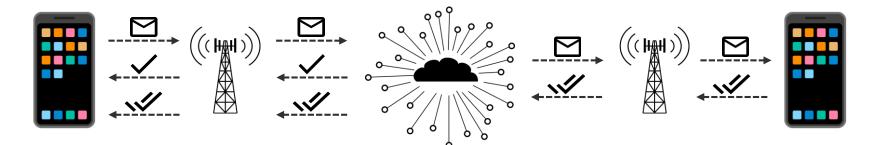
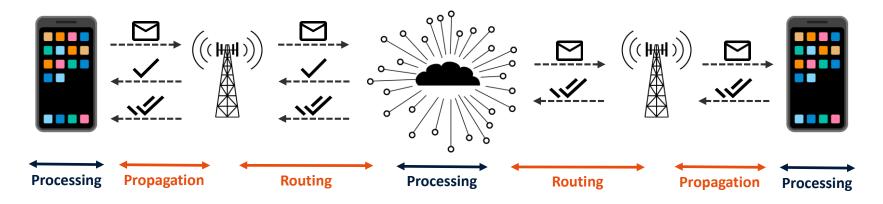


Amplifying Threats: The Role of Multi-Sender Coordination in SMS-Timing-Based Location Inference Attacks

Evangelos Bitsikas, Theodor Schnitzler, Christina Pöpper, Aanjhan Ranganathan

USENIX WOOT Conference on Offensive Technologies Philadelphia, PA, USA August 12, 2024





Problem Statement

Problem Statement

Sender: Philadelphia

c = 299 792 458 m/s

Receiver: $2 * dist_{e2e}$

RTT $(v_{Internet} = \frac{2}{3}c)$

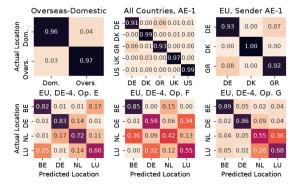
Boston \geq 870 km \geq 4.35 ms Maastricht \geq 12 200 km \geq 61.04 ms

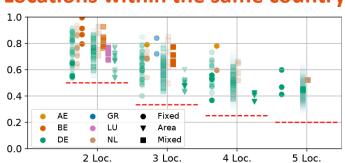
for Location Inference

SMS-based Location Inference

(1) Data Collection

(2) Evaluation

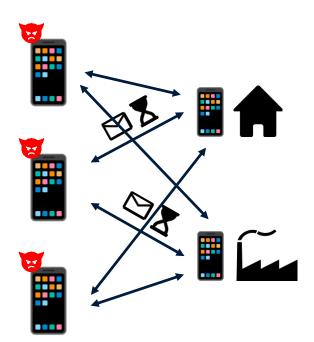



SMS-based Location Inference

Locations in different countries

Classification	Size/Class	Operators	Receiver Locations	Sender Location	Accuracy
Overseas-vsDomestic	1200	A, C, E, H, I, J	AE-X, Int-X	AE-1	96%
All Country-based	280	C, E, H, I, J	Int-X	AE-1	96%
EU Country-based	280	C, E, I	Int-GR, Int-DE, Int-DK	AE-1	95%
EU Country-based	257	G	DE-4, NL-4, BE-1, LU-1	DE-4	75%
EU Country-based	319	E	DE-4, NL-4, BE-1, LU-1	DE-4	74%
EU Country-based	313	F	DE-4, NL-4, BE-1, LU-1	DE-4	62%

Locations within the same country



Bitsikas et al.: Freaky Leaky SMS: Extracting User Locations by Analyzing SMS Timings

Contributions of This Paper

The Role of Multi-Sender Coordination

How does controlling multiple senders

in different positions

affect the attacker's capabilities

to infer the receiver's location?

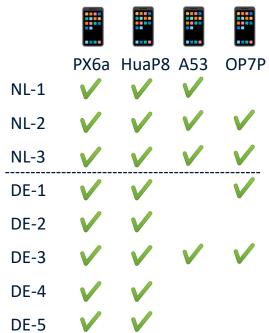
Experimental Setup: Locations

Sender: Veldhoven
3 Receiver Locations

2 Clusters approx. 130km apart

Senders: Bochum, Dortmund 5 Receiver Locations

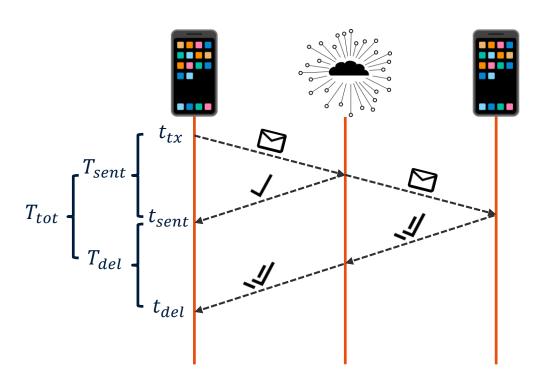
Data Collection



Sending SMS

1 fixed sending device per location

- Iterate through receivers
 - Send 20 SMS
 - Wait for sent + delivery reports
 - Store timings
- Hourly repeated
 - hh:00 to Rec. 1, hh:15 to Rec. 2, ...
 - Best-effort syncing (local clocks)
- Σ 262.980 SMS



ADB-USB

Android Debug Bridge

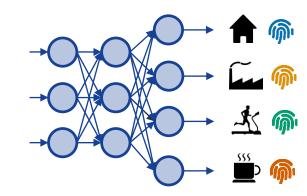
Timing Features

Single-sender features

- Durations $(T_{sent}, T_{del}, T_{tot})$
- Ratio T_{del} / T_{tot}
- Relative timing difference for two consecutive SMS
- → baseline from previous paper

Multi-sender features

- Mean, median, stddev of pairs of senders of 5 consecutive SMS
- → 9 additional features

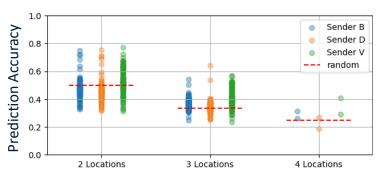

Location Inference Evaluation

Multi-Layer Perceptron (MLP) NN

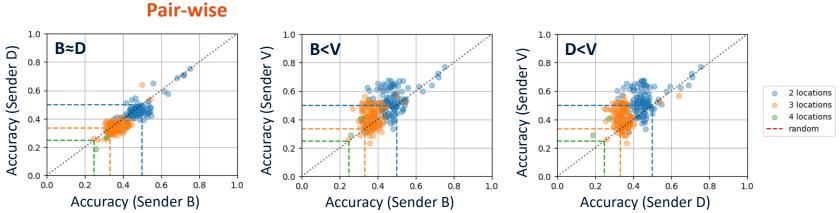
Set up as in previous work
Bitsikas et al. – USENIX Security 2023

Classifications

- All possible combinations of *n* receiving locations
- $n = \{2,3,4\}$

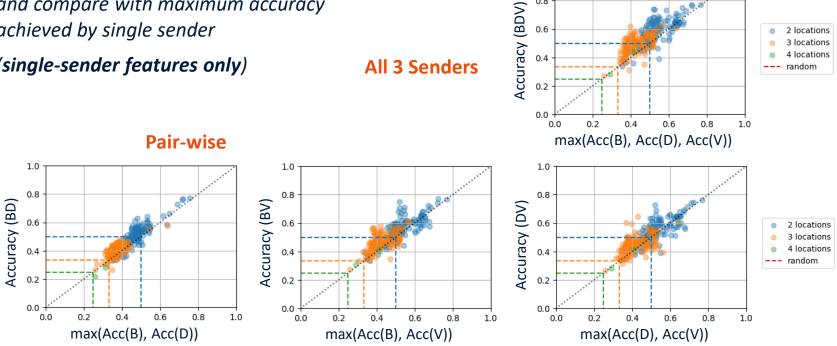

Focus on Accuracy

Share of samples that are classified correctly



Consistency Across Senders

Compare prediction accuracy between senders by number of receiver locations


Amplifying Threats: The Role of Multi-Sender Coordination in SMS-Timing-Based Location Inference Attacks
Evangelos Bitsikas, Theodor Schnitzler, Christina Pöpper, Aanjhan Ranganathan
USENIX Woot Conference on Offensive Technologies, Philadelphia, PA, USA, August 12, 2024

Combining Senders

Combine timings from multiple senders and compare with maximum accuracy achieved by single sender

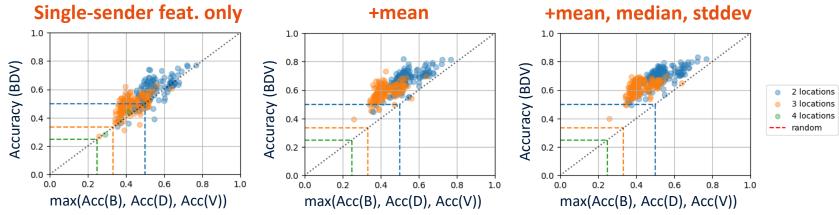
(single-sender features only)

All 3 Senders

Amplifying Threats: The Role of Multi-Sender Coordination in SMS-Timing-Based Location Inference Attacks Evangelos Bitsikas, Theodor Schnitzler, Christina Pöpper, Aanjhan Ranganathan USENIX Woot Conference on Offensive Technologies, Philadelphia, PA, USA, August 12, 2024

0.8

2 locations 3 locations 4 locations

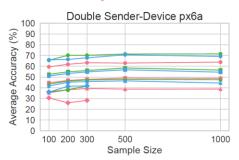

Adding Multi-sender Features

Combine timings from multiple senders and compare with maximum accuracy achieved by single sender

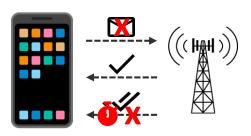
(with multi-sender features)

Multi-sender features

Mean, median, stddev of **pairs** of senders of **5** consecutive SMS



In the Paper


Per-device Analyses

Sample Sizes

Countermeasures

Network operator level only

Department of Advanced Computing Sciences

Amplifying Threats: The Role of Multi-Sender Coordination in SMS-Timing-Based Location Inference Attacks

USENIX WOOT Wonference on Offensive Technologies Philadelphia, PA, USA August 12, 2024

Paper

Code & Data (Github)

Key Takeaways

- Stealthy and targeted attack
- Technically easy (send SMS) but operationally difficult (send many SMS)
- Operating multiple senders can improve SMS-based location inference

USENIX Security 2023
Freaky Leaky SMS:
Extracting User Locations
by Analyzing SMS Timings

NDSS 2023
Hope of Delivery: Extracting
User Locations From Mobile
Instant Messengers

