPEST) concerns
information flow out of the computer system; only a few pa-
pers in the literature address information flow inwards [24,39,
59, 74]. Perhaps closer are laser injection attacks on optical
fiber components of a quantum key distribution system, but
in that case the real target was an optical receiver actively lis-
tening for a signal [30, 73]. A good survey of signal injection
attack vectors is [31].

Sugawara et al. demonstrated coupling between a rela-
tively high power laser and microelectromechanical systems
(MEMS), e.g., microphones and accelerometers, a clear paral-
lel to our work because it similarly depends on the physical
principle of energy transfer from the laser to the target sys-
tem in order to effect coupling to a subsystem that was not
listening for optical signals directly [83]. Rampazzi et al.
(2020) found evidence of both photomechanical and photo-
voltaic effects at work [71, §4.3] and this work was further
extended [22] by Cyr et al. (2024) but MEMS attacks are
always targeting sensors, with the intention of falsifying mea-
surements; our work is targeting any device that has an ex-
posed P–N junction and can give direct access to the internal
state of the machine.

Basilisk is not precisely the same thing as optical fault
injection; that work is done on decapsulated chips, not on
conventionally exposed P–N junctions [3, 5, 25, 33, 36, 37,
64–67, 78–80]. Laser fault injection is a technique primarily
used in chip design and manufacturing for reliability test-
ing. Focused radio frequency, x-ray, subatomic particle, or

1Randal (2023) makes the useful distinction amongst (1) covert channels,
where both sender and receiver are malicious, (2) side channels, where only
the receiver of information is malicious, and (3) fault injection, where only
the sender is malicious [72, §2.1].

246 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Cutting plane

Diode

Figure 1: Example of an ESD protection diode. The actual silicon diode is the small square shape visible in the gap between the
electrodes. It is often located off-center in the gap, decreasing the angle from which it can be hit.

laser radiation can be used to induce permanent or temporary
changes in electronic circuit elements, leading to error states
resulting in failures of the system [4, 90]. Light-induced volt-
age (or current) by means of a scanning laser is a test and
characterization method used by semiconductor manufactur-
ers to optimize process changes. It may be used in margin
testing to assess reliability. Environmental conditions such
as temperature, clock speed, or power supply voltage may
be varied to induce faults; the latter is the basis for glitching
attacks [29, 32].

Single event upset (SEU) testing (e.g., cosmic rays) is im-
portant for space vehicles and devices designed to operate
in the vicinity of a nuclear reactor. Electromagnetic interfer-
ence (EMI) testing for electromagnetic compatibility (EMC)
is a type of fault injection, and Basilisk may be considered
intentional electromagnetic interference (IEMI).

Laser or photoflash fault injection at the basic component
level is usually done on a decapped chip or bare die, un-
der a microscope, allowing for precise placement and small
spot size. As an attack vector, optical fault injection is nor-
mally used for key extraction—from TV set top boxes, elec-
tricity meters, smart cards, and payment terminals, in the
course of hardware security module (HSM) testing, KG-type
military link encryptors, or trusted platform module (TPM)
chips [38, 48]. Bar-El et al. (2004) contains a comprehensive
list of active protections in hardware—duplication of circuits,
multiple redundancy with or without time shifting, and error-
correction codes—and software such as are routinely used in
spacecraft to guard against SEU events [5].

In contrast to all these localized events, we aim to show
that ranged attacks are practicable on networking or pro-
grammable logic controller (PLC) equipment used in factory
automation and control. Instead of extracting information,
such as cryptographic keys, our capability is to take over
control of the system.

4 Basilisk

To demonstrate the various effects of P–N junction excita-
tion we design an injection attack framework called Basilisk.
This attack framework allows an external attacker to com-
promise an air-gapped system, without the need for internal
collaboration.

Fundamentally the low-level effect of a Basilisk attack
is to pull an internal wire in the target device high or low,
depending on the type of diode that it is connected to and the
surrounding circuit.

This can be used to disrupt a number of higher level tasks,
including chip-to-chip communication, assert error- or inter-
rupt conditions or to send or alter commands on a commu-
nication bus. For example, as we demonstrate in detail in
Section 7, it can be used to corrupt or modify instructions
fetched from memory, change the data sent to a display or
communication module, or simply crash a device and make it
unresponsive.

For Basilisk to be effective an attacker must be able to
target a P–N junction directly. In this explanation we will use
ESD protection diodes as examples although the same applies
to LEDs or any other P–N junction encased in a transparent
material. Figure 1 shows a magnified view of a diode cut
across the center to expose the silicon chip. Observe that the
silicon chip is sandwiched in a gap between cylindrical metal
electrodes, and the chip is often off-center in the gap, making
it easier or harder to target with a laser beam.

4.1 System model
The system model for Basilisk is depicted in Figure 2. It is
quite broadly applicable and only has a few requirements.

First of all, in order to conduct a Basilisk attack the target
system must have an exposed P–N junction. This can come in
many forms, e.g., in the form of an indicator LED designed
to be visible from the outside; or in the form of an ESD

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 247

Laser DiodeLED

Victim device

Attacker

Figure 2: System and adversary model. The victim system
has an exposed diode (or LED) that can be targeted by an
adversary with a laser beam.

protection component (often a diode) mounted somewhere on
a printed circuit board visible through an opening in the case.

The exposed diode must be connected to a useful target.
The adversary is able to pull the wire connected to the diode
either high or low depending on the type of diode and the
surrounding circuit, but typically not both. The diode must be
connected to a circuit that if pulled high (or low) will have
an effect on the rest of the system. This is very often the case
in practical systems and we will show a number of practical
examples of such systems throughout the rest of the paper.

Finally, for some of the attacks to be effective the target
device must be turned on and running code. This is not always
strictly required, for example one can imagine an example
where a soft power switch can be activated with a Basilisk
attack or a reset line pulled low to reset a halted CPU, but in
most practical cases we will assume that the target system is
running.

The vulnerability exists whenever exposed PN junctions
(like LEDs or ESD protection components) are connected
directly or indirectly to electronic circuits carrying sensitive
information.

4.2 Adversary model

The adversary must have line of sight to the target diode. This
is not trivial in practice, but neither is it very difficult. In Sec-
tion 5 we define a metric called active area that measures how
precisely an attacker must aim to be effective. We show that
it is indeed feasible to do even without specialist equipment.

For certain attacks it is necessary to be able to modulate the
laser, i.e., turn it off an on, say, in order to create valid packets.
We assume the attacker is able to do this as fast as is needed
for the attack. This is a fairly easy requirement in practice, as
the modulation need not be any faster than the communication
protocol under attack, i.e., under 5 MHz for I2C.

Although not always needed, we grant the adversary full
knowledge of the timing of any messages that are transmitted
across a targeted bus. This is somewhat of an over approxima-
tion, but it models the case where this information is available
through other side channels. If this information is not avail-
able, attacks that require specific timing become probabilistic.

Basilisk works by pulling the wire connected to the diode

SDA

V+

SCL

R1 R2

Figure 3: ESD protection diodes on the I2C bus—when
illuminated—are able to pull the bus down against the ef-
fect of pull-up resistors R1 and R2.

either low or high, but not both. For this reason the attacker
can only change a binary 1 to 0, (or 0 to 1) but not both
ways. This is not as much of a limitation as it first appears,
because shared communication buses have pull-up (or pull
down) resistors making the default bus state high (or low) as
in Figure 3. The attacker can send arbitrary messages in that
case by, say, pulling the bus low when needed and letting it go
back up to high by just turning off the laser. Nevertheless it is
a limitation that can come into play in some circumstances.
We describe one example of this in Section 7.1.

Note that this technique does not permit the attacker to
receive information from the circuit under attack, only send
messages. If bidirectional communication is needed, another
side channel must be used to read information. Such side
channels are in fact often available, e.g., when attacking a
display as we demonstrate in Section 7.2, but the attacks we
describe do not need to read from the device.

5 Diode Attack Surface

In this section we demonstrate the specific conditions under
which it is possible for an external attacker to use a laser
to execute a Basilisk attack. We introduce the measurement
setup and then use it to drive ESD protection diodes or LEDs
into photoconductive- or photovoltaic mode respectively, thus
controlling the signal level of the connected circuits.

5.1 CMOS Logic Circuits
Before we continue we need to clarify the target voltage for
our experiments. In CMOS, 3.3 V circuits signals are sup-
posed to be either above VIH = 2.0V to indicate a logic high
condition or below VIL = 0.8V to indicate logic low. The gap
between VIL and VIH is not to be used to avoid ambiguity and
to provide a buffer—called the noise margin—against small
fluctuations in the electrical signal changing the logic state.

However CMOS logic is a binary system and the “unde-
fined” state cannot actually be represented in hardware, so

248 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

VDD = 3.3V

VIL = 0.8V

VIH = 2.0V

VSS = 0V

V

0

1

2

3

Logic LOW

Logic HIGH

Undefined

region
Logic LOW

Logic HIGH

Measured BehaviorStandardized Behavior

Figure 4: CMOS logic levels for 3.3 V circuits. Signals above
2 V are logic high, and below 0.8 V are logic low. In all our
experiments we found that devices will default to a logic low
condition in the undefined region, so although it ought never
to be used, a signal below 2 V is sufficient for an attack.

in practice; in our experiments, anything below 2 V is inter-
preted as a logic low condition.2 This difference is illustrated
in Figure 4. This slightly higher value for a logic low con-
dition is helpful for our attack since the lower the attacker
wants to drive the signal, the more power is needed. Given
the observed behavior we can use 2 V as the threshold for a
successful attack.

5.2 Attack Measurements
To make sure our measurements and results are applicable
to a real world system, we make all our measurements on an
experimental setup consisting of two devices (bus controller
and target) communicating over an I2C-bus. The bus has ESD
protection diodes and external pull-up resistors to allow us to
experiment with different values. We can change the resistor
values and bus voltage independently; this mimics the I2C
specification, which allows a wide variety of values to be
used [60, 68]. A schematic of the test setup can be seen in
Figure 5 and a photo in Figure 6.

The measurement setup consists of a pair of linear actuators
at 90◦ to each other to allow for a systematic raster-scan of
the diode under attack. The actuators are driven by stepper
motors which enable precise repeatable measurements to be
taken. Each raster scan of the diode moves the laser beam
across a 1 mm2 area of one of the ESD protection diodes on
the I2C bus, stopping every 20 µm to measure the voltage on
the bus.

Basilisk attacks are ideally suited for a shared communi-
cation bus because such buses use open collector (or open
drain) drivers. A device wishing to transmit will drive the bus
low to send a binary 0 or simply release the bus and allow the

2Our determination of this value is supported by Lancaster (1974, 1977)
[42–44].

3.3 V 1.8 V

330

(2.5 V)

330

I2C Bus
Voltage
Select

5 V

I2C Bus SDA
SCL

X–Y step
platform

Laser
ESD

Protection

I2C Bus
Pull-up
Select

4.7k2.2k 10k 10k1k

Blocking
Diodes

Controller

I2C Bus
Liveness
Testing

Target

Isolation
Switches

I2C Bus
Monitoring

1k
1k

Isolation

Figure 5: Schematic of the experimental apparatus.

pull-up resistor to return the bus to its logic high condition
(binary 1) between zero bits or between transmissions.

Typical values for I2C bus pull-up resistors are 2.2 kΩ or
4.7 kΩ; lower values pull the bus up more strongly, allowing
faster communication; conversely, a higher value resistor like
10 kΩ is a weaker pull-up.

The ESD protection diodes tested are a common type of
glass-encapsulated DO-35 size small signal diode, a type
1N34A equivalent silicon Schottky diode chosen for its fast
recovery speed. The diode is connected in reverse bias with its
anode at ground potential. Reverse bias makes the diode non-
conductive under normal circumstances, so it doesn’t affect
the operation of the bus. If the voltage on the bus ever exceeds
the reverse breakdown voltage of the diode, e.g., during a
power surge, the diode becomes conductive and shunts the
power surge to ground, protecting the bus and the connected
devices [47, 85].

We test several different lasers from near infrared (IR) de-
vices at 780 nm, to a longer wavelength of 808 nm and 980 nm
in order to identify the type best suited for a particular diode
type. The lasers all have a fixed power (intensity) rating be-
tween 3–5 mW.

We use our measurement setup to trace a raster pattern with
the laser, back and forth over the diode, to identify the best
place to direct the laser during an attack. This is illustrated
in Figure 7. The lasers are focused to the smallest achievable
spot size at a working distance of 32–35 mm. This is not
critical for the attack to work but it gives our measurements a
higher resolution, allowing us to map out diode vulnerabilities
in more detail. Note that even when focused, the beam from
a semiconductor laser is slightly elliptical, so we repeated

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 249

Figure 6: Experimental apparatus. Stepper motor linear ac-
tuators raster scan the laser, its elliptical beam axis marked,
across the glass envelope of an ESD protection diode, ob-
scured here by the laser mount. The color of the radiation
shielding is wavelength-dependent, here for wavelengths
shorter than 550 nm.

all the experiments with the long axis of the elliptical beam
oriented parallel, perpendicular, and diagonally to the long
axis of the gap between the electrodes in the ESD protection
diode under test.

One run of the experiment consists of setting the bus volt-
age and pull-up resistor values, then scanning the laser spot
over the glass body of the diode as shown in Figure 7. Voltage
measurements are taken at fifty evenly spaced points along
each scan line, for a total of 2500 measurements per run. Each
run is repeated sixteen times for different combinations of
bus voltage and pull-up resistor values, then the laser is ro-
tated 45 degrees to shift the elliptical beam axis. We have
experimented extensively with different wavelengths as well,
however for most diode types we have one laser that is clearly
the most efficient, so we only present the data for that set
of experiments. See Section 8.2 for more details on laser
wavelengths.

Voltage measurements are made with a 10-bit analogue-
to-digital converter (ADC) channel 0 of an Arduino Uno
single-board computer, against a 5 V reference. The ADC
was allowed to settle for 500 ms every time the bus voltage
was changed, and several voltage measurements were taken
at every point, then averaged. The resolution of the ADC
is 4.88 mV. All power supply voltages were verified with a
Fluke 107 multimeter to be within 0.1 V of spec before the
start of each run.

1 mm

Figure 7: The raster pattern used to scan the diodes and LEDs
to obtain repeatable results. Each run consists of 2,500 indi-
vidual measurements.

6 Experimental Results

After a comprehensive series of tests on both ESD diodes and
LEDs we have detailed results that show both options as a
viable entry point for a Basilisk attack. In the following we
present our findings for the two diode types.

In both cases the results of the experiments are a series
of voltage measurements across the measurement area. This
area is 1 mm2 for the ESD diodes and 25 mm2 for the larger
LEDs.

6.1 ESD Diodes
A representative result is shown in Figure 8. The size and
shape of the gap between the electrodes can be clearly seen.
There is some indication of the size and location of the silicon
chip. The black isovolt curve indicates the VIH = 2.0V level
where the laser has forced the bus voltage below the logic
threshold. Any hit from the laser inside the 2 V contour line
will be seen as a logic low signal on the I2C bus. We call this
region the active area of the diode and it serves as a good
metric for how easy it is to execute the attack for a specific
set of parameters. If the active area is small for a chosen set
of parameters, it means that those parameters make it more
difficult to drive the signal low. Conversely if the area is large
it means that it is comparatively easier.

To demonstrate how an attacker can best influence an ex-
posed diode, and what circuit types are more vulnerable, we
look at each of the parameters individually. These include
beam axis rotation, bus voltage, and pull-up strength.

Beam rotation. Figure 9 depicts example results for three
different beam rotations. The active areas (region inside the
isovolt curve) look slightly different for the three rotations but

250 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 8: Voltage measurements from a 980 nm laser. The
size and shape of the gap between the electrodes can clearly
be seen. The black isovolt curve delineates the active region
where the laser was able to force the bus voltage below the
logic threshold VIH, thereby imposing a binary zero on the bus.
Simply releasing the bus, by turning off the laser, is sufficient
to send a binary one.

Figure 9: Effect of beam elliptical axis rotation: diagonal 45◦

(left), parallel 0◦ (middle), and perpendicular 90◦ (right).

it seems hard to draw a firm conclusion. To help with that we
plot the average size of each of the active areas over 10 runs
in Figure 10. Here it can be seen that we have a larger active
area if the beam is perpendicular, i.e., rotated 90◦. While it is
tempting to conclude that perpendicular beams are better, it
is likely an artifact of the geometry of a specific diode, as the
internal placement of the silicon die is believed to be random.
However what we can learn from this is that rotation matters,
and in a practical scenario rotating the beam might yield a bit
of extra efficiency if the diode can only be targeted with an
off center beam, or if the power of the laser is limited.

Bus voltage and pull-up resistor strength. Figure 11 shows
the effect of bus voltage and pull-up resistor strength. Voltage
varies from top to bottom and pull-up resistor strength varies
from left to right. Observe how the active area becomes larger

0

50

100

150

200

diagonal parallel perpendicular

Ac
tiv

e
ar

ea
 s

ize

Figure 10: Average size of the active area (over 10 runs) for
each of the three elliptical axis beam rotations. The error bars
indicate standard deviation.

at lower bus voltages and with weaker pull-up resistors. This
makes intuitive sense since with a lower bus voltage there is
less of a voltage difference between a logic high and logic
low signal, and thus it takes less to pull the signal down to a
low state. Similarly for weaker pull-up resistors there is less
current flow available to counteract the attempt to pull the
signal level down to low.

For example, while at 5 V with a strong pull-up, attacking
the I2C bus is difficult, it is easy to attack a bus at 3.3 V with
any reasonable pull-up resistor value.

The isovolt contour lines support the prediction that the
attack will get easier in future as system voltages fall from 5 V
TTL through 3.3 V CMOS to 2.5 V and 1.8 V LVCMOS [2,
introduction]. In general, we can now predict whether a given
combination of component type, bus voltage, pull-up resistor
value, and laser wavelength is reversible.

6.2 Light Emitting Diodes (LEDs)

Doing the same set of experiments again for LEDs serve two
purposes. First we want to show that Basilisk attacks are possi-
ble on LEDs as well, which is important since LEDs are often
more available as targets. Second we want to investigate how
different colored LEDs behave. The behavior will be different
since the semiconductor is doped with different elements in
order to produce different colored light. Furthermore, some
LEDs are encased in a colored resin, which could influence
the effectiveness of our attack laser.

An LED is a significantly bigger target than an ESD diode.
This makes aiming the beam and beam rotation less important
so we will not reproduce that part of the experiment here. We
instead focus on the most important aspects that we found

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 251

Figure 11: Voltage measurements from varying I2C bus volt-
age and pull-up resistor strength as independent variables. All
attacks are done with an 980 nm laser. The black isovolt lines
are 2.0 V for 5 and 3.3 V logic, 1.7 V for 2.5 V logic, and
1.17 V for 1.8 V logic.

will determine the resulting bus voltage, namely the color of
the LED that is being attacked, the bus voltage of the victim
system, and the pull-up resistor strength.

LED color. We tested the Basilisk attacks on six LEDs (four
different colors) with the same 405 nm (violet/blue) laser to
get a measure for how color impacts the efficiency of the
attack. The results can be seen in Figure 12.

We see that pink LEDs exhibit the weakest response which
is likely due to a phosphor layer absorbing a lot of the shorter
wavelength before it gets to the chip. The blue and green
LEDs both respond fine to the attack, and it is clear that those
LEDs are vulnerable enough to be used in practice. The most
vulnerable LED color is white. We have not attempted to
uncover the specific physical reason for these differences, just
note that with the exception of the pink LED, all had fairly
large active regions, making them easy to hit.

Bus voltage and pull-up resistor strength. Another thing to
note from Figure 12 is that the voltage in the active region,
i.e., inside the isovolt curve, is not as low as it is for ESD
protection diodes. While LEDs are large and easy to hit, they
do not drive the voltage as far down with the same laser power,
i.e., they are less efficient. While an ESD protection diode
easily drives the voltage down to zero if hit correctly, LEDs
usually bottom out at 1–1.5 V. As mentioned in Section 4,
this signal level is considered undefined for CMOS circuits
but in practice it is enough to trigger a logic low condition,
which means it is good enough for our purpose.

Figure 12: Voltage measurements of different colored LEDs.
pink (top left), blue (top middle, top right), green (bottom
left, bottom middle), and white (bottom right). All attacks are
done with a 405 nm laser.

7 Case Studies

In the previous section we demonstrated that an adversary can
change the logic level of an I2C bus with a laser. But that falls
short of demonstrating remote code execution on a live CPU,
which requires the attacker to have precise control of timing.

We next show that the attack vector can be used to perform a
meaningful attack. We do this through two case studies. In the
first one we attack a small computer with a simple instruction
set to demonstrate how we can effect arbitrary code execution.
The second case study demonstrates that Basilisk attacks can
be performed against off the shelf hardware.

The two case studies also allow us to demonstrate both
types of Basilisk attack: photovoltaic and photoconductive. In
the first case study the exposed diode is an LED connected to
the memory bus so we can use photovoltaic attacks to drive
the bus wires to their logic high state. In the second case we
attack the ESD protection diodes on an I2C bus so we use a
photoconductive attack to drive the bus low.

7.1 Changing the running instruction stream

To demonstrate the practicality of remote code execution,
at the same time keeping the complexity low so all details
are visible, we constructed a minimal 4-bit computer called
M5. It has status lights on the memory bus—a feature sadly
lacking in most computers designed since the 1970s—and an
instruction set architecture (ISA) small enough to make Fig-
ure 17 feasible. We wanted to be able to show the reachability
analysis between instructions without the overwhelming com-
plexity of a modern ISA like ARMv7 or RISC-V. The point
is to show that because of an interesting constraint on the
attacker—who may only be able to change a binary 0 to 1—
but not the other way around—certain opcodes are reachable
from certain other opcodes, but not always the one you want.

252 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 13: The attacker watching the accumulator to get a
phase lock on the CPU at a cycle time of 250 µs.

M5, shown in Figures 15 (a) and 16, is a minimalist CPU
intended not so much to show the practicality of the attack
against real hardware but—quite the opposite—to highlight
certain unique difficulties of the attack, beyond obvious ones
like aiming and focusing.

The accumulator register is visible on the front panel (Fig-
ure 13)—visibility is key to establishing a phase lock on the
CPU. It has a simple instruction set (Table 1) to make feasi-
ble the reachability analysis in Figure 17, and will halt if it
decodes an illegal opcode. Cycle time is 250 µs but this was
limited by the speed of the laser drivers, not the FPGA.

Both CPU and memory are implemented in the FPGA but
the bus between them was routed externally to be accessible
for probing outside the FPGA’s internal interconnection fabric,
as shown in the schematic of Figure 15 (a). The FPGA used
is a Lattice Semiconductor iCE40-HX8K breakout board,
configured in Verilog with the open source Project iCEstorm.
All experiments in this section are done with a 405 nm, 5 mW
laser.3

It is important to note this is not an FPGA vulnerability; the
attack happens outside the FPGA’s internal interconnection
fabric, on external I/O pins, which are all standard CMOS.

M5 runs the microcode for each instruction on a sixteen-
step cycle. Figure 14 shows a typical instruction, opcode
mnemonic STA, which stores the value currently in the accu-
mulator register to a specified memory location.

The attacker needs to know a lot about the CPU and the
program that is currently running to perform the attack suc-
cessfully. Firstly, the attacker needs to establish a phase lock
on the internal state of the CPU, and from it to accurately
measure the cycle time, because the entire attack is predicated
on cycle counting.

Here, phase locking is accomplished by watching the ac-
cumulator display for changes, because the display always
changes at a known microcode cycle. From the direction
and magnitude of the change, the attacker can deduce what

3With the laser focused at infinity, any portion of the beam lying within a
5 mm diameter acceptance cone at the target will automatically be captured
and index matched to the P–N junction, because optical systems—in this
case, the lens of the LED—are time-reversible.

PC➔MAR

0
1

2

3

4

5
6

7
9

8

15
14

13

12

11

10

MDR➔IR

PC➔ALU

ALU➔PC

PC➔MAR

MDR➔
MAR

ACC➔MDR

PC➔ALU

(memory
read)

(ALU
add 1)

(memory
read)

(memory
read)

(and memory
write)

(ALU
add 1)

ALU➔PC

LASER FIRES
TO CHANGE

OPCODE

LASER FIRES
TO CHANGE
ADDRESS

LASER FIRES
TO CHANGE

DATA

↻

Figure 14: Timing diagram of the microcode showing where
the laser fires during fetch and execution of a single instruction
(here, STA for “store accumulator”).

instruction was running (for example, INC or DEC if the accu-
mulator value changed by one, or STA if the value changed by
more than one). From the time between changes, the attacker
can calculate the cycle time by dividing by the number of
instructions executed between changes and looking up the
cycle time of each instruction, which may be different.

All this could be accomplished a different way simply by
watching the bus LEDs. We do it by means of the accumulator
simply to illustrate the general principle that the attacker is not
necessarily attacking the same LED as the one being watched.

After the attacker has established a phase lock and mea-
sured the cycle time, the attack proceeds by counting cycles
into a predicted part of the fetch–execute cycle and firing the
lasers at the instant when the desired value is known to be on
the bus (Figure 14). Typically, the laser fires more than once
during a particular instruction; for example, once to change
the opcode, again four and a half cycles later to change the
memory address, and five cycles after that to change the data
being written to memory.

The result of the attack can be seen on the right side of
Figure 15. Memory map (b) shows what the memory contents
of M5 looked like before the attack; (c) shows what it looks
like after. The attacker fired the lasers a total of twenty times
in six seconds to force the normal program in locations 0–7
to write a new program in high memory at locations 9–14,
and then forced a branch to it.

We did not collect any data on the probability of the attack
being successful, because we found it to be reliable under the
conditions we set up. The lasers are bolted in position, aimed

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 253

FPGA

iCE40HX8K-CT256

BANK 0

BANK 2

B
A
N

K
 3 B

A
N

K
 1

PIO2_15
PIO2_07
PIO2_03
PIO2_01

PC

PIO2_17
PIO2_24
PIO2_20
PIO2_18

ACC

PIO2_39
PIO2_32
PIO2_34
PIO2_33

IR

PIO
2_05

PIO
2_43

PIO
2_35

PIO
2_38

ALU_A

PIO
2_16

PIO
2_08

PIO
2_10

PIO
2_09

ALU_B

PIO
2_29

PIO
2_28

PIO
2_26

PIO
2_21

ALU_R

PI
O

0_
32

PI
O

0_
36

PI
O

0_
33

PI
O

0_
38

MAR

PI
O

0_
18

PI
O

0_
17

PI
O

0_
23

PI
O

0_
29

MDR

BUS LEDS (4)

1k

1k

1k

3.3V

4.7k

4.7k

J5

1k1k

J1

J2 J3

J4

PIO03_09
1k

INDICATORS (1 of 5, TYPICAL)

PIO3_28
PIO3_31

4.7k

3.3V

SWITCHES (1 of 6, TYPICAL)
SPDT FOR DEBOUNCING

NOT SHOWN:

REGISTER MONITORING
LEDS (FOR DEBUGGING)

(a)

0: init: LDA @data
2: loop: BZ @init
4: SR
5: NOP
6: NOP
7: JMP @loop
8:
9:

10:
11:
12:
13:
14:
15: data: #b1000

(b)

0: init: LDA @data
2: loop: BZ @init
4: SR
5: NOP
6: NOP
7: JMP @loop
9: here: LDI #1001

11: LDI #0110
13: JMP @here
15: data: #b1000

(c)

Figure 15: (a) Schematic of the M5 computer, built around a Lattice iCE40HX8K-CT256 FPGA. Jumpers J1–J4 form an H-bridge
to allow flexibly reorienting the polarity of bus LEDs for experimentation. The bus is pulled down by jumper J5. (b) Memory
map before the attack. (c) Memory map after the successful attack.

Figure 16: The M5 computer. Four lasers controlled by an
Arduino with MOSFET laser drivers, are mounted aimed at
the bus LEDs. The four LEDs on the right are the accumulator
(A) register and the LEDs and switches on the left are used to
interact with the computer.

at the bus LEDs from a range of 2 cm, because it removes an
independent variable (aiming error) from the experiment.

The lasers used in this experiment were 405 nm near-
UV diode laser modules of unknown power rating. The
lasers were extracted from “cat toys” sold on Amazon.com
at https://www.amazon.com/gp/product/B09Y4D7NFB/.
In operation, they draw approximately 150 mA each from a
3.3 V supply, so their optical power must be < 500mW and
is probably considerably less, as they get warm in continuous

operation. These are absolutely not eye-safe and should never
have been sold as cat toys.

For safety when using 405 nm lasers, we recommend an
enclosure made from #2422 transparent orange polycarbonate
sheet 3 mm thick, as shown in Figure 6 when that apparatus
was running at 405 nm.

The lasers are modulated by switching their power supply
on and off with a MOSFET. Two important considerations
apply to these lasers; firstly, they need 3.3 V and will burn out
quickly at 5 V, but the MOSFETs won’t switch a load less
than their gate (control) voltage. So to make the MOSFETs
work and avoid burning out the lasers, always switch 5 V
through the MOSFET, and drop it down to 3.3 V with an
LM317 voltage regulator between the MOSFET and the laser.

These lasers were chosen for use because they exhibit quick
response when modulated in this way, typically < 100µs turn-
on and turn-off latency. Many other laser modules from other
sources, when measured, had a turn-on latency of more than
4000 µs, limiting modulation to < 0.25 kHz.

Note that the bus is pulled down by the 10 kΩ resistors.
There is no particular reason why it needs to be that way; it’s
only to make clear that LEDs under laser illumination drive
their signals in reverse.

Using the M5 computer we can now demonstrate a few
different adversarial capabilities, the first and easiest being
to crash the computer using a Basilisk attack, and the second
being arbitrary code execution (with some minor constraints).

To crash the computer, the attacker directs an unmodulated

254 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.amazon.com/gp/product/B09Y4D7NFB/

Mnemonic Opcode Instruction

NOP 0000 no operation
LDA 0001 load accumulator (addr)
INC 0010 increment accumulator
DEC 0011 decrement accumulator
STA 0100 store accumulator (addr)
BZ 0101 branch if A ̸= 0 (addr)
JMP 0110 unconditional branch (addr)
SR 0111 shift right accumulator
LDI 1001 load immediate

Table 1: M5 instruction set. It consists of 9 instructions in-
cluding NOP. This is intentionally simple but Turing complete.

laser to any of the bus LEDs for a few seconds. This has any
of the following effects: (1) changing a valid opcode to an
invalid one; (2) changing the value of a memory address; (3)
changing the contents of a memory read or write operation;
or (4) changing the control flow of the program.

To achieve arbitrary code execution, the attacker needs to
know something about the internal state of the CPU in order
to synchronize precisely. Watching the accumulator display
(Figure 13) is sufficient to obtain a phase lock on the CPU’s
internal state because the display changes at a known cycle
offset within the STA instruction.

Even with knowledge of the running program and the CPU
timing, the attack is not trivial. By targeting some or all of
the bus LEDs, the attacker can change instructions, or data,
or addresses after they are fetched from memory but before
they are executed by the CPU. However the attacker can only
set bits, i.e., change a 0 to a 1, not the other way around.4

This means that for every instruction there is a certain set of
different instructions the attacker can reach. This is illustrated
in Figure 17. The level of effort is not dissimilar to finding
“gadgets” in return-oriented programming (ROP) or selecting
opcodes from the printable character subset of the Intel X86
instruction set architecture [12, 15, 16, 57, 58, 76]. Another
analogy would be to looking a few moves ahead in a chess
game.

The address of a load or store operation can be easily redi-
rected to high memory addresses simply by setting the most
significant bit. The attacker can use many loops through the
program, setting a few bits here and there, gradually build-
ing up the desired program in high memory. Once done, the
attacker can simply redirect a branch to the new code.

In case the code in high memory cannot be created exactly
how the attacker wants, maybe because some bit combinations
were inaccessible, the constructed code can run fixups on
itself the first time it runs. This enables the attacker to use the
available instructions to write the desired program. After that,

4This is in photovoltaic mode; in photoconductive mode, we might only
be able to reset a bit.

Figure 17: Allowable transitions in the instructions set of the
computer defined in Table 1 if the attacker can only set bits,
but not reset them.

the fixed-up code runs, and the attacker has full control.
The attacker must be very careful not to crash the running

program. If the CPU ever halts, the attack is blocked.

7.2 Attacking an I2C bus

We have demonstrated how a Basilisk attack can lead to ar-
bitrary code execution on a toy computer. In this section we
prove the viability by attacking an I2C bus between commer-
cially available devices at 100 kbit s−1.

The I2C bus is a serial, synchronously clocked communica-
tion bus that is widely used and has a tolerant specification we
can abuse. It underlies the System Management Bus (SMBus)
and PMBus, as well as being incorporated in many other real-
world interfaces including HDMI, PCIe, DVI, and VESA [18].
A timing diagram of the I2C bus can be seen in Figure 19.
It consist of two wires: synchronous data (SDA) and syn-
chronous clock (SCL). It is less expensive to attack than a
parallel bus (e.g., as used on M5), because the attacker needs
to aim and synchronise at most two lasers. Timing is dictated
by the sending device and can be arbitrarily slow. This further
reduces the difficulty for an attacker since there is no need for
synchronization with an existing clock.

I2C is a shared bus with pull-up resistors making the default
state of the bus logic high. It uses open collector drivers to
pull the bus low when needed so that two devices trying to
send at the same time will not cause hardware damage to each
other. This makes it ideal as a target for Basilisk attacks.

The I2C bus in our setup (see Figure 18) is provided with
ESD protection devices (1N34A Schottky equivalent) on each
of the two lines providing an entry point for a Basilisk attack.
Figure 20 shows this attack working in practice—on LEDs,
in this case. The figure shows an oscilloscope trace of the
two I2C wires with the attacker driving both wires to execute
the attack. Note how, in the upper trace, the receiver acknowl-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 255

Figure 18: Proof of concept Basilisk attack on I2C bus,
780 nm lasers irradiating 1N34A glass-enclosed ESD pro-
tection diodes. Representative devices on the bus include
quad alphanumeric displays and nonvolatile memory.

edges each byte sent via the lasers by pulling the bus low. We
can be sure that this is indeed the receiver pulling the bus
low because it is pulled down all the way to 0 V, which the
attacker cannot achieve. The LED can only pull the bus down
to about 1.2 V (from VDD = 3.3 V) but that is enough.

We identify three attacks: denial of service, message ma-
nipulation, and message insertion. The first and easiest attack
is denial of service where the attacker simply sends a con-
stant beam of light. Even if the attacker only controls one of
the two bus lines, this attack effectively prevents any other
communication from taking place.

The second attack is message manipulation where an at-
tacker alters messages sent by other nodes, subject to anal-
ogous restrictions as in the M5 example—the attacker can
only reset bits, not set them. This attack requires knowledge
of the messages going across the bus and precise control over
the timing of the attack. The sender of the message is able to
detect the change, and will interpret it as bus contention, back-
ing off automatically, but the intended receiver does receive
the altered message.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SCL

SDA

ACK ACKSTART STOP

BITS 01 0 0 0 0 0 0 0 00 0 1 0 0 W K K PS
ACK ACK

ADDR COMMANDWRITESTART STOP

Figure 19: I2C bus timing diagram. The I2C protocol uses
two wires, one for synchronous data (SDA) and one for a
synchronous clock (SCL). Both of these are driven by the
sender, except for the acknowledgement which is driven by
the receiver.

Figure 20: Oscilloscope trace showing successful commu-
nication with an I2C device via laser illumination of status
LEDs. Upper trace (yellow) is SDA; lower trace (blue) is
SCL. The attacker is only able to pull the bus down to about
1.2 V, not all the way to ground. We know communication
was successful because of the two negative-going acknowl-
edgement pulses in the SDA trace, generated by the receiving
device—one of the alphanumeric display modules, in this
case—which is able to pull the I2C bus all the way to ground.

The third and final attack is to transmit messages on an
empty bus. It assumes that the attacker knows when the bus
is empty, but beyond that there is no further need for precise
synchronization with the existing devices.

8 Discussion

Introducing energy to the system—along with information—
violates assumptions made by the hardware designer.

8.1 Laser power
In most cases accuracy and precision of aiming can be at least
partially substituted with more power.

Our experiments used reclaimed laser modules from old
CD, DVD, and Blu-ray players. This is in part to show that
Basilisk attacks can be done with very inexpensive hardware,

256 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

but also that is what we could easily source. The downside
of this is that we do not have specifications for all the lasers,
specifically we do not have calibrated intensity measurements.

The lasers we have are sufficient to execute the attacks, but
being able to precisely control the optical power and to focus
the beam to a smaller spot size (e.g., 10 µm) would allow for
a more effective delivery of power to the P–N junction.

We observed standard laser safety protocols including
use of warning signs, shielding, beam blocks, and protective
glasses [6–8, 46, 88]. Hazards related to frequency-doubled
532 nm green laser pointers are well-known [11, 20].

There is no particular reason to think the light need be
coherent, or even monochromatic. This is supported by the
fact that xenon flash tubes are as effective as lasers.

8.2 Laser Wavelength
The lasers we have allowed us to test a variety of shorter wave-
lengths, 650 nm (red), 532 nm (green), and 405 nm (blue/vi-
olet) in addition to the infrared 780 nm, 808 nm, and 980 nm
lasers we used. Shorter wavelengths tend to be more effective
for LEDs and longer wavelengths are better for silicon.

8.3 Countermeasures
There are two main classes of countermeasures, active and
passive. Active countermeasures rely on first detecting that
an attack is taking place and then taking corrective action;
attacks might be detected optically [9] or electrically [56].
Passive countermeasures minimize the attack surface, either
by eliminating vulnerable components or shielding them from
influence. Opaque chip packages can mitigate the attack, but
this is no option for indicators that must remain visible.

Minimize the number of exposed LEDs or other photosen-
sitive components on a device. Avoid connecting exposed
P–N junctions directly to circuits carrying sensitive informa-
tion.5 Existing electromagnetic interference (EMI) reduction
techniques may be effective against photovoltaic mode, but
are unlikely to be effective in photoconductive mode.

It is interesting to note that the most effective wavelength
for silicon ESD protection diodes (not LEDs) is in the infrared
part of the spectrum, which makes the attacks stealthy.

8.4 Other Targets
There are a few areas where it is surprisingly common to have
LEDs directly connected to sensitive circuits. We found that
CAN bus devices commonly have them [34, 50]. Attacking a
differential signaling bus like CAN is more challenging, as it
will require the attacker to exploit both the photovoltaic and

5Indicators are not often found connected directly to a shared bus, because
they load the circuit, slowing communication. LEDs are sometimes buffered
by a transistor or op-amp driver, which has the advantage of a brighter indi-
cator, but with the drawback of a slight overhead in cost and complexity.

photoconductive methods on electrically adjacent components
at the same time for it to work.

In certain circumstances it is possible that a Basilisk attack
can damage the victim device. LEDs driven into photovoltaic
mode tend to pull the circuit on their cathode sides more
negative. This can, if the circuit on the cathode side of the
LED is a low positive voltage, result in the circuit going below
ground which could be damaging for sensitive electronics.

8.5 Commercially Available Hardware
We have been able to demonstrate the effect only on one
piece of commercially available hardware: a 5 mm RGB color-
changing LED often found in light-up toys [77].

The device was found to be disrupted by 405 nm, 520 nm,
650 nm, 780 nm, 808 nm, and 980 nm lasers, and the color
changing sequence can be reliably reset to red at a distance
of 25 cm by a xenon camera flash; this is consistent with the
emission spectrum of xenon, which is rich in near-IR.

The effect was first reported in a comment on the article
about the Raspberry Pi 2 glitch mentioned earlier [21, 28].
The chip inside is believed to be a CDT3447 or similar [69].

9 Conclusion

We present an attack framework we call Basilisk, after the
mythical animal that could kill with a single glance [27, 45].

While the photosensitivity of semiconductor diodes is a
known phenomenon, we demonstrate the practical require-
ments for an external attacker to use the effect as an attack
vector. We show that Basilisk attacks are feasible in practice,
both against ESD protection devices and LEDs, and can be
performed as long as the attacker has line of sight access.

Our results go beyond a feasibility study. We show two con-
crete attacks that have serious consequences. Depending on an
attacker’s knowledge of the victim and equipment complexity,
it is possible to achieve a number of effects, from denial of
service to arbitrary code execution on an air-gapped computer
system. Our results lead to testable predictions about the vul-
nerability of any shared bus that uses open collector (or open
drain) tristate drivers.

Minimization is the most effective countermeasure, fol-
lowed by buffering LEDs—which might be enough to block
photovoltaic mode attacks only—but mitigation remains a
challenge, especially for indicators that need to be exposed.

Availability

Verilog source code for FPGA implementation of the M5
CPU, Arduino source code for the attacker’s equipment and
the experimental apparatus, raw data, and scripts for data
reduction and plotting are available on GitHub at https:
//github.com/jloughry/basilisk_artifacts.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 257

https://github.com/jloughry/basilisk_artifacts
https://github.com/jloughry/basilisk_artifacts

References

[1] Rhett Allain. You can power a calculator
with some LEDs, 11 March 2019. https:
//www.wired.com/story/you-can-power-a-
calculator-with-some-leds/.

[2] Analog Devices. Low voltage logic interfac-
ing. Tutorial MT-098, Analog Devices, Inc., 2009.
https://www.analog.com/media/en/training-
seminars/tutorials/mt-098.pdf.

[3] Ross Anderson and Markus Kuhn. Tamper resistance—
a cautionary note. In Second USENIX Workshop on
Electronic Commerce, pages 1–11, Oakland, California,
18–21 November 1996. https://www.usenix.org/
conference/2nd-usenix-workshop-electronic-
commerce/tamper-resistance-cautionary-note.

[4] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell,
and Carl Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing,
1(1):11–33, January–March 2004. Available from
https://www.nasa.gov/pdf/636745main_day_3-
algirdas_avizienis.pdf.

[5] Hagai Bar-El, Hamid Choukri, David Naccache,
Michael Tunstall, and Claire Whelan. The Sorcerer’s Ap-
prentice guide to fault attacks. IACR e-print 2004/100,
International Association for Cryptologic Research,
2004. https://eprint.iacr.org/2004/100.

[6] Ken Barat. Eye safety in the laser lab: Using the humble
beam block shows infinite wisdom. Photonics Spectra,
August 2007.

[7] Ken Barat. Laser safety and the optical table. Photonics
Spectra, October 2007.

[8] Kenneth L. Barat. In laser safety, little mistakes can have
big consequences. Photonics Spectra, March 2005.

[9] Don Barber, Vikram Kanth, Zachary White, and John
McEachen. Spatial frequency detection of optical sig-
nals embedded in the environment. In 2022 32nd Inter-
national Telecommunication Networks and Applications
Conference (ITNAC), 2022.

[10] Charles J. Bashe, Lyle R. Johnson, Emerson W. Pugh,
and John H. Palmer. IBM’s Early Computers. MIT
Press, 1985.

[11] ‘Brainiac75’. The issue with green laser point-
ers. https://www.youtube.com/watch?v=
iR1Ku5dnbH8, 5 August 2018.

[12] Jerome Bruandet. Anatomy of the EICAR antivirus
test file. Ninja Technologies Network, 26 August
2021. https://blog.nintechnet.com/anatomy-
of-the-eicar-antivirus-test-file/.

[13] James Bryant. Glass diodes may see the light—and hum.
Analog Dialog, 45, May 2009.

[14] James Bryant. LEDs are photodiodes too. Planet Ana-
log, 5 August 2014.

[15] Erik Buchanan, Ryan Roemer, Stefan Savage, and Hovav
Shacham. Return-oriented programming: Exploitation
without code injection. In Black Hat US 2008, 2008.

[16] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Ste-
fan Savage. When good instructions go bad: Generaliz-
ing return-oriented programming to RISC. In Proceed-
ings of CCS 2008, pages 27–28, Alexandria, Virginia,
October 27–31, 2008.

[17] Christopher P. Burton. Replicating the Manchester
Baby: motives, methods, and messages from the past.
IEEE Annals of the History of Computing, 27(3):44–60,
July–September 2005.

[18] Zitai Chen and David Oswald. PMFault: Faulting and
bricking server CPUs through management interfaces.
arXiv preprint arXiv:2301.05538 [cs.CR], Cornell Uni-
versity, 13 January 2023.

[19] Sean Collins and Stephen McCombie. Stuxnet: the
emergence of a new cyber weapon and its implications.
Journal of Policing, Intelligence and Counter Terrorism,
7(1):80–91, 2012.

[20] Annette Colton. Study of laser pointer safety. Study,
Lucid Optical Services, 2010.

[21] ‘Conundrum1885’. RE. Re. Xenon DEATH
FLASH!!!!! The Register, 14 March 2015.
https://forums.theregister.com/forum/all/
2015/02/08/raspberry_pi_2_camera_flash_
glitch/#c_2465254.

[22] Benjamin Cyr, Vedant Sumaria, Yan Long, Srinivas Tadi-
gadapa, Takeshi Sugawara, and Kevin Fu. How lasers
exploit photoacoustic and photoelectric phenomena to
inject signals into MEMS microphones. Preprint, Re-
search Square, 11 April 2024.

[23] Paul Dietz, William Yerazunis, and Darren Leigh. Very
low-cost sensing and communication using bidirectional
LEDs. Technical Report TR2003-35, Mitsubishi Elec-
tronics Research Laboratories (MERL), 201 Broadway,
Cambridge, Massachusetts 02139, USA, July 2003.

[24] Jeroen Domburg. Optical mouse cam. http://
spritesmods.com/?art=mouseeye, 2006.

258 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.wired.com/story/you-can-power-a-calculator-with-some-leds/
https://www.wired.com/story/you-can-power-a-calculator-with-some-leds/
https://www.wired.com/story/you-can-power-a-calculator-with-some-leds/
https://www.analog.com/media/en/training-seminars/tutorials/mt-098.pdf
https://www.analog.com/media/en/training-seminars/tutorials/mt-098.pdf
https://www.usenix.org/conference/2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-note
https://www.usenix.org/conference/2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-note
https://www.usenix.org/conference/2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-note
https://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
https://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
https://eprint.iacr.org/2004/100
https://www.youtube.com/watch?v=iR1Ku5dnbH8
https://www.youtube.com/watch?v=iR1Ku5dnbH8
https://blog.nintechnet.com/anatomy-of-the-eicar-antivirus-test-file/
https://blog.nintechnet.com/anatomy-of-the-eicar-antivirus-test-file/
https://forums.theregister.com/forum/all/2015/02/08/raspberry_pi_2_camera_flash_glitch/#c_2465254
https://forums.theregister.com/forum/all/2015/02/08/raspberry_pi_2_camera_flash_glitch/#c_2465254
https://forums.theregister.com/forum/all/2015/02/08/raspberry_pi_2_camera_flash_glitch/#c_2465254
http://spritesmods.com/?art=mouseeye
http://spritesmods.com/?art=mouseeye

[25] Mathieu Dumont, Pierre-Alain Moellic, Raphael Viera,
Jean-Max Dutertre, and Rémi Bernhard. An overview
of laser injection against embedded neural network mod-
els. arXiv preprint arXiv:2105.01403 [cs.CR], Cornell
University, 4 May 2021.

[26] Arno Erzberger. Der LED fehlt der doppelpfeil. Elek-
tronik, 21 June 2016. https://www.elektroniknet.
de/power/energy-harvesting/der-led-fehlt-
der-doppelpfeil.131470.html.

[27] Oliver Evans. Selections from the bestiary of Leonardo
Da Vinci. Journal of American Folklore, 64(254):393–
396, Ocotber–December 1951.

[28] Kelly Fiveash. ’Camera-shy’ Raspberry Pi 2 suffers
strange ‘XENON DEATH FLASH’ glitch. The Register,
8 February 2015.

[29] Curtis Franklin. Glitching: The hardware attack
that can disrupt secure software. Dark Reading,
18 October 2019. https://www.darkreading.
com/edge-articles/glitching-the-hardware-
attack-that-can-disrupt-secure-software.

[30] Juan Carlos Garcia-Escartin, Shihan Sajeed, and Vadim
Makarov. Attacking quantum key distribution by
light injection via ventilation openings. PLoS One,
15(8):e0236630, August 2020.

[31] Ilias Giechaskiel and Kasper Rasmussen. Taxonomy and
challenges of out-of-band signal injection attacks and
defenses. IEEE Communications Surveys & Tutorials,
22(1), First Quarter 2020.

[32] Bret Giller. Implementing practical electrical glitching
attacks. In Black Hat Europe 2015, Amsterdam, 10–13
November 2015. https://www.blackhat.com/docs/
eu-15/materials/eu-15-Giller-Implementing-
Electrical-Glitching-Attacks.pdf.

[33] D. H. Habing. The use of lasers to simulate radiation-
induced transients in semiconductor devices and circuits.
IEEE Transactions on Nuclear Science, 12(5):91–100,
1965.

[34] Microchip Technology Inc. CAN Bus Analyzer User’s
Guide, 2020.

[35] Karla Jennings. The Devouring Fungus: Tales of the
Computer Age. W. W. Norton and Company, Inc., 1990.

[36] Stefanos Koffas and Praveen Kumar Vadnala. On the
effect of clock frequency on voltage and electromag-
netic fault injection. arXiv preprint arXiv:2310.13389
[cs.CR], Cornell University, 20 October 2023. Pub-
lished in AIHWS workshop held for Applied Cryp-
tography and Network Security Conference (ACNS
2022); DOI: https://doi.org/10.1007/978-3-
031-16815-4_8.

[37] Thilo Krachenfels, Heiko Lohrke, Jean-Pierre Seifert,
Enrico Dietz, Sven Frohmann, and Heinz-Wilhelm
Hübers. Evaluation of low-cost thermal laser stimu-
lation for data extraction and key readout. Journal of
Hardware and Systems Security, 4(1):24–33, 2020.

[38] Thilo Krachenfels, Heiko Lohrke, Jean-Pierre Seifert,
Enrico Dietz, Sven Frohmann, and Heinz-Wilhelm
Hübers. Evaluation of low-cost thermal laser stimula-
tion for data extraction and key readout. arXiv preprint
arXiv:2006.06290 [cs.CR], Cornell University, 11 June
2020.

[39] Ireneusz Kubiak. Specjalne fonty komputerowe w
bezpieczeństwie elektromagnetycznym cyfrowych stan-
dardów graficznych: TEMPEST optyczny. Wojskowa
Akademia Techniczna, Warsaw, 2020.

[40] David Kushner. The real story of Stuxnet. IEEE Spec-
trum, 50(3):48–53, March 2013.

[41] Butler W. Lampson. A note on the confinement problem.
Comm. ACM, 16(10):613–615, October 1973.

[42] Don Lancaster. Build Digiviewer II. Popular Electron-
ics, 6(3):63–69, September 1974.

[43] Don Lancaster. TTL Cookbook. SAMS, Indianapolis,
Indiana, 1974.

[44] Don Lancaster. CMOS Cookbook. SAMS, Indianapolis,
Indiana, 1977.

[45] David Langford. comp.basilisk FAQ. Nature, 402:465,
2 December 1999.

[46] Laser Institute of America. Seven-year update drives na-
tional laser safety standard forward. Photonics Spectra,
June 2007.

[47] Littelfuse.com. Application hints for transient volt-
age suppression diode circuits. Application Note
AND8230/D, Littelfuse, Inc., 16 September 2016.

[48] Heiko Lohrke, Shahin Tajik, Thilo Krachenfels, Chris-
tian Boit, and Jean-Pierre Seifert. Key extraction using
thermal laser stimulation: A case study on Xilinx Ul-
trascale FPGAs. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):573–595,
2018.

[49] Marcel Meli and Niklas Roth. LEDs und photodi-
oden als energy harvester. Elektronik, 3 June 2016.
https://www.elektroniknet.de/power/energy-
harvesting/leds-und-photodioden-als-energy-
harvester.130892.html.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 259

https://www.elektroniknet.de/power/energy-harvesting/der-led-fehlt-der-doppelpfeil.131470.html
https://www.elektroniknet.de/power/energy-harvesting/der-led-fehlt-der-doppelpfeil.131470.html
https://www.elektroniknet.de/power/energy-harvesting/der-led-fehlt-der-doppelpfeil.131470.html
https://www.darkreading.com/edge-articles/glitching-the-hardware-attack-that-can-disrupt-secure-software
https://www.darkreading.com/edge-articles/glitching-the-hardware-attack-that-can-disrupt-secure-software
https://www.darkreading.com/edge-articles/glitching-the-hardware-attack-that-can-disrupt-secure-software
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://doi.org/10.1007/978-3-031-16815-4_8
https://doi.org/10.1007/978-3-031-16815-4_8
https://www.elektroniknet.de/power/energy-harvesting/leds-und-photodioden-als-energy-harvester.130892.html
https://www.elektroniknet.de/power/energy-harvesting/leds-und-photodioden-als-energy-harvester.130892.html
https://www.elektroniknet.de/power/energy-harvesting/leds-und-photodioden-als-energy-harvester.130892.html

[50] Microchip Technology Inc. MCP2515 CAN Bus Moni-
tor Demo Board User’s Guide, 2014.

[51] Micron Technology. IS32 Optic Ram data sheet. Boise,
Idaho, USA, May 1984.

[52] Forrest M Mimms. Using LED’s as light detectors.
Popular Electronics, 11(5):86–88, May 1977.

[53] Forrest M Mims. Light Emitting Diodes. Howard
W. Sams & Co., Inc., Indianapolis, Indiana, USA, 1973.

[54] Forrest M Mims. Bidirectional optoisolator puts two
LEDs nose to nose. Electronics, 52(10):127, 10th May
1979.

[55] Forrest M Mims. How to use LEDs to detect light. Make,
36:136–138, 2014.

[56] Saleh Khalaj Monfared, Kyle Mitard, Andrew Cannon,
Domenic Forte, and Shahin Tajik. LaserEscape: De-
tecting and mitigating optical probing attacks. arXiv
preprint arXiv:2405.03632 [cs.CR], Cornell University,
6 May 2024.

[57] Tom Murphy. C with ABC! In 11th Special Inter-
est Group on Harry Q. Bovik (SIGBOVIK), Pittsburgh,
Pennsylvania, 31 March 2017. Association for Compt-
ing Heresy.

[58] Tom Murphy. Compiling C to printable x86, to make
an executable research paper, 31 March 2017. https:
//www.youtube.com/watch?v=LA_DrBwkiJA.

[59] Ben Nassi, Adi Shamir, and Yuval Elovici. Oops!...I
think I scanned a malware. arXiv preprint, 03 2017.

[60] NXP Semiconductors. UM10204: I2C-bus specification
and user manual, Rev. 7.0, 1 October 2021.

[61] ON Semiconductor. Wafer-level chip-scale package
(WLCSP) at ON Semiconductor. Application Note
5075/D, Fairchild Semiconductor, October 2018.

[62] Masashi Ono, Parthiban Santhanam, Wei Li Li, Bo Zhao,
and Shanhui Fan. Experimental demonstration of en-
ergy harvesting from the sky using the negative illu-
mination effect of a semiconductor photodiode. Ap-
plied Physics Letters, 114(16):161102, 2019. https:
//aip.scitation.org/doi/10.1063/1.5089783.

[63] Sung-Yun Park, Kyuseok Lee, and Hyunsoo Song. Si-
multaneous imaging and energy harvesting in CMOS
image sensor pixels. IEEE Electron Device Letters,
39(4):532–535, April 2018.

[64] Dmytro Petryk, Zoya Dyka, Jens Katzer, and Peter Lan-
gendoerfer. Metal fillers as potential low cost counter-
measure against optical fault injection attacks. arXiv
preprint arXiv:2103.12436 [cs.CR], Cornell University,
17 January 2022.

[65] Dmytro Petryk, Zoya Dyka, and Peter Langendörfer.
Sensitivity of standard library cells to optical fault injec-
tion attacks in IHP 250 nm technology. In 9th Mediter-
ranean Conference on Embedded Computing (MECO),
Budva, Montenegro, 8–11 June 2020.

[66] Dmytro Petryk, Zoya Dyka, Eduardo Perez, Mamath-
amba Kalishettyhalli Mahadevaiaha, Ievgen Kabin,
Christian Wenger, and Peter Langendörfer. Evaluation
of the sensitivity of RRAM cells to optical fault injec-
tion attacks. In 23rd Euromicro Conference on Digital
System Design (DSD), Kranj, Slovenia, 26–28 August
2020.

[67] Dmytro Petryk, Zoya Dyka, Roland Sorge, Jan Scha-
effner, and Peter Langendoerfer. Optical fault injection
attacks against radiation-hard registers. arXiv preprint
arXiv:2106.07271 [cs.CR], Cornell University, 18 Jan-
uary 2022.

[68] Phillips Semiconductor. The I2C-Bus and How to Use
It (including specifications), April 1995.

[69] Qipeng Semiconductor Co., Ltd. CDT3447 3
LED Fade-in and fade-out output control IC,
2008. http://www.bowin-ic.com.hk/IC/LED%
20flasher%20IC/CDT3447.pdf.

[70] Paul Rako. EEVblog #901 - Raspberry Pi 3 photoflash
problem. YouTube, 16 July 2016.

[71] Sara Rampazzi, Benjamin Cyr, and Daniel
Genkin. Light commands: Hacking voice
assistants with lasers. In Black Hat Eu-
rope 2020, Virtual, 7–10 December 2020.
https://www.blackhat.com/eu-20/briefings/
schedule/index.html#light-commands-hacking-
voice-assistants-with-lasers-21731.

[72] Allison Randal. This is how you lose the transient exe-
cution war. arXiv preprint arXiv:2309.03376 [cs.CR],
Cornell University, 6 September 2023.

[73] Khushboo Rani, Hansika Weerasena, Stephen A. Butler,
Subodha Charles, and Prabhat Mishra. Modeling and ex-
ploration of gain competition attacks in optical network-
on-chip architectures. arXiv preprint arXiv:2303.01550
[cs.CR], Cornell University, 3 March 2023.

[74] Melanie R. Rieback, Bruno Crispo, and Andrew S.
Tanenbaum. Is your cat infected with a computer virus?
In Proceedings of the Fourth Annual IEEE International
Conference on Pervasive Computing and Communica-
tions (PERCOM ’06), pages 169–179, Pisa, Italy, 13–17
March 2006. IEEE Computer Society.

260 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.youtube.com/watch?v=LA_DrBwkiJA
https://www.youtube.com/watch?v=LA_DrBwkiJA
https://aip.scitation.org/doi/10.1063/1.5089783
https://aip.scitation.org/doi/10.1063/1.5089783
http://www.bowin-ic.com.hk/IC/LED%20flasher%20IC/CDT3447.pdf
http://www.bowin-ic.com.hk/IC/LED%20flasher%20IC/CDT3447.pdf
https://www.blackhat.com/eu-20/briefings/schedule/index.html#light-commands-hacking-voice-assistants-with-lasers-21731
https://www.blackhat.com/eu-20/briefings/schedule/index.html#light-commands-hacking-voice-assistants-with-lasers-21731
https://www.blackhat.com/eu-20/briefings/schedule/index.html#light-commands-hacking-voice-assistants-with-lasers-21731

[75] D. E. Rosenheim. Installation of the first production
701. Annals of the History of Computing, 5(2):146–147,
April–June 1983.

[76] Hovav Shacham. The geometry of innocent flesh on
the bone: return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM conference
on Computer and communications security, Alexandria,
Virginia, October 28–31, 2007.

[77] Shenzhen Xuancai Electronc Co., Ltd. Color
Changing LED. Shen Zhen, China, 2011.
http://cdn.sparkfun.com/datasheets/
Components/LED/changingLED.pdf.

[78] Sergei Skorobogatov. Fault attacks on secure chips:
from glitch to flash. In Design and Security of Crypto-
graphic Algorithms and Devices (ECRYPT II), Albena,
Bulgaria, 29 May–3rd June 2011.

[79] Sergei P. Skorobogatov and Ross J. Anderson. Optical
fault induction attacks. In 4th International Workshop
on Cryptographic Hardware and Embedded Systems
(CHES), Redwood Shores, California, USA, 13–15 Au-
gust 2002.

[80] Sergei P. Skorobogatov and Ross J. Anderson. Optical
fault induction attacks. In 4th International Workshop
on Cryptographic Hardware and Embedded Systems
(CHES 2002), pages 2–12, Redwood Shores, California,
13–15 August 2002.

[81] R. Stojanović and Dejan Karadaglić. Single LED takes
on both light-emitting and detecting duties. Electronic
Design, 55(16):53–54, 18th July 2007.

[82] Charles Stross. “Nothing like this will be
built again”. Charlie’s Diary, 2010. https:
//www.antipope.org/charlie/blog-static/
rants/nothing-like-this-will-be-buil.html.

[83] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi,
Daniel Genkin, and Kevin Fu. Light commands: Laser-

Based audio injection attacks on Voice-Controllable sys-
tems. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2631–2648. USENIX Association,
August 2020.

[84] S. M. Sze and Kwok K. Ng. Physics of Semiconductor
Devices. John Wiley & Sons, Inc., Hoboken, New Jersey,
2007.

[85] Toshiba. Basics of ESD protection (TVS) diodes. Ap-
plicatio note, Toshiba Electronic Devices & Storage
Corporation, 27 May 2022.

[86] Endel Uiga. Optoelectronics. Prentice-Hall, Englewood
Cliffs, New Jersey, 1985.

[87] Liz Upton. Xenon death flash: a free physics lesson.
Raspberry Pi blog, 9 February 2015.

[88] John Wallace. Many laser-safety eyewear products
do not meet specs for shielding light from ultrafast
lasers. Laser Focus World, 29th November 2017.
http://www.laserfocusworld.com/articles/
2017/11/many-laser-safety-eyewear-products-
do-not-meet-specs-for-shielding-light-
from-ultrafast-lasers.html.

[89] D. G. Whitehead, I. Mitchell, and P. V. Mellor. A low-
resolution vision sensor. J. Phys. E: Sci. Instrum.,
17:653–656, 1984.

[90] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Mon-
trose, B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang,
L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh,
J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman,
B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A.
Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Suss-
man, W. A. Klein, T. D. Sullivan, and C. W. Wahaus.
IBM experiments in soft fails in computer electronics
(1978–1994). IBM Journal of Research and Develop-
ment, 40(1):3–18, January 1996.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 261

http://cdn.sparkfun.com/datasheets/Components/LED/changingLED.pdf
http://cdn.sparkfun.com/datasheets/Components/LED/changingLED.pdf
https://www.antipope.org/charlie/blog-static/rants/nothing-like-this-will-be-buil.html
https://www.antipope.org/charlie/blog-static/rants/nothing-like-this-will-be-buil.html
https://www.antipope.org/charlie/blog-static/rants/nothing-like-this-will-be-buil.html
http://www.laserfocusworld.com/articles/2017/11/many-laser-safety-eyewear-products-do-not-meet-specs-for-shielding-light-from-ultrafast-lasers.html
http://www.laserfocusworld.com/articles/2017/11/many-laser-safety-eyewear-products-do-not-meet-specs-for-shielding-light-from-ultrafast-lasers.html
http://www.laserfocusworld.com/articles/2017/11/many-laser-safety-eyewear-products-do-not-meet-specs-for-shielding-light-from-ultrafast-lasers.html
http://www.laserfocusworld.com/articles/2017/11/many-laser-safety-eyewear-products-do-not-meet-specs-for-shielding-light-from-ultrafast-lasers.html

SOK: 3D Printer Firmware Attacks on Fused Filament Fabrication

Muhammad Haris Rais∗

Department of Computer Science

Virginia State University

mrais@vsu.edu

Muhammad Ahsan
Department of Computer Science

Virginia Commonwealth University

ahsanm5@vcu.edu

Irfan Ahmed
Department of Computer Science

Virginia Commonwealth University

iahmed3@vcu.edu

Abstract
The globalized nature of modern supply chains facilitates
hostile actors to install malicious firmware in 3D printers. A
worm similar to Stuxnet could stealthily infiltrate a printer
farm used for military drones, resulting in the production
of batches with a variety of defects. While cybersecurity re-
searchers have extensively delved into the designing and slic-
ing stages of the printing process and explored physical side
channels for offensive and defensive research, the domain of
firmware attacks remains significantly underexplored. This
study proposes a classification tree for firmware attacks, fo-
cusing on the attack goals. We further propose nine distinct
firmware attacks within these categories to demonstrate and
understand the impact of compromised firmware on a standard
fused filament fabrication printer. The study evaluates these
attacks through relevant destructive and non-destructive tests,
including assessing the tensile strength of the printed parts and
conducting air quality tests at the printing premises.The study
further investigates the viability of forty-eight attacks, includ-
ing nine that we propose, across the 3D printing stages: the
design stage (involving CAD file manipulation), the slicing
stage (involving G-code file manipulation), and the printing
stage (involving firmware manipulation). Drawing on our un-
derstanding of the 3D printing attack surface, we introduce
an Attack Feasibility Index (AFI) to assess the feasibility
of attacks at different printing stages. This systematization
and examination advances the comprehension of potential 3D
printing attacks and urges researchers to delve into cyberse-
curity strategies focused on counteracting feasible attacks at
specific printing stages.

1 Introduction

The popularity of additive manufacturing (AM) is on the
rise [1], with critical industrial sectors such as aerospace [2],
automotive, and healthcare [3] utilizing 3D-printed functional

∗Rais completed this work while he was a PhD student at Virginia Com-
monwealth University

parts. Consequently, malicious actors now have greater in-
centives to attack AM setups and sabotage the printed parts.
Concurrently, the current industry trend towards fully con-
nected and converged IT and industrial networks [4] poten-
tially extends the reach of cyber attackers to manufacturing
units. Over the past few years, the research community has
been actively engaged in both offensive and defensive aspects
of AM security. AM is a cyber-physical system (CPS) and as
any other CPS technology (SCADA, IOT, etc.) subjected to
potential security breaches [5–11].

The existing offensive research focuses on either stealing
intellectual property (IP) information through side channels
[12, 13] or inducing defects in the printed part [14]. Being
fundamentally different from its predecessor technologies,
AM or 3D printing (3DP) offers unique attack opportunities
for an adversary to sabotage the physical properties of the
printed parts. These attacks degrade the object’s mechanical
strength without modifying the dimensions, weight, center
of mass, and other measurable attributes [15]. Although the
researchers acknowledge the possibility of firmware attacks
[16, 17], most sophisticated attacks are demonstrated at the
design and the slicing stages. Moreover, no taxonomy of
firmware attacks exists in AM security literature.

This study aims to systematize the knowledge of firmware
attacks on 3D printers by developing a classification tree
focusing on specific attack objectives. Starting with the funda-
mental goals of surveillance, denial of service, and integrity
breach, the tree extends to include technically attributable sub-
goals related to the components of the printing process, the
printing premises, the printed parts, and the target assembly
for which the parts are being printed.

To demonstrate the utility of the classification tree, we
showcase nine novel firmware attacks emerging from diverse
nodes within the tree, encompassing surveillance, denial of
printing service, object integrity, printer damage, and print-
ing premises-related attacks. For instance, print your own
grave attack prints a tool and uses it to physically damage
the printer’s components, such as the printing bed. Another
attack, named incurable, deceives the user by mimicking com-

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 263

mon printing faults, leading to prolonged and ineffective trou-
bleshooting of the printing environment. In a sabotage attack
on printing premises, the adversary contaminates the print-
ing facility’s environment, leading to potential health hazards.
The study demonstrates the impact of these attacks on a stan-
dard FFF-based 3D printer running Marlin, the most widely
used open-source firmware for 3D printers [18].

The difficulty level of implementing an attack may vary
depending on the attack goal. For example, denying printing
services by blocking printing instructions is a straightforward
task for malicious firmware. In contrast, managing the com-
putation and space complexity involved in scaling an object
at the firmware level is challenging. Assessing the complexity
of attacks is crucial for understanding the risks involved and
prioritizing defensive measures. However, our search revealed
no existing research on the complexity analysis of additive
manufacturing (AM) attacks.

To fill this gap, we conducted an in-depth analysis of 48
attacks, including those we proposed, to evaluate their im-
plementation complexity at various stages of the printing
process. To summarize our findings, we introduce the Attack
Feasibility Index (AFI), which represents the feasibility or
difficulty level of implementing a specific category of attacks
at a particular stage of the printing process.

The findings from the AFI indicate that not all attacks are
feasible at any stage of the printing process. For instance,
sabotaging the printing premises proves infeasible when tar-
geting the design stage of the process chain. Consequently,
cybersecurity solutions optimized for the design stage may
not prioritize detecting such attacks.

Contributions. This study offers three main contributions:

1. An attack-goal-focused classification tree for the
firmware attacks on 3D printers.

2. Implementation and evaluation of nine novel firmware
attacks on Marlin-based FFF 3D printer.

3. An analysis of the feasibility of 48 AM attacks at various
stages of the AM process chain, providing insights into
their implementation complexity at each stage.

2 Background and Related Work

2.1 Fused Filament Fabrication - FFF

Additive manufacturing, also known as 3D printing (3DP), is a
manufacturing technique that constructs objects by adding ma-
terial layer by layer. This approach fundamentally differs from
traditional manufacturing techniques, such as subtractive man-
ufacturing and forging. 3DP offers numerous advantages over
previous methods, such as printing complex geometries in a
single part, reduced wastage, customized instead of bulk pro-
duction, and a rapid design-to-production cycle. The ASTM

Figure 1: Fused filament fabrication printer

International standards organization defines seven AM meth-
ods, including material extrusion, powder bed fusion, and vat
photopolymerization, among others [19]. Material extrusion,
one of the most commonly used additive manufacturing (AM)
techniques, predominantly employs the Fused Filament Fab-
rication (FFF) process, which is the focus of this study.

Figure 1 provides an overview of a typical FFF printer,
which creates three-dimensional (3D) objects by extruding
molten filament onto a heated printing bed. For first-layer
adhesion and to prevent object warping, the printing bed is
maintained at a temperature close to the glass transition tem-
perature of the filament. The printing process starts with the
solid filament from a material spool fed into the print head
by a stepper motor. The print head features a heated chamber
that melts the filament into a molten, piezo-elastic state.

The print head utilizes the molten filament extruded from
the nozzle orifice to draw a single-layer geometry, resembling
a 2D plotter printer with a finite thickness, usually only a
fraction of a millimeter. The filament’s molten state allows it
to pass through the small nozzle orifice, facilitating bonding
(fusion) with the previously extruded material to create a solid
geometry. Once a layer is complete, the printing bed moves
down to create space between the nozzle and the object for
the next layer. This layer-by-layer process continues until the
desired object is fully printed.

2.2 Related Work
This section summarizes current research endeavors focused
on firmware attacks targeting material-extrusion AM systems
and their classification.
Attacks Classification. Several research studies have pro-
posed taxonomies for cyber-physical system (CPS) attacks

264 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 2: Classification of firmware attacks (categories in blue are covered through proposed attacks)

in AM systems. Yampolskiy et al. [20] developed an attack
taxonomy focusing on semantically identical manipulations
introduced by compromised elements. Their taxonomy in-
cludes a subset of targeted properties known as ‘attack targets’
but does not delve into the attacker’s goals or consider denial
of service attacks. In another study [21], they characterize
attacks based on manipulated properties.

Pan et al. [22] proposed a taxonomy that comprises vulnera-
bility, attack vector, attack target, and attack impact; however,
it is not focused on attack goals. Mahesh et al. [23] presented
a four-level attack taxonomy for AM systems, starting with
attack goals, methods, targets, and countermeasures. However,
their taxonomy does not cover an in-depth attack categoriza-
tion. Moreover, they see service denial and IP theft as methods
rather than attack goals. Wu et al. [24] developed a taxonomy
for AM attacks that includes two parallel streams of cyber and
physical attacks. It only enumerates a few attack outcomes
under cyber and physical attack consequences. Gupta [16]
presented multiple supply chain models for an AM process
and highlighted the types of attacks associated with those
models. They further discussed the risks associated with the
studied attacks. The paper summarily mentions the firmware
attack vector without delving into the details.

Our study takes a distinctive approach by constructing a
multi-tier attack categorization tree based on attack goals
within additive manufacturing (AM) systems. This focus al-
lows us to elucidate the strategic intentions behind various
attack methodologies and enables the development of targeted
countermeasures tailored to thwart specific attack goals.

Firmware Attacks on 3D Printers. Researchers have demon-
strated sabotage attacks on 3D printers at pre-firmware stages,
such as during the design and slicing stages. Additionally,
surveillance attacks through side channels have been exten-
sively investigated [25–27]. Nevertheless, exploration into
firmware attacks remains relatively limited. Xiao [28] demon-
strated firmware attack feasibility on 3D printers. He show-
cased a thermal manipulation attack by modifying the open-
source RepRap firmware through a USB-based serial con-
nection. Moore et al. [29] studied the impact of malicious
firmware on print quality by manipulating extruder feed rate

or printing alternate geometries. However, their study did
not comprehensively analyze the attacks achievable through
firmware compromise.

Pearce et al. [30] presented "FLAW3D", a bootloader tro-
jan capable of attacking AVR-based Marlin-supported 3D
printers. They demonstrated two low-footprint attacks that
could reduce the strength of printed parts. The authors men-
tioned that only simple manipulation could be feasible due
to memory constraints in the bootloader space. Do et al. [31]
extracted data from a network-connected printer by exploiting
the authentication process vulnerability.

3 Classification of Firmware Attacks Goals

Motivation. Our motivation for developing the attack classi-
fication tree for firmware attacks (Figure 2) stems from the
observation that current classifications focus predominantly
on the attack actions. Attackers often employ a consistent set
of malicious actions at varying intensities to achieve different
goals. For instance, low-magnitude thermodynamic manipu-
lation may degrade the object’s properties sufficiently for it
to fail during operation after installation in the target system.
Conversely, high-intensity thermodynamic variations might
result in the production of an utterly misshapen object that
never gets installed in the target system. In cyber-physical sys-
tems, a detection solution might effectively identify actions
performed at a higher intensity while failing to recognize
those same actions at lower intensities. Consequently, we
can classify these detection solutions as effective against one
attack category but ineffective against another.
Methodology. The methodology involves an iterative divi-
sion of the attack goals space. Initializing with the top-tier
categories encompass surveillance, denial of service, and in-
tegrity breach. We also introduce a specific category referred
to as ‘unauthorized printing,’ which pertains to the printing
of illegal objects without the process owner’s approval. As
we move along the tree, the attack goals and the subsequent
firmware interactions get more specific. To maintain brevity
and comprehensiveness, we limited our exploration to the cat-
egories associated with the printed object, the printing process,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 265

and the printing environment without delving into further hi-
erarchy. For example, actions resulting in physical damage to
any part of the printer, such as targeting the printing bed or
nozzle, are encompassed under a single attack goal, denoted
as ‘PdDoS.’ The subsequent subsections provide a concise
overview of the nodes in the categorization tree.

3.1 Surveillance
Surveillance attacks do not modify/sabotage the printing pro-
cess itself, rather they aim at stealing the printing facility or
the printing process information.

3.1.1 Printing Surveillance (SuPr)

Printing process surveillance can be further categorized into
Surveillance of the Printing Process (SuPP) and Surveillance
of the Printed Object (SuPO). The IP information is highly
valuable, as its disclosure could result in significant finan-
cial losses for businesses. For example, competitors might
be interested in gaining insights into the types of prototypes
being printed in the research lab. Surveillance can also assist
in accomplishing more adversarial goals, such as planning
future attacks. In such cases, information pertaining to the
network [32], control software and the printer are used to
fingerprint the system or design an attack specific to the print
geometry.

3.1.2 Printing Environment (SuPE)

3D printers can effectively act as spying devices to gather the
premises or the environment data. Instead of surveillance of
the printing process, the sensing data could be used to illicitly
gather information about the facility itself. The information
could be from physical sensing systems (SuPh), e.g., cameras,
temperature gauges, or network traffic (SuNT), which provide
insights into the connected devices over the network. An
attacker can use various ways to exfiltrate the information,
e.g., by hiding artifacts in the printed object [33].

3.2 Denial of Service (DoS)
A malicious firmware can pursue numerous intriguing Denial
of Service (DoS) goals by exploiting the digital or physical do-
mains of the printing process. These goals are segmented into
two primary categories: Denial of Printing Service (DoPS)
and Denial of Network Services (DoNS).

3.2.1 Denial of Printing Service (DoPS)

DoPS is accomplished by instigating physical or software
disruptions in the printing process. These disruptions may
involve causing physical damage to the printer or the printed
object, or they can be carried out through software-based
attacks aimed at halting or interrupting the printing operation.

a) Physical Damage (PdDoS). PdDoS can be achieved by
either physical damage to the printer (PDtP) or by causing
physical damage to the geometry (PDtG). In PDtG, the adver-
sary prints obviously defective or entirely different parts to en-
sure rejection during post-printing inspection. ‘Print your own
grave’ and ‘Incurable’ attacks proposed and demonstrated in
Section 5 illustrate these attack categories, respectively. ‘Print
your own grave’ prints a tool and uses printing heuristics to
damage the printer physically. Conversely, ‘Incurable’ injects
observable printing problems in the printed parts to misguide
the user into fruitless troubleshooting efforts. These problems
include stringing, poor bridging, z-wobble, warping, etc.
b) Software Interruptions (SIDoS). A malicious firmware
can initiate a DoS attack without physically damaging the
printer or the printed part. For instance, setting the command
buffer length to zero, triggering an indefinite sleep mode,
or circumventing the core printing instructions within the
firmware’s main loop can effectively lead to a denial of print-
ing service attack.

3.2.2 Denial of Network Services (DoNS)

In this category, malicious firmware conducts traditional De-
nial of Service (DoS) attacks on networked devices. These
attacks encompass network or application-level flooding at-
tacks or exploiting vulnerabilities to crash victim processes.

3.3 Integrity Breach (IB)
This category encompasses unconventional attack goals that
offer high dividends to the adversary. It is subdivided into
two categories based on whether the attack compromises the
integrity of the printed object or the printing environment.

3.3.1 Printed Object (PoIB)

Printed object integrity breach attacks introduce subtle defects
that may find their way through the quality inspection of the
target system. The extent of damage depends on the target
system instead of the printer. For instance, hidden defects in a
3D-printed car wheel can lead to serious road accidents. This
category is subdivided into three types:
a) Surveillance of Target System (SuTS). SuTS attacks aim
to collect the target system information using the printed ob-
ject. While no attacks in this category have been demonstrated
thus far, the literature suggests the feasibility of incorporating
some form of spying capability into a 3D-printed object. For
example, printing an RFID tag [34] or watermarking [35]
could potentially disclose the location of the printed part.
b) Denial of Target System Availability (DeTSA). DeTSA
attacks are designed to achieve a denial of service at the
target assembly. For example, scaling and axial misalignment
attacks, demonstrated in Section 5, are intended to introduce
scaling or alignment errors in specific parts, making them

266 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

infeasible to assemble them into the target system, thereby
resulting in target system unavailability.

c) Sabotage of Target System (SaTS). While service denial
is an additional consequence, SaTS attacks are intended to
inflict damage on the target system rather than solely causing
a denial of service. Researchers have investigated these at-
tacks in pre-firmware stages [14, 36]. The feasibility of SaTS
firmware attacks is demonstrated in Section 5.

3.3.2 Printing Environment (PeIB)

Given that the printing environment encompasses digital and
physical domains, PeIB is subdivided into two categories.

a) Network Services (NeIB). In NeTB attacks, malicious
firmware acts as a rogue network element, launching integrity
attacks on the computing devices accessible over available
networks.

b) Sabotage of Printing Premises (SaPP). These attacks
physically damage the printing premises, encompassing both
the facility and personnel. Through malicious firmware, an
attacker can circumvent high-temperature safety controls and
exploit filament flammability characteristics to cause a fire
hazard [37], or raise the volatile organic compounds (VOC)
count in the air to potentially increase the risk of respiratory,
cardiovascular, and other disorders [38, 39].

3.4 Unauthorized Printing (UP)
Attackers may use malicious firmware to carry out unautho-
rized printing, such as producing counterfeit goods and manu-
facturing illegal arms. While inputting static G-code files for
these purposes may appear straightforward, the memory limi-
tations present a practical obstacle to launching such attacks
using malicious firmware.

4 Threat Model

In today’s industrial landscape, if malicious firmware infil-
trates an FFF printer, it can easily conceal itself from typi-
cal printer control software. Operating covertly and evading
detection, malicious firmware can enable attackers to exe-
cute their objectives for prolonged periods with minimal risk
of discovery. An adversary can install malicious firmware
through several methods. For instance, researchers have suc-
cessfully exploited vulnerabilities in printer control software
to gain unauthorized access [40]. Once the control software
process is compromised, attackers can exploit the printer’s
standard upgrade routine to install malicious firmware. Addi-
tionally, the supply chain offers another avenue for installing
such firmware. Brief physical access to the printer during
its supply chain journey or while in operation is sufficient
to compromise the firmware. This phase follows established
tactics observed in previous firmware attacks, as documented

in various studies [28,30,41–44]. In the subsequent stage, ma-
licious firmware exploits potential vulnerabilities to achieve
adversarial goals, as detailed in Section 5.

5 Proposed Firmware Attacks

This section presents nine new attacks chosen from the attack
categorization tree nodes colored in blue in Figure 2. While
the tree encompasses categories related to network surveil-
lance and integrity breaches, we exclusively targeted those em-
phasizing the specific aspects of the printing process. These
attacks are novel at the firmware level, with three previously
demonstrated through the manipulation of design files or G-
code files. We provide insight into each attack’s motivation,
the corresponding path within the attack categorization tree,
the challenges encountered, the methodology employed, and
the outcomes. These attacks are executed on the open-source
Marlin firmware, widely utilized in commonly available print-
ers within industrial settings. Specifically, we demonstrated
these attacks on the Ultimaker2+ 3D printer.

5.1 Object Geometry (OG) Stealing

Attack motivation. Stealing the design of a competitor’s new
prototype offers a significant advantage in time, resources,
and market positioning. While prior research has explored IP
theft attacks by reverse-engineering the emissions in the phys-
ical domain during the printing process [26], our approach
distinguishes itself by performing it at the firmware level.

Attack categorization. Surveillance � SuPr� SuPO.

Outcome. Stolen geometry of the printed part.

Challenge. Marlin firmware running on an embedded system
has limited storage, making it infeasible to save the large
G-code files that represent printed objects.

Method. In this attack, malicious firmware records the poten-
tially useful instructions by developing a small engine that
efficiently identifies and captures the sketch of the printed
object using three approximations: (1) ignoring the complete
infill structure, (2) truncating the sub-millimeter part of x,y
coordinates, and (3) activating once per mm of z-axis move-
ment. To address the challenge of identifying the outer shell
of the printed object, a circular buffer with sufficient length
to accommodate the object’s vertices is introduced. The shell
is printed at the start or end of each layer, and a shell iden-
tification algorithm is employed on the ring buffer at the
layer-change event.

One byte is adequate for representing each axis position
data in binary format for the case study printer, which has
printing-bed dimensions of less than 255× 255 mm2. The
engine captures the approximate shape of an object using just
256 bytes and stores it in the EEPROM. As our approach
focuses on finding vertices, it is independent of the object’s

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 267

Figure 3: Geometry outline exfiltrated via surveillance attack

size. When an attacker inserts an SD card into the printer,
the firmware verifies it and downloads the stolen information
within 5 seconds. A variant of this attack can also collect
printer hardware configuration information and environment
data, such as the ambient temperature, using physical sensors.

Evaluation results. Figure 3 illustrates the results of this
attack, showcasing an original design (in green), the stolen
outline sketch, and an overlaid image highlighting any ap-
proximation errors. Despite the omission of sub-millimeter
features, the captured sketch provides valuable information to
the adversary regarding the object’s shape and size, utilizing
only 256 bytes compared to the original 32 KB. The attack
code disregards infill and solely captures vertices, increas-
ing spatial efficiency with the object’s size. For example, a
scaled-up version of this object (measuring 10 cm x 2.5 cm x
1 mm) occupies 270 KB of space, while the attacked file still
maintains a size of 256 bytes. Furthermore, the percent ap-
proximation errors in vertex locations decrease as the object
size increases.

5.2 Print Your Own Grave (PYOG) Attack

Attack motivation. Physical damage to the printer is an ef-
fective way to cause denial of printing service (DoPS). In ad-
dition to service disruption, the attack entails financial losses
incurred from replacing the damaged components.

Attack categorization. DoS� DoPS� PdDoS� PDtP.

Outcome. A shattered printing bed glass sheet.

Challenge. The printing glass is secured through retaining
clips over the solid metal sheet. The nozzle is the only other
part that comes in contact with the glass sheet. Hitting the noz-
zle with the bed at maximum speed doesn’t provide enough
impact to cause damage to the glass.

Figure 4: Glass-breaking attack stages

Method. PYOG attack exploits the printing function to dam-
age the printer. The presented version of the attack specifically
aims at breaking the printing bed glass sheet by throwing it
out of the printer. Exploiting the nonexistence of a hardware
protection layer between the printing bed and the nozzle,
we initially attempted to break the glass by overriding the
firmware checks and hitting the bed against the nozzle. The
approach, however, does not provide enough impulsive force
to break the glass that resides securely over the metal bed. The
malicious firmware addresses this challenge by adopting a
more sophisticated strategy. It begins by printing a destruction
tool, holding it using the nozzle, allowing it to cool down, and
then intelligently scans the edges of the printing bed to com-
promise the glass sheet retaining clips. Finally, the malicious
code pushes the glass from the rear edge to throw it out of the
printer.

The attack can be triggered by a specific instruction or
by an inactivity period. The attack covers two additional
categories during execution. The first category is ‘software
interruption,’ achieved by introducing a planned pause and
not accepting any printing commands during that time to
allow the destruction tool to cool down enough to be detached
from the printing bed. The second category is ‘unauthorized
printing,’ which is achieved by printing the destruction tool.

Evaluation results. Figure 4 presents a pictorial view of the
attack sequence from A to E. The attack utilizes only 20 lines
of code to print the tool, normally requiring over 27,000 G-
code instructions and more than 500 KB of space. The entire
attack code fits well within the available flash memory by
only increasing it from 130 KB to 134 KB.

5.3 Incurable: Printing Faults Impersonation

Attack motivation.Troubleshooting cyber-physical systems,
particularly 3D printers, is a laborious and time-consuming
task. The rectification and optimization of system configura-
tions necessitate extensive verification through actual printing
operations. This motivates us to introduce attacks that mimic
known and obvious faulty behaviors, misguiding users into
common printing problems and wasting valuable time and

268 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 5: Bridging error imitation attack

effort in futile troubleshooting.
Attack categorization. DoS� DoPS� PdDoS� PDtG.
Outcome. False impression of the poor bridging problem.
Challenge. Real-time bridge identification in print geometry.
Method. This attack exhibits a poor bridging problem, which
tests a printer’s ability to extrude filament between two raised
points without sagging. An extrusion instruction from Ax,y to
Bx,y in ith layer will belong to a bridge if there is no extrusion
between Ax,y and Bx,y in (i-1)th layer. To identify a bridge,
the attacker must maintain spatial information of the current
and previous layers. The attacker cannot analyze and map
detailed printing instructions on a compute-constraint system
to ensure uninterrupted printing. Hence, the attacker uses a
coarse representation of a 100× 100 mm2 targeted zone by
only a 5 x 5 elements array (named layer-map), where each
element represents a square of 20×20 mm2. The bridging per-
formance is typically evaluated over 20 mm and beyond [45].
When a move instruction is received, the layer map is updated,
and once a layer is completely printed, it is saved to identify
any bridges in the next layer. For each move instruction, the
attacker checks if there is any extrusion at the correspond-
ing location in the previous layer. The move instruction is
categorized as part of a bridge if there is no extrusion. To
create poor bridging performance, the attacker modifies and
uses permutation of multiple parameters, including slowing
down the cooling fan, increasing the extrusion amount, and
reducing printing speed.
Evaluation results. We evaluated the attack by printing a
shape with three bridges across 25 mm apart pillars, with each
bridge added five layers above the previous one. As shown
in Figure 5, the attack successfully imitated poor bridging
performance. The sag visible on the 25 mm gap between the
pillars might mislead users into attributing the poor bridging
issue to inefficient printing settings.

5.4 Object Feature (OF) Scaling

Attack motivation. 3D printing is increasingly used to man-
ufacture critical components for larger assemblies, like tur-
bine blades [46]. If a sub-component of a replacement part is
slightly scaled up or down during printing, it will not fit in the
assembly, resulting in a delay in service of the target system.
Attack categorization. IB � PoIB � DeTSA.
Outcome. The attack slightly modifies the dimensions to
deny fitment of the printed part.
Challenge. This attack goal can be easily accomplished at the

Figure 6: Internal layers composition

designing or the slicing stage using the ‘scaling’ switch in the
software. On the contrary, scaling each printing instruction
at the firmware level leads to the scaling of tiny segments
connecting consecutive extrudates, which exposes the attack
(see Figure 7). Scaling requires additional instructions, and
since the firmware receives printing instructions in a temporal
sequence, it cannot plan for scaling while printing. Conse-
quently, achieving perfect real-time scaling at the firmware
level is not feasible.

Method. We exploit the printing format used by slicer soft-
ware to execute a scaling attack through firmware. A single
layer comprises the outer wall structure, the infill pattern for
intermediate layers, and skin for the outer layer. Figure 6
shows two infill patterns encapsulated by varying numbers of
walls. The outer walls mark the object’s edges and create a
directed cycle where the destination coordinates for a move
instruction are repeated after ‘k’ instructions (where ‘k’ rep-
resents the number of edges in the object). The wall structure
is printed adjacent to the layer change event.

Due to memory constraints, tracking the destination coor-
dinates of all move instructions is not feasible. To overcome
this problem, the attacker creates a circular buffer containing
one more entry than the maximum number of edges in the
anticipated polygon. The firmware searches for a directed cy-
cle to identify a geometrical feature and builds an extra wall
around it. Under generic printing settings, wall thickness is
proportional to the nozzle diameter, which implies a 0.8 mm
to 1.2 mm difference in dimensions across the two opposite
walls for 0.4 mm and 0.6 mm nozzles. The attacker uses the
change-of-layer instruction to manage the limited computa-
tion power to trigger the polygon identification routine. Once
the polygon is identified, the attacker selects appropriate co-
ordinates outside the object and prints a new one by adjusting
the sequence of the coordinates in the identified cycle.

Evaluation results. A rectangular prism with dual sizes was
printed to assess the attack’s impact. Figure 7 shows a visual
comparison between original and attacked samples. While
no discernible alterations are evident in the infill structure,
the attacked sample exhibits additional walls. We measured
the distance between opposite edges at five distinct locations
to analyze the dimensional changes. The results indicate an
average increase of 0.96 mm ± 0.25 mm for each dimension.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 269

Figure 7: 2-dimensional object feature scaling attack

5.5 Axial Misalignment

Attack motivation. The motivation behind this attack is sim-
ilar to the scaling attack. However, instead of altering the
object’s dimensions (which are relatively easier to measure),
this attack deliberately misaligns a coupling feature over the
printing axis to prevent the part from fitting correctly in the
target assembly.

Attack categorization. IB � PoIB � DeTSA.

Outcome. The outcome is an axial misalignment of the cou-
pling slot to deny fitment.

Challenge. In addition to the challenges mentioned in the
scaling attack, identifying a feature that will ultimately be-
come a coupling candidate, such as a slot, stud, etc., is also
challenging.

Method. To overcome this challenge, the G-code execution
pipeline is delayed by kmax printing instructions to ensure that
the attack circular buffer as described in Section 5.4 is filled
before the printing starts. The malicious firmware searches for
a directed cycle within a layer. The temporal distance of the
identified cycle from the layer-change event and the length of
the constituent lines distinguish between the directed cycles
representing a fitment feature and the outer wall structure.
Once a change-of-layer event occurs, the x or y coordinates of

Figure 8: Geometric feature (coupling slot) misalignment
attack

all vertices of the directed cycle are modified proportionately
to the z-axis value to achieve a continuous drift in the feature.
This attack targets objects with precise fitment requirements,
like driving shafts, assemblies, nuts, and bolts.

Evaluation results. We implemented this attack on a rect-
angular female square-fitting slot that couples with a male
driving shaft. As presented in Figure 8, the attack introduces
a 3o axial shift, leading to coupling issues with the male shaft.
Unlike Section 5.4, this attack achieves the goal without in-
creasing the number of printing instructions. A variant of this
attack only relocates a single vertex of a coupling feature.

5.6 Internal Cavity Attack

Attack motivation. Reducing an object’s strength through
hidden cavities is a well-known concern during the design
[14] and slicing stages [17]. However, achieving a similar
result through malicious firmware remains uncharted terri-
tory. The innovation of this approach lies in its execution
via firmware. Unlike the digital outputs of the design and
slicing stages, the firmware’s output during the printing stage
is a physical object and is not amenable to standard digital
integrity checks. Therefore, the cavity attacks at the firmware
stage pose greater risks than those at earlier stages, highlight-
ing the need to investigate firmware-based cavity attacks.

Attack categorization. IB � PoIB � SaTS.

Outcome. Inducing an internal cavity in the printed part.

Challenge. A critical consideration for the success of SaTS
attacks is stealthiness. If the attack is exposed, it becomes a
DoPS attack. It implies that the cavity should only exist within
the internal layers. Deciding on the location and number of
layers to induce cavities is an additional challenge.

Assumption. This attack is predicated on the assumption that
the target object exhibits symmetry along the z-axis. This
assumption is valid for ASTM tensile and flexure test models
and generally holds for most real-world objects, at least for
specific segments of the layer structure.

Method. The malicious firmware initially determines the
number of G-code instructions in a layer. In the second step,
firmware utilizes the G-code instruction ‘M73’ to identify
the candidate internal layers for the attack. In the absence
of an ‘M73’ response, a backup heuristic rule can be used
to estimate the number of layers in the object using the stan-
dard span-to-thickness ratio of 16:1 recommended by ASTM
International Standard [47]. To ensure the cavity remains con-
cealed from the sides within each layer, the attacker splits the
instruction into three parts and only stops the filament motor
for the central part. The attack ceases once the internal layers
are complete, and the printer resumes producing the unaltered
top layers.

Evaluation results. To evaluate the attack, we printed two
ASTM-compliant tensile bars. Figure 9 illustrates the cavity

270 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 9: Cavity attack specimen during and after print

Sample type Peak load (N) Peak stress (N)
Avg of 6 samples Std. dev Avg of 6 samples Std. dev

Original 498.44 39.65 15.38 1.17
Attacked 419.49 24.54 12.67 0.75
Difference 78.96 2.72
% Reduction 15.84 17.66

Table 1: Tensile test results for filament density attacks

in the left image after pausing the printing process. The top
and bottom layers finally cover the cavity.

5.7 Object Density Variation Attack

Attack motivation. While the cavity in the attack presented
in Section 5.6 gets obfuscated in the final object, it is vis-
ible during the printing. A more stealthy way to achieve
SaTS attack is to reduce the part’s density at a critical lo-
cation. Like cavity, the density variation attack has also been
studied at the slicing stage [17]. Hence, the novelty is in
its implementation through malicious firmware. Although
researchers have achieved generic density variation by attack-
ing the printer [30], our attack is localized with a reduced
footprint and improved results.
Attack categorization. IB � PoIB � SaTS.
Outcome. Reduced object density at a targeted location.
Assumptions and Challenges. This attack has the same chal-
lenges and the set of assumptions detailed in Section 5.6.
Method. The attack preparation steps are the same as those
described in Section 5.6, with two changes. Firstly, the zone
of interest is increased from one target infill line to a group of
lines. Secondly, the retract instructions required for a clean
cavity are not included. Instead, the attack manipulates the
extruder and filament speed ratio.
Evaluation results.We printed six ASTM-compliant tensile
bars using the original and attacked firmware and observed
no visual or dimensional differences between the two sets of
prints. Tensile tests were subsequently conducted using the
MTS Insight 30 machine, with the results presented in Table 1.
The attacked samples show a 15.84% and 17.66% reduction
in the peak tensile load and stress values, respectively.

5.8 Filament Erosion Attack

Attack motivation. FFF printers estimate the filament quan-
tity using the steps of the stepper motor and the configured
filament diameter value. If the filament is partly eroded, the
printer will extrude less filament in that region. This motivates

Figure 10: Filament erosion attack

us to present a new SaTS attack that erodes the filament to
reduce the part density.

Attack categorization. IB � PoIB � SaTS.

Outcome. Reduced density of the printed parts.

Challenge.While filament erosion may occasionally occur
during normal printing operations due to specific routine
faults, such as a clogged nozzle, deliberate induction of this
phenomenon is not supported by any instructions or functions.
If erosion goes beyond a certain point, the printer may not
push the filament further, resulting in a denial of service. The
challenge lies in creating an erosion function that achieves
maximum erosion while maintaining the printer’s ability to
continue normal printing operations.

Method. While the desired outcome is similar to that in Sec-
tion 5.7, this attack employs an indirect method. In most FFF
printers, the extruder motor’s shaft teeth grip the filament
with the support of a free-rotating roller (see Figure 10). The
teeth push the filament axially towards the heated nozzle as
the motor rotates. In this attack, a portion of the filament is
eroded as it passes through the feeding chamber, reducing the
filament quantity at the point of attack. When the defected
(eroded) filament portion passes through the nozzle, it creates
low-density zones in the printed object. A carefully planned
filament erosion attack can thus lower the material density
at a critical region, reducing the strength of the printed part.
Figure 10 illustrates an example of a filament erosion attack.

The attack uses two methods to erode the filament. The
first method involves compelling cold extrusion through the
nozzle. Due to the filament diameter being larger than the
nozzle orifice, the force exerted by the teeth on the solid fila-
ment is insufficient for extrusion through the nozzle. Instead
of advancing it, the rotating wheel’s teeth merely chip the
filament off. The attack bypasses the firmware test routine for
the minimum temperature required for extrusion. The second
method uses a burst of high-jerk oscillatory movements to
break the grooves formed by the gear pressure, resulting in
filament erosion. The second method causes less erosion but
still achieves the defective printing goal.

Evaluation results. We evaluated the effectiveness of the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 271

erosion attack using two attack instances. With PLA filament
of 2.85±0.1 mm diameter, we observed that a cold extrusion
motion beyond 1 sec reduced weight from 0.077g to 0.049g,
representing a 36% reduction but also interrupting regular
operation. Consequently, such an attack could only cause a
denial of service. If the attack lasts up to 0.5 secs, the mate-
rial reduction is up to 20% while regular operation continues,
ensuring the required stealthiness to achieve a SaTS attack.
The attack employing high-jerk oscillatory move instructions
requires additional time to induce material reduction. Con-
versely, the second method does not necessitate a waiting
period for filament cooling, thus offering greater operational
flexibility. The second attack resulted in a 15% reduction,
with the equivalent length of filament weighing 0.065g.

5.9 Printing Facility Air-quality

Attack motivation. Given their cyber-physical nature, 3D
printers not only facilitate innovative manufacturing processes
but also have the potential to negatively impact the physical
environment. This reality motivates our investigation into
contamination attacks targeting the printer’s surroundings.

Attack categorization. IB � PeIB � SaPP.

Outcome. Poor air quality at the printing facility.

Method. This attack compromises the air quality in a print-
ing facility by increasing the emission of microparticles and
volatile organic compounds (VOCs) through two malicious
actions. Initially, it searches for idle state to initiate cold scrub-
bing bursts at high speeds, which chip fine particles from the
filament. Subsequently, the attack manipulates the printer by
turning on the nozzle heater while disabling the temperature
feedback control circuit. This action leads to the unregulated
emission of fumes, VOCs, and microparticles. Due to the ele-
vated temperatures, low-density fluid drips from the nozzle,
depositing suspicious droplets on the printing bed. To evade
detection, the attacker retracts the filament after leaving only
a minimal amount in the chamber and then raises the temper-
ature, which also serves to shorten the attack duration. These
actions threaten the environmental health and safety condi-
tions within the facility. Furthermore, the attack may remain
undetected with odorless filaments, resulting in prolonged
exposure and potential health consequences for the workers.

Evaluation results. To evaluate the attack’s impact, we con-
ducted experiments to measure the particles and VOC count
before and after the attack. Specifically, measurements were
taken 5 minutes before the attack and 5 minutes, 30 min-
utes, and 1 hour after each attack instance. The experiment
was repeated five times. We conducted the attacks in a well-
ventilated environment with minimum human interaction. Fur-
thermore, no personnel were present in the lab facility to avoid
potentially hazardous circumstances.

The findings from these experiments are depicted in Figure
11. The data reveal a significant increase in VOCs from 6

Figure 11: Air quality stats for facility contamination attack

parts per billion (ppb) to 66 ppb, and particulate matter of
2.5 micron or smaller diameter (PM2.5) values surged from 1
µg/m3 to 200 µg/m3, exceeding the safe limit of 10 µg/m3 [48].
Due to high ventilation, the recorded values at 30 minutes and
one hour after the attack were within normal ranges.

6 Attacks Feasibility/Complexity Analysis

6.1 Analysis Methodology

Motivation. The attacks described in Section 5 vary sig-
nificantly in the workload requirements. Depending on the
process’s stage, the feasibility of initiating an attack can
range from trivial to infeasible. For example, object scaling is
straightforward at the design stage but becomes complex at
the firmware stage. Conversely, thermodynamic attacks are
easier to execute through malicious firmware but are unfeasi-
ble at the design stage. If an attack is not viable at a particular
stage, there is no benefit in implementing defensive measures
against it. This prompts us to undertake a comprehensive fea-
sibility analysis of the attack goals (Figure 2) throughout all
stages of the printing process chain.
Methodology. We begin our analysis by identifying various
independent stages in the printing process that attackers could
target. We then develop a comprehensive set of feasibility
criteria to assign feasibility scores to each of the 48 existing
and proposed attacks presented in Table 2. We analyze the
proposed attacks using the data presented in Section 5 and
draw upon relevant results and findings from the literature on
similar attacks.
Printing process stages. We analyze the printing process to
delineate the independent stages vulnerable to attacks, as illus-
trated in Figure 12. We treat stages 1a and 1b as a single stage
because an attacker who captures the 3D model file (1b) can
execute the same attacks by compromising the design soft-
ware (1a). In contrast, the slicer software (2a), printing profile
(2b), and G-code file (2c) each offer distinct capabilities to an
attacker, hence considered as distinct stages.
Feasibility and complexity criteria. This study employs two
factors to evaluate the feasibility of achieving attack goals.

272 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Figure 12: Stages in AM process highlighting cyber artifacts
compromisable through a cyberattack

The first factor, f1, assesses the ability to ascertain whether
an attack conforms to its intended objective at a specific stage.
The second factor, f2, considers the availability of necessary
methods to execute attack actions.

For example, at the design stage, the absence of tools to
modify the thermal profile in the design file renders dynamic-
thermal attacks [17] unfeasible, resulting in an f2 score of
zero. In contrast, a simple command can alter the thermal
profile at the G-code stage, typically warranting the highest f2
score. However, the firmware’s limited temporal perspective
complicates the precise placement of the attack, resulting in a
low f2 score for these attacks at this stage.

At any particular stage, an attack is considered as:

• an infeasible attack if no execution mechanism or means
of confirming compliance with the attack criteria exists.

• a high difficulty attack () if both the factors are not
readily available and require additional effort to estimate
or calculate them.

• a medium-difficulty attack (G#) if one but not both the
factors are readily available

• a low-difficulty attack (#) if both the factors are readily
available

The feasibility score of the nth attack at the mth stage, FSn,m,
is defined in Eq. 1 as the product of f1n,m and f2n,m , where f1
and f2 are assigned the values of 0, 1, and 2 for ‘not available,’
‘not readily available,’ and ‘readily available’ respectively.

FSn,m =


In f easible if f1n,m × f2n,m = 0
High di f f iculty if f1n,m × f2n,m = 1
Medium di f f iculty if f1n,m × f2n,m = 2
Low di f f iculty if f1n,m × f2n,m = 4

(1)

6.2 Attack Analysis
Table 2 outlines the attack actions, literature reference, their
type in the attack categorization tree, and the feasibility sta-
tus in light of the above-mentioned criteria. Due to space
constraints, we collectively discuss them under the following
subsections. Where, A1−A48 in the discussion refers to the
attack serial number in the table. A short description of each
attack is provided in the Table 4 (Appendix A).

Designing stage. The designing stage focuses on the geom-
etry of the desired object. The fitment attacks for DeTSA
(A25−A27), anisotropy attacks (A45), and geometric feature
insertion or removal (A42) for SaTS are the simplest and most
accurate at the designing stage. Surveillance attacks on the
printed object (A4) and the connected network (A6) are also
feasible if the attacker has access to the designing software
process.
Slicing and control software. With an STL file and printing
profile as the input and a G-code file as the output, the stage
offers a vast spectrum of attack opportunities. It outperforms
all other stages in achieving SaTS goals (A29−A47). However,
the stage is less effective for DeTSA and PDtG attack goals.
Printing profile. The printing profile comprises parameters
used by the slicer software to attain a set of printing instruc-
tions. It can easily launch attacks related to global parameter
settings (A17,A34,A35,A37,A38).
G-code file through Net-2. The chronological structure of
a G-code file suits the introduction of localized defects to
achieve most of the DeTSA (A25−A27), SaTS (A29−A47),
and PDtG (A14−A23) attacks. Infill pattern and density at-
tacks (A34,A35), however, are challenging to execute.
Firmware. For incurring damage to the printer and facility
(A9−A13,A48), and most of the other PDtG (A14−A23), the
firmware stage leads all other stages. However, firmware is
the second-best stage to launch the DeTSA and SaTS attacks,
following the slicer. One reason is the difficulty in achiev-
ing the required stealthiness and accuracy due to its limited
temporal view.

6.3 Attack Feasibility Index - AFI
To assess the feasibility of attack categories at different stages
of the printing process, we introduce the term ‘Attack Goal
Feasibility Index’ (AFI), ranging from 0 to 1. An AFI value
of 0 indicates that an attack goal is not feasible at a particular
stage. In contrast, an AFI value of 1 indicates low difficulty as
defined in Section 6.1. The index incorporates the cumulative
effect of all attacks in a particular category and is calculated
as follows:

AFIg,s =
1

n×Fmax

n

∑
i=1

FSi,s (2)

where, AFIg,s is the AFI value for the attack category g at
stage s. n is the total number of attacks in the category g, Fmax
is the numeric value ‘4’ assigned to the ‘low-difficulty’ level,
and FSi,s represents the feasibility score of ith attack at stage
s.

Table 3 displays the Attack Feasibility Index (AFI) for the
examined attacks, broken down by the stages (Figure 12).
Only the slicing software (2a) and the firmware (3) stage
demonstrate non-zero AFI values across all attack goals. The
normalized AFI value for SaTS attacks is 0.89 for Stage 2a

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 273

Sr.
No. Attack Name Ref. Attack goal

category
Designing

(1a/1b)

Slicing
control

software
(2a)

Printing
profile

(2b)

Net-2
(G-code file)

(2c)

Firmware
(3)

1 Printer info [49]
SuPP

- G# - G# #
2 Design SW info [50] # G# - - -
3 Slicer/Control info [50] G# # - G# G#
4 OG info [25, 26], P∗ (5.1) SuPO # # - #
5 Print profile info [27] - # # # G#
6 Network device [32] SuNT # # - # #
7 Process artefacts [33] -
8 Facility info P SuPh - - - - G#
9 PYOG P∗ (5.2)

PDtP

- - G#
10 Breaking limits P - - - - #
11 Nz impair P - - - - G#
12 Extruder fracture [28] - - - - G#
13 Nz burning P - - - - G#
14 OG scaling P∗ (5.4)

PDtG

#
15 OG thermal [28] - # # # #
16 Incurable P∗ (5.3) - G# G# G#
17 Warping [17] - # # # #
18 FK thermal [28] - # - G# #
19 Trajectory unsync [51], [28] - G#
20 PS profile P - - - - #
21 PS unsync P - - - - #
22 FK reduction [30] - # - # #
23 Clogging [28] - G# G# G#
24 MAC/ARP corruption [50] SIDoS - # - - #
25 Vertex relocation [52]

DeTSA
G# - G# G#

26 OF scaling P∗ (5.4) # - - - -
27 Fitment P∗ (5.5) # - - G# G#
28 NT manipulation [49] NeIB # # - # G#
29 IF line spacing [15]

SaTS

- # - # G#
30 IF vertex spacing [15] - # - # G#
31 FS maniplation [17], [40] - # - # #
32 FK cavity [17], P∗ (5.6) - # - # G#
33 FK density [17], P∗ (5.7) - # - # G#
34 IF pattern [53] - # # -
35 IF density [53] - # # -
36 PS cavity [17] - G# - G# G#
37 IF exclusion [40], [30] - # # # #
38 % IF [54] - # # G# G#
39 GF change [29], [51] - # - # G#
40 Dyn.Thermal [17], [54] - # - # G#
41 PS local [54] - # - # #
42 OF insert/remove [14], [55] # - - - -
43 LT local [54] - # - # #
44 GC sequence [54], [56] - # - # #
45 Anisotropy [55] # # - -
46 GC manipulation [54], [56] - # - # #
47 Erosion P∗ (5.8) - - G#
48 PF air quality P∗ (5.9) SaPP - G# - - #

- : Not feasible : High difficulty G#: Medium difficulty #: Low difficulty P/P∗ : Proposed/Proposed and Evaluated

Table 2: Categorization of existing and proposed attacks with their feasibility and difficulty at various stages

274 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Normalized attack feasibility
index for process stagesAttack Goal

Category 1. 2a. 2b. 2c. 3.
SuPr 0.5 0.8 0.2 0.5 0.45
SuPE 0.25 0.25 0 0.25 0.5
PDtP 0 0.04 0 0.04 0.57
PDtG 0.5 1 1 1 1
SIDoS 0 0.88 0 0.88 1
DoNS 1 1 0 1 1
DeTSA 1 0.25 0 0.25 0.25
SaTS 0.25 0.89 0.25 0.61 0.56
NeIB 1 1 0 1 0.5
SaPP 0 0.38 0 0 1
UP 0.25 1 0 1 0.25
Cumulative AFI
per process stage 0.43 0.68 0.13 0.59 0.64

1 : Designing 2a : Slicing software 2b : Printing profile
2c : G-code file 3: Firmware

Table 3: Stage-wise feasibility summary for attack goals

and 0.56 for Stage 3 (firmware). The normalized AFI value
for DoPS is 0.43 for Stage 2a and 0.79 for Stage 3. The Cu-
mulative AFI indicates almost equal feasibility at the slicing
(2a) and firmware (3) stages, with the print profile being the
least feasible stage (2b) for launching an attack.

7 Firmware Attack Countermeasures

To fortify 3D printing systems against firmware attacks, a
robust, integrated approach encompassing prevention, detec-
tion, and mitigation strategies is essential. Primary vectors for
firmware attacks include compromises in the supply chain,
unauthorized physical access during the operational phase,
and intrusions into the printer network and the trusted printer
control software. Supply chain security is a comprehensive
field that involves safeguards to protect against breaches of
trust at any stage. Some of these measures include using en-
cryption and blockchain technology to ensure data integrity
and prevent counterfeiting [57]. To overcome the computa-
tional constraints of 3D printers, lightweight cryptographic
solutions such as Elliptic Curve Cryptography (ECC) and the
Elliptic Curve Digital Signature Algorithm (ECDSA) provide
suitable encryption and authentication services [58]. To thwart
Man-in-the-Middle (MiTM) attacks, secure communication
protocols, like TLS, should be implemented to encrypt data
exchanges involving the printer. The printer control software,
endowed with high-level privileges like firmware installation,
must be fortified with robust authentication and authorization
measures. To prevent booting from or upgrading to malicious
firmware, industry-standard techniques such as cryptographic
signing of firmware files, secure boot mechanisms, and the
integration of hardware-based security modules like TPM
(Trusted Platform Module) or HSM (Hardware Security Mod-
ule) should be implemented.

A reliable firmware acquisition and subsequent static anal-
ysis can help identify malicious code. A hardware-based
firmware acquisition method utilizing debugging ports, such
as JTAG, effectively bypasses many upper-level deception
tactics employed by attackers to evade detection [59]. As a
scalable alternative to static analysis, a future direction could
involve examining running firmware through cyber-physical
fuzzing. The solution would monitor the printer’s state in
response to smartly generated application-layer probes (G-
codes) in a closed loop to promptly expose any malicious
behavior within the firmware.

Should an attacker circumvent these preventative measures,
additional safeguards can prevent malicious firmware from
fulfilling its intended goals. A signature-based anomaly de-
tection solution would be beneficial for detecting malicious
firmware behavior. A more comprehensive approach involves
a cyber-physical anomaly detection system that analyzes both
physical-operational data such as acoustic, electric current,
and magnetic fields [53, 60, 61] and digital domain data such
as network traffic and application logs. This system can uti-
lize heuristics or machine learning techniques to identify at-
tack signatures and behavioral anomalies. Another forward-
looking strategy involves integrating quality control measures
into the cybersecurity loop. Since physical processes are in-
herently imperfect, resulting in low-magnitude deviations, it
is crucial to differentiate between benign and harmful devia-
tions. To this end, implementing feasible versions of standard
quality control processes, such as real-time micro CT scan-
ning, could enhance the anomaly detection capabilities [62].

These multi-layered strategies will significantly enhance
the defense of 3D printing setups against the continually
evolving landscape of cyberattacks.

8 Conclusion

This study presents a novel approach to understanding and
classifying firmware attacks in additive manufacturing. We
propose a firmware attack classification tree focused on attack
goals rather than attack actions. Additionally, nine attacks on
Marlin firmware are demonstrated on the Ultimaker2+ 3D
printer. Through a series of destructive and non-destructive
tests, including tensile strength and air-quality testing, we con-
firm the effectiveness of these attacks. To analyze the attacks,
we introduce an Attack Feasibility Index (AFI), represent-
ing a feasibility score for an attack at a specific stage of the
printing process. An analysis of 48 attacks, including existing
and proposed ones, confirms that all attack goals could not be
achieved by attacking any single stage of the printing process.
We observe that firmware is not the optimal stage to launch
attacks aimed at sabotaging the printed part. This study will
inspire further research into additive manufacturing attacks
and guide cybersecurity researchers in developing defense
solutions tailored to specific stages of the printing process
and their corresponding feasible attacks.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 275

References

[1] KBV Research, “Share & industry trends analysis re-
port by type, by technology, by sales channel, by end-
use, by regional outlook and forecast, 2021–2027,” Re-
portLinker: Lyon, France, 2022.

[2] GE Aviation. (2018) New manufacturing mile-
stone: 30,000 additive fuel nozzles. Online
Available: https://www.ge.com/additive/stories/
new-manufacturing-milestone-30000-additive-fuel-nozzles.

[3] N. Gupta, C. Weber, and S. Newsome, “Additive manu-
facturing: status and opportunities,” Science and Tech-
nology Policy Institute, Washington, 2012.

[4] S. R. Chhetri, S. Faezi, N. Rashid, and M. A. Al Faruque,
“Manufacturing supply chain and product lifecycle secu-
rity in the era of industry 4.0,” Journal of Hardware and
Systems Security, vol. 2, no. 1, pp. 51–68, 2018.

[5] A. Muhammad, B. Afzal, B. Imran, A. Tanwir, A. H.
Akbar, and G. Shah, “onem2m architecture based se-
cure mqtt binding in mbed os,” in 2019 IEEE European
Symposium on Security and Privacy Workshops (Eu-
roS&PW), 2019, pp. 48–56.

[6] A. Ayub, N. Zubair, H. Yoo, W. Jo, and I. Ahmed, “Gad-
gets of gadgets in industrial control systems: Return
oriented programming attacks on plcs,” in 2023 IEEE
International Symposium on Hardware Oriented Secu-
rity and Trust (HOST), 2023, pp. 215–226.

[7] M. Ahsan and M. Ali, “Lsstk: Lightweight solution to
preventing stack from buffer overflow vulnerability,” in
2023 17th International Conference on Open Source
Systems and Technologies (ICOSST), 2023, pp. 1–7.

[8] S. A. Qasim, A. Ayub, J. Johnson, and I. Ahmed, “At-
tacking the iec 61131 logic engine in programmable
logic controllers,” in Critical Infrastructure Protection
XV: 15th IFIP WG 11.10 International Conference, IC-
CIP 2021, Virtual Event, March 15–16, 2021, Revised
Selected Papers 15. Springer, 2022, pp. 73–95.

[9] B. Imran, M. Ahsan, A. H. Akbar, and G. A. Shah,
“D4gw: Dtls for gateway multiplexed application to se-
cure mqtt(sn)-based pub/sub architecture,” Internet of
Things, vol. 26, p. 101172, 2024.

[10] B. Imran, B. Afzal, A. H. Akbar, M. Ahsan, and G. A.
Shah, “Misa: Minimalist implementation of onem2m se-
curity architecture for constrained iot devices,” in 2019
IEEE Global Communications Conference (GLOBE-
COM), 2019, pp. 1–6.

[11] A. Ayub, W. Jo, S. A. Qasim, and I. Ahmed, “How are
industrial control systems insecure by design? a deeper

insight into real-world programmable logic controllers,”
IEEE Security & Privacy, vol. 21, no. 4, pp. 10–19,
2023.

[12] J. Gatlin, S. Belikovetsky, Y. Elovici, A. Skjellum,
J. Lubell, P. Witherell, and M. Yampolskiy, “Encryp-
tion is futile: Reconstructing 3d-printed models using
the power side-channel,” ser. RAID ’21. New York,
NY, USA: Association for Computing Machinery, 2021,
p. 135–147.

[13] M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan,
“Acoustic side-channel attacks on additive manufactur-
ing systems,” in 2016 ACM/IEEE 7th International Con-
ference on Cyber-Physical Systems (ICCPS), 2016, pp.
1–10.

[14] S. Belikovetsky, M. Yampolskiy, J. Toh, J. Gatlin, and
Y. Elovici, “dr0wned–cyber-physical attack with addi-
tive manufacturing,” in 11th USENIX Workshop on Of-
fensive Technologies (WOOT 17). Vancouver, BC:
USENIX Association, Aug. 2017.

[15] M. H. Rais, M. Ahsan, V. Sharma, R. Barua, R. Prins,
and I. Ahmed, “Low-magnitude infill structure manipu-
lation attacks on fff-based 3d printers,” in Critical Infras-
tructure Protection XVI. Springer, 2022, pp. 205–232.

[16] N. Gupta, A. Tiwari, S. T. Bukkapatnam, and R. Karri,
“Additive manufacturing cyber-physical system: Supply
chain cybersecurity and risks,” IEEE Access, vol. 8, pp.
47 322–47 333, 2020.

[17] M. H. Rais, Y. Li, and I. Ahmed, “Dynamic-thermal
and localized filament-kinetic attacks on fused filament
fabrication based 3d printing process,” Additive Manu-
facturing, p. 102200, 2021.

[18] B. Jovanović, I. Gadjanski, J. Burazer, L. Nikolić,
N. Babić, and M. Lečić, “R&d in a fab lab: Examples
of paste extrusion method,” in Proceedings of 5th Inter-
national Conference on Advanced Manufacturing Engi-
neering and Technologies, V. Majstorovic and Z. Jakovl-
jevic, Eds. Cham: Springer International Publishing,
2017, pp. 461–467.

[19] ISO/ASTM 52900:2021, “Additive manufacturing —
General principles — Fundamentals and vocabu-
lary,” ASTM International, West Conshohocken, PA,
2021. [Online]. Available: https://www.iso.org/standard/
74514.html

[20] M. Yampolskiy, W. E. King, J. Gatlin, S. Belikovetsky,
A. Brown, A. Skjellum, and Y. Elovici, “Security of
additive manufacturing: Attack taxonomy and survey,”
Additive Manufacturing, vol. 21, pp. 431–457, 2018.

276 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles
https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles
https://www.iso.org/standard/74514.html
https://www.iso.org/standard/74514.html

[21] M. Yampolskiy, A. Skjellum, M. Kretzschmar, R. A.
Overfelt, K. R. Sloan, and A. Yasinsac, “Using 3d print-
ers as weapons,” International Journal of Critical In-
frastructure Protection, vol. 14, pp. 58–71, 2016.

[22] Y. Pan, J. White, D. Schmidt, A. Elhabashy, L. Sturm,
J. Camelio, and C. Williams, “Taxonomies for reasoning
about cyber-physical attacks in iot-based manufacturing
systems,” International Journal of Interactive Multime-
dia and Artificial Intelligence, 2017.

[23] P. Mahesh, A. Tiwari, C. Jin, P. R. Kumar, A. N. Reddy,
S. T. Bukkapatanam, N. Gupta, and R. Karri, “A survey
of cybersecurity of digital manufacturing,” Proceedings
of the IEEE, vol. 109, no. 4, pp. 495–516, 2020.

[24] M. Wu and Y. B. Moon, “Taxonomy of cross-domain
attacks on cybermanufacturing system,” Procedia Com-
puter Science, vol. 114, pp. 367–374, 2017.

[25] C. Song, F. Lin, Z. Ba, K. Ren, C. Zhou, and W. Xu,
“My smartphone knows what you print: Exploring
smartphone-based side-channel attacks against 3d print-
ers,” in Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: Association for Com-
puting Machinery, 2016, p. 895–907.

[26] M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan,
“Acoustic side-channel attacks on additive manufactur-
ing systems,” in 2016 ACM/IEEE 7th International Con-
ference on Cyber-Physical Systems (ICCPS), 2016, pp.
1–10.

[27] Q. Do, B. Martini, and K.-K. R. Choo, “A data exfil-
tration and remote exploitation attack on consumer 3d
printers,” IEEE Transactions on Information Forensics
and Security, vol. 11, no. 10, pp. 2174–2186, 2016.

[28] X. Z. Hang, “Three demos of attacking arduino
and reprap 3d printers, code to Keynote at
XCon2013 (2013),” https://github.com/secmobi/
attack-arduino-and-reprap, 2016.

[29] S. B. Moore, W. B. Glisson, and M. Yampolskiy, “Im-
plications of malicious 3d printer firmware,” in Proceed-
ings of Hawaii Int. Conf.Syst.Sci,2017, 2017, pp. 1–10.

[30] H. Pearce, K. Yanamandra, N. Gupta, and R. Karri,
“Flaw3d: A trojan-based cyber attack on the physical out-
comes of additive manufacturing,” IEEE/ASME Trans-
actions on Mechatronics, vol. 27, no. 6, pp. 5361–5370,
2022.

[31] Q. Do, B. Martini, and K. R. Choo, “A data exfiltration
and remote exploitation attack on consumer 3d print-
ers,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 10, pp. 2174–2186, 2016.

[32] A. Cui, M. Costello, and S. Stolfo, “When firmware mod-
ifications attack: A case study of embedded exploitation,”
in 20th Annual NDSS symposium, 2013.

[33] M. Yampolskiy, L. Graves, J. Gatlin, A. Skjellum, and
M. Yung, “What did you add to my additive manufactur-
ing data?: Steganographic attacks on 3d printing files,”
in Proceedings of the 24th International Symposium on
Research in Attacks, Intrusions and Defenses, ser. RAID
’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 266–281.

[34] R. Colella, F. P. Chietera, and L. Catarinucci, “Analysis
of fdm and dlp 3d-printing technologies to prototype
electromagnetic devices for rfid applications,” Sensors,
vol. 21, no. 3, 2021.

[35] Y. Gao, W. Wang, Y. Jin, C. Zhou, W. Xu, and Z. Jin,
“Thermotag: A hidden id of 3d printers for fingerprinting
and watermarking,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 2805–2820, 2021.

[36] M. H. Rais, M. Ahsan, and I. Ahmed, “Fromepp: Digi-
tal forensic readiness framework for material extrusion
based 3d printing process,” Forensic Science Interna-
tional: Digital Investigation, vol. 44, p. 301510, 2023.

[37] K. e. a. Babu, “Fire behavior of 3d-printed polymeric
composites,” in Journal of Materials Engineering and
Performance. Springer, 2021, pp. 30:4745–4755.

[38] Q. Zhang, M. Pardo, Y. Rudich, I. Kaplan-Ashiri, J. P. S.
Wong, A. Y. Davis, M. S. Black, and R. J. Weber, “Chem-
ical composition and toxicity of particles emitted from a
consumer-level 3d printer using various materials,” En-
vironmental Science & Technology, vol. 53, no. 20, pp.
12 054–12 061, 2019, pMID: 31513393.

[39] S. Pirela, J. Martin, D. Bello, and P. Demokritou,
“Nanoparticle exposures from nano-enabled toner-based
printing equipment and human health: state of science
and future research needs,” Critical reviews in toxicol-
ogy, vol. 47, pp. 1–27, 05 2017.

[40] E. Kurkowski, A. V. Stockum, J. Dawson, C. Taylor,
T. Schulz, and S. Shenoi, “Manipulation of g-code tool-
path files in 3d printers: Attacks and mitigations,” in
Critical Infrastructure Protection XVI. Springer, 2022,
pp. 205–232.

[41] T. Hudson, X. Kovah, and C. Kallenberg, “Thunderstrike
2: Sith strike,” Black Hat USA Briefings, 2015.

[42] C. Kallenberg and R. Wojtczuk, “Speed racer: Exploit-
ing an intel flash protection race condition,” Bromium
Labs (January 2015), 2015.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 277

https://github.com/secmobi/attack-arduino-and-reprap
https://github.com/secmobi/attack-arduino-and-reprap

[43] D. Ibdah, N. Lachtar, A. A. Elkhail, A. Bacha, and
H. Malik, “Dark firmware: a systematic approach to
exploring application security risks in the presence of
untrusted firmware,” in 23rd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID
2020), 2020, pp. 413–426.

[44] L. Garcia, F. Brasser, M. Cintuglu, A. R. Sadeghi, O. Mo-
hammed, and S. A. Zonouz, “Hey, my malware knows
physics! attacking plcs with physical model aware
rootkit,” in Proceedings of the Eighth ACM Confer-
ence on Data and Application Security and Privacy,
ser. NDSS,2017. Reston, VA, USA: Internet Society,
2017.

[45] T. H. Gabriel Boyd. 3D printing bridging: 6
tips for perfect bridges. https://all3dp.com/2/
bridging-3d-printing-tips-tricks-for-perfect-bridges/.
Last Updated: Nov 12, 2022.

[46] A. Sinha, B. Swain, A. Behera, P. Mallick, S. K. Samal,
H. M. Vishwanatha, and A. Behera, “A review on the pro-
cessing of aero-turbine blade using 3d print techniques,”
Journal of Manufacturing and Materials Processing,
vol. 6, no. 1, 2022.

[47] ASTM, “Standard test methods for flexural properties
of unreinforced and reinforced plastics and electrical
insulating materials,” Modifed on July 24, 2017.

[48] M. Gaskill. (Jan 6, 2023) EPA Proposes to
Strengthen Air Quality Standards to Protect
the Public from Harmful Effects of Soot.
https://www.epa.gov/newsreleases/epa-proposes-
strengthen-air-quality-standards-protect-public-
harmful-effects-soot.

[49] S. Alyxandra Van, K. Elizabeth, P. Tiffany, T. Cur-
tis, D. Joel, R. Mason, and S. Sujeet, “Attack-defense
modeling of material extrusion additive manufactur-
ing systems,” in Critical Infrastructure Protection XVI.
Springer, 2022, pp. 121–153.

[50] S. Y. Nam, D. Kim, and J. Kim, “Enhanced arp: pre-
venting arp poisoning-based man-in-the-middle attacks,”
IEEE communications letters, vol. 14, no. 2, pp. 187–
189, 2010.

[51] S. Moore, P. Armstrong, T. McDonald, and M. Yam-
polskiy, “Vulnerability analysis of desktop 3d printer
software,” in 2016 Resilience Week (RWS). IEEE,
2016, pp. 46–51.

[52] Y. Gao, B. Li, W. Wang, W. Xu, C. Zhou, and Z. Jin,
“Watching and safeguarding your 3d printer: Online pro-
cess monitoring against cyber-physical attacks,” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 2, no. 3, Sep. 2018.

[53] C. Bayens, T. Le, L. Garcia, R. Beyah, M. Javanmard,
and S. Zonouz, “See no evil, hear no evil, feel no evil,
print no evil- malicious fill patterns detection in additive
manufacturing,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX As-
sociation, Aug. 2017, pp. 1181–1198.

[54] M. H. Rais, Y. Li, and I. Ahmed, “Spatiotemporal g-code
modeling for secure fdm-based 3d printing,” in Proceed-
ings of the ACM/IEEE 12th International Conference
on Cyber-Physical Systems, 2021, pp. 177–186.

[55] S. E. Zeltmann, N. Gupta, N. G. Tsoutsos, M. Mani-
atakos, J. Rajendran, and R. Karri, “Manufacturing and
security challenges in 3d printing,” JOM, vol. 68, no. 7,
pp. 1872–1881, Jul 2016.

[56] S. Belikovetsky, Y. A. Solewicz, M. Yampolskiy, J. Toh,
and Y. Elovici, “Digital audio signature for 3d printing
integrity,” IEEE Transactions on Information Forensics
and Security, vol. 14, no. 5, pp. 1127–1141, 2019.

[57] S. Zeadally and J. Bou abdo, “Blockchain: Trends and
future opportunities,” Internet Technology Letters, vol. 2,
09 2019.

[58] B. Hammi, S. Zeadally, and J. Nebhen, “Security threats,
countermeasures, and challenges of digital supply
chains,” ACM Comput. Surv., vol. 55, no. 14s, jul 2023.
[Online]. Available: https://doi.org/10.1145/3588999

[59] M. H. Rais, R. A. Awad, J. Lopez, and I. Ahmed, “Jtag-
based plc memory acquisition framework for industrial
control systems,” Forensic Science International: Digi-
tal Investigation, vol. 37, p. 301196, 2021.

[60] J. Gatlin, S. Belikovetsky, S. B. Moore, Y. Solewicz,
Y. Elovici, and M. Yampolskiy, “Detecting sabotage
attacks in additive manufacturing using actuator power
signatures,” IEEE Access, vol. 7, pp. 133 421–133 432,
2019.

[61] S. R. Chhetri, A. Canedo, and M. A. Al Faruque, “Kcad:
kinetic cyber-attack detection method for cyber-physical
additive manufacturing systems,” in 2016 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD). IEEE, 2016, pp. 1–8.

[62] M. Ahsan, M. H. Rais, and I. Ahmed, “Sok: Side chan-
nel monitoring for additive manufacturing - bridging
cybersecurity and quality assurance communities,” in
2023 IEEE 8th European Symposium on Security and
Privacy (EuroS&P), 2023, pp. 1160–1178.

A Appendix: Attacks Description

Table 4 gives a generic description of all the analyzed attacks.

278 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://all3dp.com/2/bridging-3d-printing-tips-tricks-for-perfect-bridges/
https://all3dp.com/2/bridging-3d-printing-tips-tricks-for-perfect-bridges/
https://doi.org/10.1145/3588999

Sr. # Attack Name Attack Action
1 Printer info Exfiltrating printer information e.g. manufacturer, model, firmware version, etc.
2 Design SW info Exfiltrating CAD software information e.g. name, version, etc.
3 Slicer/Control info Exfiltrating slicing printer control software information e.g. name, version, etc.
4 OG info Stealing printed object geometry information (IP Theft)
5 Print profile info Extracting printing profile (thermal, infill pattern, density, etc,) to facilitate
6 Network device Using compromised printer to extract networked devices information
7 Process artefacts Using AM process artefacts as information carrier
8 Facility info Printing facility information e.g. stealing environment temperature, cameras, etc.
9 PYOG Print your own grave: Beak the printing glass
10 Breaking limits Making printer go beyond limits to cause damage to the end-stops/limit switches
11 Nz impair Hitting the nozzle to the print bed to physically damage the nozzle orifice
12 Extruder fracture Hitting the extruder assembly against the printer walls to physically fracture it
13 Nz burning Heating the nozzle for a longer period with the cooling fan turned off
14 OG scaling Scaling up or down the print object outer geometry

15 OG thermal
Deforming the object geometry through thermodynamic manipulation by reducing
the fan speed or changing its state.

16 Incurable Impersonating low quality bridging defect (Section 5.3)
17 Warping Adding warping defects to the print geometry by changing thermal parameters
18 FK thermal Lowering nozzle temperature resulting in cold filament extrusion
19 Trajectory unsync Unsynchronized nozzle trajectory for x,y,e axes
20 PS profile Manipulating the trapezoidal speed profile to cause excessive nozzle jerks
21 PS unsync Unsynchronized x,y extruder speed during printing
22 FK reduction Decreasing feed-rate to cause material underflow
23 Clogging Partially clog the printer nozzle resulting in material underflow
24 MAC/ARP corruption Denying printer access by manipulating mac table or through ARP poisoning
25 Vertex relocation Relocating one or more selected vertices
26 OF scaling Scaling up/down print object specific feature
27 Fitment Axial misalignment of the print feature to cause fitment issues for intended assembly
28 NT manipulation Traffic manipulation to breach network integrity
29 IF line spacing Changing infill-lines spacing to reduce build part strength
30 IF vertex spacing Changing infill vertices spacing to reduce build part strength
31 FS manipulation Filament-state manipulation to evade nozzle kinetic detectors
32 FK cavity Cavity through filament-kinetics w/o modifying toolpath
33 FK density Localized density variation by filament status/speed change
34 IF pattern Changing the Infill pattern for example from honeycomb to linear etc.
35 IF density Changing the Infill density (1% or more)
36 PS cavity Modifying printing speed for localized zones
37 IF exclusion Excluding the infill pattern in the print geometry
38 % IF Changing % fill for the infill pattern e.g. from 50% to 25% and making it more sparse
39 GF change Replacing the printing instructions (G-code) file
40 Dyn. thermal / bonding Manipulating interlayer bonding by changing thermal properties at localized zones
41 PS local Manipulating the printing speed at localized regions
42 OF insert/remove Adding or removing a geometric feature in the print geometry
43 LT local Localized changes to layer thickness by manipulating z-profile
44 GC sequence Localized modification in the toolpath sequence e.g., following a different printing path
45 Anisotropy Changing print direction to vary anisotropic properties of the print object
46 GC manipulation Insertion, removal, or modification of the printing instructions
47 Erosion Causing filament erosion based density attack
48 PF air quality Microparticles and VOC flooding to degrade air quality of the printing facility

Table 4: Generic description of the studied attacks

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 279

B Appendix: Algorithms for Firmware At-
tacks

Algorithm 1 Printed Object Surveillance Attack
1: Output: Object sketch file theft
2: Phase-1: Sketch Compilation
3: On restarts: ∗eepromAtkend −→ spyFile
4: if G-code == G0 or G1 then
5: if not spyFile then
6: if L.Change() && Zdst ≥ (Eno ∗Za +1) then
7: Shell← Find_Shell()
8: ∗eepromloc← L.Header; loc++
9: ∗eepromloc← Zdst; loc++

10: for P in Shell do
11: ∗eepromloc← Px; loc++
12: ∗eepromloc← Py; loc++
13: end for
14: else
15: if Zdst == Zcurrent then
16: Queue← Queue ∪ Px,y
17: else
18: if printingDone() then
19: Queue.reset()
20: spyFile = 1
21: ∗eepromAtkend−1 ← (loc− loco)
22: ∗eepromAtkend ← 0x01
23: ResetQueue, loc
24: end if
25: end if
26: end if
27: end if
28: end if
29: Continue_execution
30: Phase-2: File transfer
31: if SDinserted && SDstateChange then
32: if spyFile then
33: if SDauthenticate() then
34: SD.openFile("spidy.txt", ’w’)
35: for i = 0 to ∗eepromAtkend−1 do
36: SD.write(∗eeprom(loco+i))
37: end for
38: SD.closeFile()
39: spyFile = 0
40: ∗eepromAtkend−1 ← 0x00
41: ∗eepromAtkend ← 0x00
42: end if
43: end if
44: end if

Algorithm 2 Print Your Own Grave: Break the Glass
1: Output: Breaking the printing glass
2: Trigger: An unused G-code G98
3: Preheat the printing bed and nozzle
4: for layer = 1 to n do ▷ n is the desired number of layers
5: x← 112.5+osc×0.1
6: y← 112.5+osc×0.1
7: osc←−osc
8: if layer > 8 then
9: line-count← small-square ▷ Destruction tool feature 1

10: else
11: line-count← big-square ▷ Destruction tool feature 2
12: end if
13: for line = 1 to m do ▷ m is the number of lines
14: if line < 4 then
15: speed← slow
16: else if layer > 4 then
17: speed← moderate
18: else
19: speed← fast
20: end if
21: x← x+dir× lenx
22: y← y+dir× leny
23: e← e+dir× lene
24: Move to (x,y,e)
25: lenx, leny← lenx, leny + 0.8
26: lene← 0.058 × lenx
27: end for
28: end for
29: while nozzle and printing bed cool down do
30: wait!
31: end while
32: Grip(printed-tool): Nozzle jams in cavity and holds the tool
33: Unlock(retaining-clips)
34: Manipulate y,z position variables
35: Move nozzle tip beyond and below glass sheet
36: Guide the glass out through the walls and dispose

280 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Algorithm 3 Attack to Simulate Bridging Errors Over X-Axis
1: Output: Poor bridging performance
2: Context: Attack resides within Move instruction code region
3: G-code instruction: Move from A to B
4: if Bz < Layerwidth then
5: Initialize layer-number
6: else if Bz > Az then
7: Increment layer-number
8: Copy LMAPcurrent to LMAPprev # Layer Map
9: else if ∆e > 0∧∆x ̸= 0 then

10: direction← (Bx > Ax) ? +1 :−1
11: xvar← round(Ax,20 mm)
12: yvar← round(Ay,20 mm)
13: while xvar < Bx do
14: if xvar within Attack-Zone then
15: (i, j)← LMAPref index for (xvar,yvar)
16: if LMAPprev[i, j] == 0 then
17: attack-the-command← true
18: LMAPcurrent[i, j] = 1
19: end if
20: xvar← xvar+20 mm
21: end if
22: end while
23: if attack-the-command then
24: Modify extruder settings:
25: T ← T +5◦C ▷ Increase temperature by 5oC
26: F ← 0.5×F ▷ Reduce feedrate to 50%
27: S← 0.5×S ▷ Reduce fan speed to 50%
28: L← 1.25×L ▷ Increase extrusion length by 25%
29: Execute the move command
30: Revert modifications to T,F,S,L
31: attack-the-command← false
32: end if
33: end if

Algorithm 4 Object Feature Scaling Attack
1: Output: Enlarged geometry over x and y axes
2: Initialize new object
3: G-code instruction rx: Move from A to B
4: if Bz > Az then
5: while Queue-size ≥ 3 do
6: Update Tail position in queue
7: initialize Polygon-found← false
8: while Head not reached do
9: Traverse the queue

10: if Tail coordinates found then
11: Polygon-found← true
12: break
13: end if
14: end while
15: if Polygon-found then
16: break
17: end if
18: Decrement Queue-size
19: end while
20: if Polygon-found then
21: Ptail′ ← Find position outside polygon adjacent to Ptail′

22: Move to Ptail′

23: for Pi ∈ Tail to Head do
24: P′i ← Find corresponding position for Pi
25: Pi′e ← Pie
26: Move to P′i
27: end for
28: Adjust PTaile for extra filament used
29: Attack accomplished for the current layer
30: Reset Queue for the next layer
31: end if
32: else if Bz = Az then
33: Add B at Tail; Update Head and Tail positions
34: else
35: Reset Queue
36: end if

Algorithm 5 Misalignment Attack
1: Output: Misaligning an axial slot by θo to cause fitment error
2: Initialize new object
3: if Polygon-found then ▷ logic defined in Algorithm 4
4: temporalCountingStart = True ▷ increase temporalDiff
5: if (layer-change) then
6: if temporalDiff > minGap then ▷ Internal feature found
7: for eachG-code ∈ polygon do
8: Either x← x + (layerHeight / tan(90-θ))
9: Or y← y + (layerHeight / tan(90-θ))

10: Or x,y← x,y + (layerHeight / tan(90-θ))
11: end for
12: else ▷ No internal feature found
13: misalignCompleteObject OR skipAttack
14: execute_buffered_G-codes
15: end if
16: Reset Queue for the next layer
17: end if
18: end if

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 281

Algorithm 6 Internal Cavity Attack
1: Output: A cavity inside the object
2: Procedure:
3: if layerCount == 0 then ▷ To find total commands in a layer
4: cmdPerLayer← cmdPerLayer+1
5: end if
6: if Znew > Zold +minLayerWidth then
7: layerChange← true

8: targetCmdNo← cmdPerLayer
2 −2

9: end if
10: if 30≤M73.value≤ 70 then ▷ Printing internal layers
11: attackStatus← true
12: layerChange← false
13: end if
14: if attackStatus == True then
15: currentCmd← currentCmd+1
16: if currentCmd = targetCmdNo±2 then
17: C1,C2,C3← split_symmetric(currentCmd)
18: C2←mute_extruder_part(C2)
19: skip G-code(currentCmd)
20: execute G-code(C1)
21: retract_filament(4 mm)
22: execute G-code(C2)
23: advance_filament(4 mm)
24: execute G-code(C3)
25: end if
26: end if

Algorithm 7 Object Density Variation Attack
1: Output: Low-density zones in the internal layers
2: Procedure:
3: if layerCount == 0 then ▷ To find total commands in a layer
4: cmdPerLayer← cmdPerLayer+1
5: end if
6: if Znew > Zold +minLayerWidth then
7: layerChange← true

8: targetCmdNo← cmdPerLayer
2 −2

9: end if
10: if 30≤M73.value≤ 70 then ▷ Printing internal layers
11: attackStatus← true
12: layerChange← false
13: end if
14: if attackStatus then
15: currentCmd← currentCmd+1
16: if currentCmd = targetCmdNo±2 then
17: modifiedCmd = mute_extruder_part(currentCmd)hg/
18: skip G-code(currentCmd)
19: execute modifiedCmd
20: end if
21: end if

Algorithm 8 Filament Erosion Attack
1: Output: Reduced filament quantity
2: Procedure:
3: Method-1
4: if printingInitiates==True then ▷ Suitable at the start of

printing
5: if G-code== heatNozzle(Tn) then ▷ preheating command
6: bufferG-code()
7: setExtrudeMinTemp(0oC) ▷ To bypass the safety check
8: moveExtruder(30) ▷
9: executeHeatNozzle(Tn)

10: restoreExtruderMinTemperature
11: printingInitiates = False
12: end if
13: end if
14: Method-2
15: if printingStatus==True then ▷ It is repeated throughout

printing
16: estimateAttackZone ▷ Based on object & bowden tube
17: if attackZone==True then ▷ x times in a layer
18: eliminateMaxChecks(speed,acceleration, jerk)
19: retreatFilament(5) ▷ To avoid any spilling
20: for i ∈ oscCount do ▷ high-jerk moves, 20-50
21: peakJerkMoves(±4) ▷ to-and-fro at peak settings
22: end for
23: advanceFilament(5)
24: end if
25: end if

Algorithm 9 Printing Facility Air Quality Attack
1: Output: Degraded air quality of the printing facility
2: Procedure:
3: if idleDuration > inactivity_threshold then ▷ Establish idle

status by the absence of temperature and movement G-codes
4: if nozzleTemperature < 150 then ▷ suitable for cold

extrusion
5: initiateColdExtrudeBursts() ▷ using Algorithm 8
6: preheatNozzle(180) ▷ using M109 G-code
7: retractFilament(4) ▷ to avoid drops on the bed
8: disableHeaterFeedback()
9: switchOnHeater() ▷ may achieve Tn up to 350oC

10: hold_and_wait() ▷ 1-5 mins
11: switchOfHeater()
12: enableHeaterFeedback()
13: end if
14: resetIdleDuration()
15: end if

282 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

	woot24-proceedings-front-matter
	woot24-proceedings-interior
	woot24-ravi
	Introduction
	Threat Model

	Background
	Secure Boot of Zynq-7000 device
	RSA Authentication in Zynq-7000 SoC

	Analyzing the RSA Authentication Procedure within FSBL
	Related Works
	Exploiting the RSA Security Flaw in FSBL
	Proof of Concept (PoC) Attack Implementation

	Practical Attack using SD Card Switcher Board
	Attack Methodology
	Experimental Observations of Attack using SD Card Switcher Board

	Fixing the Flaw in PHT Authentication within FSBL

	Starbleed for Bitstream Recovery
	Attack Methodology
	Attack Execution using Workaround

	Conclusion
	Assessing the RSA Authentication Procedure in BootROM
	BootROM Analysis using SD Card Communication
	Experimental Observations of BootROM Execution

	woot24-beery
	woot24-brossard
	Introduction
	Previous Work
	Exploitability of a Vulnerability
	Automatic Exploitation of Vulnerabilities Detected via Static Analysis
	Defense in Depth: Hardened Compilation Techniques
	Binary Loaders and Binary Post-Compilation Instrumentation

	Overview of the Libification Process
	Libification: Methodology
	Practical Libification
	Toward Procedural Debugging
	An Empirical Assessment of the Side Effects of Libification
	Limits to Binary Libification
	Validation

	Conclusion and Future Work

	woot24-liguori
	Introduction
	Related Work
	Research Study
	Pre-training data (unlabeled)
	Fine-tuning data (labeled)
	Code Generation Task
	Research Questions

	Experimental Results
	Zero-shot Learning
	Impact of Training Strategies
	Static Analysis
	Execution Analysis
	Comparison with Public AI Model

	Threats To Validity
	Ethical Considerations
	Conclusion

	woot24-gruza
	Introduction
	Overview of DNSSEC and NSEC3
	NSEC3-Encloser Attack
	Zonefile Construction
	Maximizing the Impact
	Adapting the request
	Adapting the zone
	Hash iteration count
	Adding a salt
	Generating the zonefile

	Evaluation of the Attack
	Setup
	Comparison of Attack Parameters
	Key Size
	NSEC3 Iterations
	NSEC3 Salt Length

	Comparison of Resolvers
	Salt Length 0
	Salt Length 255

	Effect on Benign Clients
	Comparison to PoC in CVE-2023-50868

	Measurements of Signed Domains
	Related Work
	Conclusions

	woot24-bitsikas
	Introduction
	Background and Motivation
	Overview on SMS Process
	SMS-timing-based Location Inference
	Limitations and Motivation

	Multi-Sender Location Inference
	Threat Model
	Attack Concept

	Experimental Validation
	Data Collection Setup
	Data Collection Procedure
	Feature Set Generation & Multi-Sender Fusion
	Multi-Sender Techniques
	Attack Training & Prediction

	Experimental Evaluation and Results
	Single Senders: Baseline
	Multiple Senders: Simple Combination
	Multiple Senders: Statistical Combination
	Sample Size Comparisons

	Discussion
	Geographical Distribution of Senders
	Countermeasures
	Limitations

	Related Work
	Conclusion

	woot24-motallebighomi
	Introduction
	Wireless Gear Shifting: An Overview
	Bluetooth Low Energy
	ANT+
	Shimano's Proprietary Communication Protocol

	Analyzing Shimano's Wireless Gear Control Protocol
	High-Level Protocol Overview
	Physical Layer Analysis
	Packet Structure and Content
	Security Weakness

	Replay and Jamming Attacks
	Attacker Assumptions and Experimental Setup
	Replay attack
	RF Jamming Attack

	Eavesdropping ANT Communication
	Discussion
	Related Work
	Analysis of Proprietary Wireless Protocols
	Replay and Relay Attack

	Conclusion

	woot24-scott
	Introduction
	Attacker model

	Design space
	Backdoored wallet requirements
	Backdoor syntax

	Backdoor description / our construction
	Step 1: construction rationale
	Step 2: construction rationale

	Discussion
	How many signatures are needed to leak the full seed?
	Deterministic signatures
	Recovery discussion

	Recovery implementation
	Experiments
	Detection, deployment
	Distinguishing backdoored signatures
	Deployment aspects
	Comparison

	Mitigations
	Lessons learned
	Conclusion
	ECDSA definition
	Definition of M
	Transaction hashes
	Recovery output

	woot24-janzen
	Introduction
	Background and Related Work
	5G Cellular Networks
	O-RAN and Open Fronthaul
	Indoor Base Stations
	Related Work
	O-RAN Security
	Open Fronthaul and Radio Unit Security
	Distinction from Related Work

	Threat Model
	System Model
	Adversary Motivation
	Adversary Capabilities

	Analysis
	Setup
	Hardware and Software Structure
	Services

	Findings
	Exposed TCF Agent
	Missing Access Control
	Memory Corruption Vulnerabilities
	Command Injection Vulnerabilities
	Open Fronthaul Standard Deviations
	Missing NETCONF via TLS Option
	Persistent Creation of Users
	Default Credentials

	Discussion
	Impact on the Cellular Network
	Requirements
	Impact
	Follow-Up Attacks

	Mitigating the Discovered Vulnerabilities
	Indoor Base Stations
	Technologies of 5G and Beyond
	Complexity of the Open RAN Ecosystem
	Limitations and Future Work
	Responsible Disclosure

	Conclusions

	woot24-sah
	Introduction
	Background
	Trusted Execution Environment
	Code-reuse Attacks
	Context Switches and Call Site Verification

	Threat Model
	RIPencapsulation Design
	Creating a Side Channel (Phase 1)
	IPE State Dump Post-processing (Phase 2)
	IPE Memory Access Gadgets (Phase 3)

	RIPencapsulation Implementation
	Capturing IPE Register State
	Reverse Engineering and Heuristics
	IPE Memory Exfiltration

	RIPencapsulation on MSP432
	CPU Halts Inside IPE Zone
	Return from Interrupt Handler
	Clearing Interrupt Flags
	Unlocking Read Access

	Evaluation
	AES
	SHA256
	RSA
	Attacking Real Firmware
	Attack Time
	MSP432 Results
	Write Exploit

	Mitigation Strategies
	Related Work
	Interrupt-based Attacks
	Debugger-based Attacks
	Blind Attacks
	Other attacks on TEEs

	Conclusion

	woot24-goeman
	Introduction
	The Eufy Ecosystem
	Video Streaming and Communication
	Doorbell Communication
	Communication with the End User

	Homebase Firmware

	Attack Vectors & Methods
	Selective and Platform Independent Execution with dAngr
	Existing Approaches
	dAngr: a Debugger for angr

	Attacking and Identifying Vulnerabilities in the Ecosystem
	Firmware Acquisition
	Cracking the WPA2-PSK
	Lack of Network Security
	Breaking the Encryption Schemes
	Breaking Encrypted P2P Traffic
	Generating the Media Encryption Key

	Reconstructing the Media Encryption Key Using dAngr

	Countermeasures
	General Insights & Recommendations
	Related Work
	Conclusion

	woot24-tan
	Introduction
	Methodology
	Adversarial Model
	Analyzing Hardware Offerings
	Collecting and Analyzing Firmware
	Collecting and Analyzing Bug Reports
	Systematizing Scientific Publications
	Threats to Validity

	Hardware Limitations and Issues
	Hardware Limitations
	Hardware Issues

	Software Architectural Issues
	Software Architectures
	Architectural Issues

	Software Implementation Issues
	Validation bugs
	Functional bugs
	Extrinsic bugs

	Security Research
	Addressing Microarchitectural and ISA Issues
	Separation of Privilege
	Virtualization and Multi-world Systems
	Defeating Memory Corruption Attacks
	Defeating Software-based Code Disclosure
	Memory-safe Programming
	Remote Attestation
	Firmware Update
	Vulnerability Discovery
	Other research

	Recommendations and Future Directions
	Recommendations to research community
	Recommendations to developers

	Conclusion

	woot24-jacobs
	Introduction
	Background
	Risks of Store-Only Bounds Checking
	Threat Model and Assumptions
	Invalid Pointer Loads
	Arbitrary Code Execution Without Memory Corruption
	Invalidly Loading Non-Pointer Data
	Breaching Pointer Confidentiality

	Ubiquity in Real-World Code
	Assurances of Store-Only Bounds Checking
	Analysis of Existing Store-Only Bounds Checkers
	Discussion & Related Work
	Conclusion

	woot24-becker
	Introduction
	CFI Design Space
	Adversary Model and Known Attacks
	CFI Scheme Internals
	Software-based Forward-edge CFI
	LLVM Clang CFI
	Windows Control Flow Guard
	eXtended Flow Guard (XFG)

	Hardware-based Forward-edge CFI
	ARM Pointer Authentication
	ARM Branch Target Identification
	Intel Indirect Branch Tracking
	FineIBT

	Software-based Backward-edge CFI
	LLVM Shadow Call Stack
	SafeStack

	Hardware-based Backward-edge CFI
	PA-based Approaches
	Intel CET Shadow Call Stack

	Study on CFI Adoption in Platforms
	Android Study
	Android Image Analysis Setup
	Evaluation

	Linux Study
	Windows Study

	Related Work
	Recommendations for Improving CFI
	Conclusion
	Appendix
	Using CFI to Aid Binary Analysis
	LLVM CDSO CFI race condition

	woot24-mao
	Introduction
	Scudo Security Measures
	Threat Model
	Compromising Protect and Randomize
	Arbitrary Write
	Forged CommitBase
	Safe Unlink

	Exploitation Case Study
	SensorService
	Exploitation Over Binder

	Discussion
	Related Work
	Conclusion

	woot24-delvaux
	Introduction
	History of FI Attacks on ESP32
	Contributions
	Disclosure Timeline
	Structure

	Preliminaries on Espressif's ESP32 V3
	System Overview
	Xtensa Instruction Set Architecture
	Secure Boot V2
	Secure Boot: Digital Signatures
	Flash Encryption

	Theory of the Attack
	PC Control Through FI
	Without Flash Encryption
	With Flash Encryption

	Modifying the Flash
	Solving Equations
	Attack Surface for FI
	Pointers of Interest
	Simulating Faults with GDB

	Practical Experiments
	Target Preparation
	EM-FI Setup
	Tuning Glitch Parameters
	Coarse Timing: Execution Trace
	Refined Timing: FI as Virtual Oscilloscope
	XY-Coordinates and Power

	Root Cause Analysis
	Jumping to Download Mode

	Conclusion

	woot24-loughry
	Introduction
	Photosensitivity of P–N junctions
	Related Work
	Basilisk
	System model
	Adversary model

	Diode Attack Surface
	CMOS Logic Circuits
	Attack Measurements

	Experimental Results
	ESD Diodes
	Light Emitting Diodes (LEDs)

	Case Studies
	Changing the running instruction stream
	Attacking an I2C bus

	Discussion
	Laser power
	Laser Wavelength
	Countermeasures
	Other Targets
	Commercially Available Hardware

	Conclusion

	woot24-rais
	Introduction
	Background and Related Work
	Fused Filament Fabrication - FFF
	Related Work

	Classification of Firmware Attacks Goals
	Surveillance
	Printing Surveillance (SuPr)
	Printing Environment (SuPE)

	Denial of Service (DoS)
	Denial of Printing Service (DoPS)
	Denial of Network Services (DoNS)

	Integrity Breach (IB)
	Printed Object (PoIB)
	Printing Environment (PeIB)

	Unauthorized Printing (UP)

	Threat Model
	Proposed Firmware Attacks
	Object Geometry (OG) Stealing
	Print Your Own Grave (PYOG) Attack
	Incurable: Printing Faults Impersonation
	Object Feature (OF) Scaling
	Axial Misalignment
	Internal Cavity Attack
	Object Density Variation Attack
	Filament Erosion Attack
	Printing Facility Air-quality

	Attacks Feasibility/Complexity Analysis
	Analysis Methodology
	Attack Analysis
	Attack Feasibility Index - AFI

	Firmware Attack Countermeasures
	Conclusion
	Appendix: Attacks Description
	Appendix: Algorithms for Firmware Attacks

