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Abstract
Secure boot forms the backbone of trusted computing

by ensuring that only authenticated software is executed
on the designated platform. However, implementation of
secure boot can have flaws leading to critical exploits. In
this paper, we highlight a critical vulnerability in open
source First Stage Boot Loader (FSBL) of AMD-Xilinx’s
flagship Zynq-7000 System on Chip (SoC) solution for
embedded devices. The discovered vulnerability acts as
a ‘single point of failure’ allowing complete bypass of
the underlying bypass RSA authentication during secure
boot. As a result, a malicious actor can take complete
control of the device and run unauthenticated/malicious
applications. We demonstrate an exploit using the dis-
covered vulnerability in form of first practical ‘Starbleed’
attacks on Zynq-7000 devices to recover the decrypted
bitstream from an encrypted (using AES-256) boot im-
age. The identified flaw has existed in the secure-boot
software for more than 10 years. The vulnerability was re-
sponsibly disclosed to the vendor under CVE 2022/23822.
The vendor thereafter patched the FSBL software and
issued a design advisory. Our work therefore motivates
the need towards rigorous security evaluation tools to
test for such trivial security vulnerabilities in software.

1 Introduction

Due to the demand of System on Chips in sensitive ap-
plications, they support various security features such
as secure boot, device authentication, bitstream encryp-
tion, readback protection, etc. However, the robustness
of these security features remains unclear due to a
lack of proper documentation and third-party evalu-
ation/scrutiny. In this work, we perform an in-depth
analysis of the RSA authentication feature of the Zynq-
7000 SoC from AMD-Xilinx. AMD-Xilinx Zynq-7000
SoCs have been a market leader in the integrated FPGA
and processor market, with wide adoption across sev-
eral industries such as automotive, aerospace, industrial,

and healthcare sectors. We identified a critical double
fetch security flaw in the RSA authentication feature
within the First Stage Boot Loader (FSBL) provided by
Xilinx. Its exploitation makes it possible to execute an
unauthenticated software application on the Zynq-7000
SoC. The identified flaw is only present in the FSBL soft-
ware and thus can be easily fixed through appropriate
modification of the FSBL software.

Thus, the first contribution of our work is the identifi-
cation of a critical security flaw in the FSBL software
to bypass RSA authentication.

Upon bypassing RSA authentication, we utilize the
unauthenticated software application to demonstrate a
novel attack to recover the encrypted bitstream in the
boot image, thereby subverting the bitstream encryp-
tion feature. To the best of our knowledge, there does
not exist any prior work that has reported a bitstream
recovery attack on the Zynq-7000 SoC. In this context,
Ender et al. [3] in 2020 proposed the Starbleed attack,
capable of breaking bitstream decryption on standalone
Virtex-6 and 7-series Xilinx FPGAs. The design advisory
from Xilinx as a response to the Starbleed attack claims
that the Zynq-7000 SoC is resistant “due to the use
of asymmetric and/or symmetric authentication in the
boot/configuration process" [4]. Due to the security flaw
found in the FSBL, we managed to identify a novel ap-
proach to mount the Starbleed attack on the Zynq-7000
device for full bitstream recovery.

Thus, as a second contribution of our work, we present
the first practical demonstration of the Starbleed attack
on the Zynq-7000 SoC with practical validation on
PYNQ-Z1 platform

We have thus performed an end-to-end recovery of the
bitstream exploiting the RSA bypass vulnerability and
the Starbleed attack. We communicated our findings to
Xilinx in a vulnerability disclosure on March 8, 2022.
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Xilinx quickly confirmed the vulnerability on March 24,
2022, and also published a patch for the FSBL software on
March 25, 2022 [6]. Information about the vulnerability
was also published as a design advisory by Xilinx on
April 28, 2022 [5]. Furthermore, we also investigated if
the flaw in the FSBL software is also present in the
BootROM code of the Zynq-7000 SoC. Analyzing the
BootROM behavior presents significant challenges, since
the BootROM code is unavailable or cannot be modified,
as it is hard-coded within the SoC.

Thus, as a third contribution of our work, we present
a novel black-box analysis of the communication inter-
face between the Zynq-7000 SoC and the NVM during
BootROM execution.

However, our analysis was able to positively confirm
that the BootROM software does not suffer from the
RSA vulnerability present in the FSBL.

Availability of Software

All the software used for this work is avail-
able in the public domain at the following link:
https://github.com/PRASANNA-RAVI/RSA_Bypass_
Vulnerability_Zynq_7000_SoC.

1.1 Threat Model
The boot image of the victim Zynq-7000 SoC device
boots from a boot image stored in a Non-Volatile Mem-
ory (NVM) accessible to an attacker. The SoC typically
consists of two components: (1) Programmable System
(PS) which refers to the dual-core ARM Cortex-A9 pro-
cessor and (2) Programmable Logic (PL) which refers
to the FPGA fabric. The victim boot image has three
partitions - FBSL, PL partition (bitstream to execute
on the FPGA), and PS partition (software application
to execute on the processor). The target device man-
dates RSA authentication of the boot image (i.e.) the
RSA eFUSE is enabled, and all partitions in the vic-
tim boot image are encrypted as well as authenticated.
This means that every partition has its corresponding
RSA signature stored along with it, and is referred to
as the Authentication Certificate (AC). Refer to Figure
1 for the structure of the victim boot image we con-
sider for our attack. The attacker’s goal is to execute an
unauthenticated application on the Zynq-7000 SoC.

2 Background

We now provide a brief background on the secure boot
feature of the Zynq-7000 SoC, to facilitate the under-
standing of our attack, described later in Sections 3-6.

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

- Unencrypted

- Encrypted

PHT Authenticate 
Certificate

FSBL Authenticate 
Certificate

Bitstream Authenticate 
Certificate

SW Application

SW Application 
Authenticate Certificate

Figure 1: Authenticated victim boot image

2.1 Secure Boot of Zynq-7000 device
The central component of secure boot is the secure boot
image which consists of various partitions that will be
sequentially loaded securely into the appropriate loca-
tions within the Zynq-7000 SoC (either DDR, On-Chip
Memory (OCM) or FPGA). The important components
of a boot image are as follows:

• Boot Image Header (BIH) and BootROM
code: The BootROM code is the first piece of soft-
ware executed upon resetting the Zynq-7000 SoC. It
is hard-coded onto the BootROM of the chip (and
not part of the boot image), and cannot be modified.
It initializes the device based on information in the
BIH. Its main function is to retrieve the FSBL from
the NVM, after which it authenticates the FSBL us-
ing its Authentication Certificate (AC that contains
its RSA signature), and further decrypts the FSBL,
before securely passing control to it.

• Partition Header Table (PHT): The PHT is a
critical component of the boot image, which con-
tains metadata information about each PL and PS
partition in the boot image. Each partition has an
associated entry of 64 bytes in the PHT and con-
tains information such as encrypted partition size,
decrypted partition size, total partition size includ-
ing its AC, destination address in the device, loca-
tion within the boot image, authentication status,
etc. The PHT is used by the FSBL to get informa-
tion about each partition in the boot image. We
remark that the PHT is present unencrypted within
the boot image allowing an attacker to gain infor-
mation about the metadata of each partition in the
secure boot image.

• First Stage Boot Loader (FSBL): The FSBL
is responsible for loading each of the PS and PL
partitions in the boot image into the appropriate
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locations within the device (i.e.) PL partition is
loaded into the FPGA, and PS partition is loaded
into the DDR memory. The FSBL first retrieves
the PHT from the NVM and authenticates it using
its AC. Upon successful authentication, then FSBL
securely loads the PL and PS partitions individually
in the same manner, from the boot image, based on
information in the PHT. However, if PHT authenti-
cation fails, then the FSBL simply aborts the secure
boot procedure. After loading all the PS and PL
partitions, the FSBL transfers control to the last
software application that was loaded from the boot
image. In this work, we use the official FSBL code
for the Zynq-7000 SoC provided by Xilinx (FSBL
version 2018.1).

• Programmable Logic (PL) or Programmable
System (PS) Partition: After the FSBL, the re-
maining portion of the boot image is occupied ei-
ther by a PL partition or a PS partition. For an
authenticated partition, there is an Authentication
Certificate (AC), that contains its RSA signature,
which is appended to it in the boot image.

2.2 RSA Authentication in Zynq-7000
SoC

The Zynq-7000 SoC uses the well-known RSA-2048-based
signature scheme for authentication. It is done with two
keys: the Primary Key and the Secondary Key. While
the primary key is stored in the eFuse of the device (fixed
for a given device), the secondary key is associated with
each partition. The primary key is used to authenticate
the secondary key of a partition, and the secondary key
is used to authenticate the partition data itself, thereby
forming an authentication chain. The authentication
operation (i.e.) signature verification is carried out by a
cryptographic software library, part of the BootROM and
FSBL of the Zynq-7000 SoC. Since an understanding
of the intricate details of RSA authentication is not
required for our attack, we refer the reader to [10] for
more details.

RSA authentication is an integral component of the
FSBL. FSBL is an open-source and modifiable piece of
software. We analyze the FSBL source code to under-
stand how it authenticates various components of the
boot image.

3 Analyzing the RSA Authentication
Procedure within FSBL

We noticed that the PHT authentication serves as a sin-
gle point of failure in the secure boot procedure. If an at-
tacker can bypass PHT authentication, he/she can mount

a tampered PHT that can be used to execute an unau-
thenticated application. We analyzed the PHT authen-
tication procedure by FSBL (implemented within the
image_mover.c source file in the embeddedsw project [9]).
Refer to Figure 2 for a pictorial illustration of the au-
thentication procedure of the PHT by the FSBL.

1. The FSBL first retrieves the PHT data from the
NVM and stores it into a global variable denoted
as GVAR. We denote the fetched PHT data from
NVM as PHT1.

2. The FSBL then checks the status of the RSA eFUSE.
If enabled, the FSBL again retrieves the PHT along
with its AC. We denote the fetched PHT data as
PHT2 since it is retrieved at a different time than
PHT1.

3. If verification of AC of PHT2 is successful, then the
FSBL uses the data in GVAR (PHT1) as the PHT
to load the PS and PL partitions in the boot image.

In other words, the FSBL authenticates PHT2 but
uses the unauthenticated PHT1 for secure boot. This is
mainly because of the double fetch of the PHT data from
the NVM which is external to the security boundary
of the device. This is the critical vulnerability that we
have identified that could be exploited to bypass PHT
authentication.

We remark that our experiments were done on FSBL
version 2018.1, they also applied to the latest FSBL ver-
sion dated 23 Apr 20201, during the time of our research.

3.1 Related Works
Double fetch is a term referring to a bug that occurs
when a process reads and uses the same value twice,
expecting it to be identical while it is possible for an
attacker to modify it between the two reads. This term
was first coined by Serna [7], and there have been several
works that have exploited double-fetch bugs in what
is commonly referred to as Time-of-Check to Time-of-
Use (TOCTTOU) attacks [1]. Well-known instances of
such attacks include attacks on the Linux kernel [8],
applications such as Firefox [11] and Intel BootGuard [2].

3.2 Exploiting the RSA Security Flaw in
FSBL

We formulate an attack methodology to exploit the dou-
ble fetch PHT, using an NVM emulator, which is con-
figured to behave in the following manner during PHT
authentication.

1https://github.com/Xilinx/embeddedsw/blob/master/lib/
sw_apps/zynq_fsbl/src/image_mover.c
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1. When the FSBL fetches the PHT for the first time
(PHT1), the NVM emulator provides a tampered
PHT, configured according to the attacker’s require-
ments. Thus, the tampered PHT is stored in GVAR
variable, within the DDR.

2. The FSBL then checks the status of RSA eFUSE
and if enabled, again fetches the PHT (PHT2) along
with its AC. This time, the NVM emulator provides
the valid PHT along with its AC.

3. The FSBL successfully authenticates PHT2, but now
uses the tampered PHT1 for secure boot present in
GVAR. Based on the tampered PHT1, the FSBL
loads an unauthenticated application on the target
device, thereby bypassing RSA authentication.

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled, 
If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

NVM
(SD Card)

Figure 2: Authentication of the PHT by the FSBL

3.3 Proof of Concept (PoC) Attack Im-
plementation

We started with a Proof of Concept (PoC) attack to
demonstrate the presence of the double fetch vulnerabil-
ity during PHT authentication. This was done not with
an NVM emulator, but by performing manual modifica-
tions to the FSBL, to replicate the behavior of the emu-
lator. We manually modified the PHT data in the GVAR
variable after fetching PHT1, and the data is tampered
with to load an unauthenticated PS partition (software
application) from the boot image. This is the only modi-
fication done in the FSBL and does not aid the attack
in any other manner. Within the boot image, the au-
thenticated application is replaced with a malicious and
unauthenticated application in the boot image. We ran
repeated experiments using the tampered FSBL as well
as the tampered boot image, and we were able to suc-
cessfully load and execute the unauthenticated software
application on the target device, which demonstrates the
presence of the RSA bypass vulnerability.

However, this does not qualify as a real attack, since
we made manual modifications to the FSBL that is en-
crypted within the boot image. Since the attacker does

not know the encryption key, it is not possible in a
real-attack scenario. In the following, we thus attempt
to perform a practical real-world attack by building a
low-cost NVM emulator, that does not require making
modifications to the FSBL in the boot image.

4 Practical Attack using SD Card
Switcher Board

One approach to carry out a practical attack would be
to implement the NVM emulator on an FPGA/ASIC.
However, designing the it requires significant engineer-
ing effort, and hence adopted a simpler approach. The
basic requirement for our NVM emulator is to present a
tampered PHT during the first fetch, and a valid PHT
during the second fetch. To achieve this, we built an SD
card switcher that can switch between two SD cards (SD
Card 1 and SD Card 2) during the secure boot procedure.

The SD card switcher has two SD card slots, and we
can choose the SD card to connect to the target, based on
the logic level of a GPIO pin. The board also facilitates
keeping the SD cards powered on from an external power
source. This ensures that the SD card once initialized by
the target device is powered on, even if the target device
is powered off. In the following, we explain the proposed
attack methodology using our SD card switcher board.

4.1 Attack Methodology
The two SD cards (SD cards 1, and 2) are loaded with
two different attack boot images derived from the victim
boot images. SD card 1 contains a boot image with the
tampered PHT (i.e.) PHT1 (mapping to an unauthen-
ticated attack application), while all the other contents
match that of the victim SD card. SD card 2 contains
a boot image with a valid PHT (PHT2) but with the
authenticated software application replaced with the
unauthenticated attack application. Refer to Figure 3
for a pictorial illustration of the boot images on both
SD cards. We load both the SD cards onto the SD card
switcher board and connect the SD card switcher to the
Zynq-7000 SoC. The attack is carried out in the following
manner:

1. The Zynq-7000 SoC first boots with SD card 2
mounted on the SD card switcher board. This is
done to initialize SD card 2.

2. We now power off the Zynq-7000 SoC and switch
to SD card 1. This is done while maintaining the
power of both SD cards.

3. We now boot the Zynq-7000 SoC with SD card
1, which ensures that the tampered PHT (PHT1)
during the first PHT fetch. After the first PHT fetch,
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Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate 
Certificate

FSBL Authenticate 
Certificate

Bitstream Authenticate 
Certificate

Attack Application

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate 
Certificate

FSBL Authenticate 
Certificate

Bitstream Authenticate 
Certificate

Attack Application

Tampered PHT
(Corresponding to Attack 

Application)

SD Card 1 SD Card 2

Original PHT

- Unencrypted

- Encrypted

- Tampered PHT

- Minor Modified FSBL (valid)

Figure 3: Boot Images of SD card 1 and SD card 2 within the SD switcher board

Save PHT1 in GVAR

FSBL 
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2

Validate AC and PHT2

Checks if RSA is Enabled, 
If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Initialize SD Card

Figure 4: Improved Attack on the Zynq-7000 SoC using
SD card switcher, with the modification done to the
FSBL denoted in red.

we switch from SD card 1 to SD card 2. For our
experiments, we added a manual delay between the
first and second PHT fetches. However, this can be
automated as the timing of the switch is constant
for the Zynq device upon power up.

4. After the switch, we expect that the Zynq-7000 SoC
will retrieve the valid PHT from SD card 2 (which
was already initialized), which should be authenti-
cated successfully by the FSBL. This should also
ensure that PHT1 is used for secure boot, and will
therefore execute the unauthenticated on the Zynq-
7000 SoC.

4.1.1 Experimental Observations of Attack us-
ing SD Card Switcher Board

Our experiments reveal that the Zynq-7000 SoC halts
operation after switching from SD card 1 to SD card
2, after the first PHT fetch. The FSBL is unable to
connect to SD card 2, even though it is initialized. We
hypothesize that the SD card peripheral on the target

device, which is oblivious to the switch tries to commu-
nicate with commands for SD card 1, while the switcher
connects the device to SD card 2. To overcome this, we
perform a minor modification to the FSBL, by adding
to the InitSD function, to initialize SD card 2 after the
switch. After this modification, we can successfully per-
form a bypass of the PHT authentication and load the
unauthenticated application, demonstrating a successful
RSA bypass. Refer to Figure 4 for a pictorial illustration
of our improved attack using the SD card switcher.

Since our current setup still requires a modification to
the FSBL, it does not qualify as a practical attack. We
believe this limitation can be overcome using specialized
hardware (FPGA/ASIC) to tamper the SD card inter-
face at precise time instances. Nevertheless, our attack
concretely exposes the flaw in the FSBL software to
bypass RSA authentication.

4.2 Fixing the Flaw in PHT Authentica-
tion within FSBL

The vulnerability mainly arises from the retrieval of the
same PHT data twice from the NVM and only using the
data from the first fetch. This flaw can be patched by
ensuring that PHT is only retrieved once from the NVM
and authenticated immediately. This fix is implemented
as part of the patched FSBL (dated March 25th, 2022) [6],
and our manual analysis of the patched FSBL source code
confirmed the removal of the double fetch vulnerability.
AMD-Xilinx referred to our attack as a physical attack [6]
and that the device "was not designed to be resistant to
physical attacks". However, the identified vulnerability
still exposes a critical flaw in the RSA authentication
process, which enables a practical attack that enables it
to completely bypass it. While we verified the BootROM
of Zynq-7000 SoC for the same vulnerability, we have
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not analysed other devices from AMD-Xilinx, and we
leave this analysis for future work. This is not the first
time that such double fetches have been detected in
secure software [1]. In the following section, we show
that an attacker can use the unauthenticated application
to perform a novel bitstream recovery attack.

5 Starbleed for Bitstream Recovery

Ender et al. [3] in 2020 exposed a critical security flaw in
the bitstream decryption protocol of standalone Virtex-6
and 7-series Xilinx FPGAs, which enables recovery of
bitstream data, now well-known as the Starbleed attack.
The only requirement is that the attacker requires access
to the configuration interface of the FPGA (PL). In this
work, we adapt the Starbleed attack to the Zynq-7000
device for bitstream recovery.

5.1 Attack Methodology
The attacker makes malicious changes to the encrypted
bitstream, such that upon decryption, a targeted de-
crypted bitstream word is written into the Warm Boot
Status Address (WBSTAR) register of the configura-
tion interface. The WBSTAR register retains its value
even upon FPGA reset and thus an adversary can ac-
cess the decrypted word from the WBSTAR register.
Similarly, full bitstream recovery can be performed one
word at a time. Since the attacker now has control of
the PS (through the attack application), we designed an
attack application to carry out the attack by accessing
the PL through the PCAP (Processor Configuration Ac-
cess Port) interface. The application programs the PL
with the tampered bitstream, but it results in failure of
HMAC integrity check, triggering a HMAC error. The
reference manual claims that readback of any register
(including WBSTAR) is not possible unless the PL is
configured with a valid bitstream. Thus, it was evident
that the Starbleed attack could not be performed as on
the Zynq-7000 SoC.

5.1.1 Attack Execution using Workaround

We identified a workaround to ensure that register read-
back is possible, even after programming the PL with a
tampered bitstream.

1. Program PL with a valid encrypted bitstream.

2. Without initializing the PL again, we push the tam-
pered attack bitstream through the PCAP interface.
We observe that FPGA stays programmed (DONE
signal is high) even though the tampered bitstream
trigger an HMAC error.

3. We then issue read command to successfully read
the WBSTAR register containing the decrypted bit-
stream word.

This technique of programming bitstreams without ini-
tializing is not recommended practice. We typically expect
that PL is not configured properly without initialization.
We observe that the tampered bitstreams were able to
write the decrypted bitstream word to the WBSTAR
register while ensuring that readback is also possible.
However, after readback, the PCAP interface becomes
unresponsive, and only a Power-on Reset (PoR) of the
device could bring it back to normal working condition.
Thus, we can only recover one bitstream word per secure
boot, and the attacker needs to power cycle the device
to recover every bitstream word. We can recover the bit-
stream at a speed of 32 bits per second, and an estimated
recovery time of 46 days for our experimental bitstream
of size 3.85 MB. We observe that the secure boot time af-
ter every POR reset serves as a bottleneck for our attack.
While reducing the attack time is possible, we consider
performance acceleration out of the scope of our work.
This attack would not be possible without bypassing
RSA authentication, and thus using the patched version
of the FSBL (dated March 25, 2022) [6] can serve as a
strong mitigation against the bitstream recovery attack.

6 Conclusion

In this work, we have identified a critical double fetch
security flaw in the FSBL software of AMD-Xilinx’s
Zynq-7000 SoC, which enables bypassing the RSA au-
thentication procedure, to execute an unauthenticated
application on the target device. We experimentally val-
idated a potential exploit using a custom-built SD card
switcher board. We also analyzed the BootROM code for
a similar vulnerability, and confirm that the same bug is
not present (Refer to Appendix A). We then proceeded
to demonstrate the first successful bitstream recovery
attack on the Zynq-7000 SoC using the Starbleed at-
tack technique. In essence, our work uncovers a simple
double fetch vulnerability in the secure boot software
of Zynq-7000 SoC, but such vulnerabilities are not new.
Our work demonstrates a serious need for automated
tools for identifying such trivial bugs. While there have
been proposals for such techniques [8], the applicability
of these tools to embedded devices is to be studied and
forms an interesting direction for future research.
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A Assessing the RSA Authentication
Procedure in BootROM

While we identified a flaw in the RSA authentication
procedure in FSBL, we asked ourselves whether the same
flaw is also present in other operations during the se-
cure boot. We thus conducted a security analysis of the
BootROM software, which also performs authentication
of the FSBL itself, before FSBL starts execution. But,
analysing the BootROM software is particularly challeng-
ing compared to the FSBL, since neither the BootROM
source-code nor the binary is available. It is also hard-
coded within the on-chip memory of the Zynq device, and
hence cannot be modified. Thus, a code-analysis similar
to that of FSBL is not possible. However, we observe
that the BootROM loads data from the Non-Volatile
Memory (NVM) (i.e.) SD card and thus monitoring the
SD card interface during BootROM execution could pro-
vide critical information about its operation. In this
respect, we utilize a logic analyzer to monitor the SD
card communication during BootROM execution.

A.1 BootROM Analysis using SD Card
Communication

In order to understand the data transfer between the SD
Card (NVM) and the Zynq-7000 SoC during BootROM
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Figure 7: Data Transfer over SD interface covering the full boot-up of the Zynq device
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Figure 8: Visualization of packets transferred over the CMD line of the SD card interface

execution, we utilized a logic analyzer to analyze the
communication between the SD card and the Zynq de-
vice, during FSBL execution. The reading/writing of
data from/to the SD card occurs in blocks of 512 bytes,
in a serial fashion, and in particular we monitored the
commands CMD17 and CMD18, which can be used to
read a single block and multiple blocks respectively.

We utilized the DSLogic Plus logic analyzer from
DreamSourceLab to probe the SD card communication
interface. Refer to Fig.6 for the picture of our experi-
mental setup. We used to logic analyzer to probe the
CMD, CLK and DAT3 lines (as a representative data
line among DAT0-DAT3), and the captured signals can
be viewed on the DSView software IDE. Please refer to
Fig.7 for the data transfer over the SD interface during
the entire boot-up phase of an authenticated and en-
crypted boot image. This captures the entire execution
time of BootROM and FSBL. Channel 0 corresponds
the CMD line, channel 1 corresponds to the CLK line
and channel 3 corresponds to the DAT3 line. We only
chose DAT3 as a reference for a data line, but any of the
other data lines among DAT0-DAT2 can also be probed.
Moroever, zooming into the data transfer allows us to vi-
sualize the packets within the DSView IDE, and refer to
Fig.8 for the visualization of a command to read multiple
blocks from the host (i.e.) CMD18 and the subsequent
acknowledgement from the SD card.

A.2 Experimental Observations of
BootROM Execution

We recall that the buggy software implementation of
FSBL performs two PHT transfers (PHT1 and PHT2),
when RSA authentication is enabled. While PHT1 only
corresponds to retrieval of the PHT table, transfer of
PHT2 corresponds to retrieval of the PHT along with
the AC. If we identify such a redundant PHT transfer
during BootROM execution, we can confirm that the
vulnerability in the FSBL also exists in the BootROM.
For our analysis, we considered three different types of
boot images: (1) Non-secure (NSec), (2) Secure with
only encryption (Sec_Encrypt) and (3) Secure with both
encryption and authentication (Sec_Auth_Encrypt).

1. Non-secure Image (NSec): In this case, the
BootROM is expected to only fetch the unencrypted
FSBL. The size of the unencrypted FSBL in our
boot image is ≈ 114.5 KB, which is equivalent to
225 blocks. Refer to Fig.9 for the data transfer corre-
sponding to the retrieval of FSBL by the BootROM.
We observe a total of 225 blocks being read from
the SD card, using single block read commands
(CMD17).

2. Secure with only encryption (Sec_Encrypt):
When only encryption is enabled, the BootROM
is expected to fetch the encrypted FSBL, whose
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Figure 9: Retrieval of FSBL by BootROM in NSec image
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Figure 10: Retrieval of FSBL by BootROM in Sec_Encrypt image
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Figure 11: Retrieval of FSBL by BootROM in Sec_Auth_Encrypt image

size is roughly 115.5KB which is equivalent to 227
blocks. Refer to Fig.10 for the data transfer corre-
sponding to the retrieval of the encrypted FSBL
by the BootROM. We observe a total of 227 blocks
being read from the SD card, using single block read
commands (CMD17).

3. Secure with both encryption and authentica-
tion (Sec_Auth_Encrypt): When both authenti-
cation and encryption are enabled, the BootROM
is expected to fetch the encrypted FSBL along with
its Authentication Certificate (AC), whose size is
roughly 116.8KB which is equivalent to 230 blocks.

Refer to Fig.11 for the data transfer corresponding
to the retrieval of the encrypted FSBL along with
its AC by the BootROM. We observe a total of 230
blocks being read from the SD card, using single
block read commands (CMD17).

If there were a duplicate transfer of the FSBL, simi-
lar to that of the PHT, then we should have observed
roughly 455 blocks being transferred. However, the num-
ber of blocks transferred from the SD card tallies with the
expected number of blocks to be read. From this obser-
vation, we can positively confirm that the flaw identified
in the FSBL is not present in the BootROM software.
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However, this does not rule out the possibility of other
vulnerabilities within the BootROM, that could be ex-
ploited for RSA authentication bypass.
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