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Software Bill of Materials are becoming mandatory

Software Bill of Materials (SBOMs) contain lists 
of CPEs or Package URLS (purl) describing all 
the components of a given Software.

They allow to perform vulnerability 
assessments by comparing the CPEs to the 
dictionaries published by the NIST for each CVE.
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Software Bill of Materials are becoming mandatory
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SBOMs provide possible CVES.
For each vulnerability : is it true ?
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Industry standard to Prove exploitability : Write an exploit

This bar is too high.

If we decompose an exploit into 3 problems:
- Reach the vulnerable function
- Trigger the vulnerability
- Achieve code execution/Weaponize

The first step alone is already undecidable ("reachability problem").

Undecidable
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Let's do only step 2:

If we decompose an exploit into 3 problems:
- Reach the vulnerable function
- Trigger the vulnerability
- Achieve code execution/Weaponize

This a reasonable heuristic to determine vulnerability of the application.

We'd like to be able to call the vulnerable function directly.
Problem : How to do this out of context ?
Proposal : Let's turn the vulnerable application into a shared library !
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Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)
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Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor
Executables

Object Files (.o)

Disassembly

Shared Libraries

Undecidable
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Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

Decompilation

Undecidable
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Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

Libification
(wld)
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Same headers, same segments, same 
sections. They mostly differ through 
their metadata (various ELF headers)
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Same headers, same segments, same 
sections. They mostly differ through 
their metadata (various ELF headers)

Modify the various ELF headers to 
turn an Executable into a Shared 
Library

The work to be done:
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Libification Oracle

Let's modify a test binary 
(ls) until we manage to 
load it in memory...
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typedef struct elf64_hdr {
unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */
Elf64_Half e_type; = ET_DYN
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */
Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;

} Elf64_Ehdr;
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Modify the ELF type from ET_EXEC 
to ET_DYN in the ELF header.



typedef struct elf64_shdr {
Elf64_Word sh_name; /* Section name, index in string tbl */
Elf64_Word sh_type;           SHT_DYNAMIC
Elf64_Xword sh_flags; /* Miscellaneous section attributes */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Size of section in bytes */
Elf64_Word sh_link; /* Index of another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */

}
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Parse the array of section headers, 
identify the section with .dynamic 
section with type SHT_DYNAMIC

If section headers are missing, 
parsing the array of segments and 
identifying the PT_DYNAMIC 
segment leads to the same 
.dynamic content.



typedef struct {
Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;
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The .dynamic section contains an 
array of Elf64_Dyn entries.

Replace any optional DT_BIND_NOW entry with a d_tag = DT_NULL 
entry and a pointer of value d_ptr = –1.

If the binary features a DT_FLAGS_1 entry, remove the flags Remove 
DF_1_NOOPEN and DF_1_PIE flags if present:

dyn->d_un.d_val = dyn->d_un.d_val & ~DF_1_NOOPEN;
dyn->d_un.d_val = dyn->d_un.d_val & ~DF_1_PIE;

Optionally ignore constructors and destructors by zeroing the d_val
values associated with DT_INIT_ARRAYSZ, DT_INIT_ARRAY and 
DT_FINI_ARRAYSZ, DT_FINI_ARRAY respectively.
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https://zenodo.org/doi/10.5281/
zenodo.11298208

URL: https://github.com/endrazine/wcc
License: MIT/BSD-2
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Test Repository: 
https://github.com/endrazine/wcc-tests

Test Plan:
Libify The 435 binaries of a default Ubuntu 24.04 amd64 LTS distribution

Time taken (total) : 3 seconds

Libification Test Count

Passed 435

Failed 0

https://zenodo.org/doi/10.5281/
zenodo.11301408
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Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor
Executables

Object Files (.o)

Libification
Decompilation

Disassembly
Shared Libraries

Undecidable
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Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

Unlinking
(wcc)
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- Libify ELF executables
- Make ELF executables scriptable
- Call arbitrary functions 

(procedural debugging)

URL: https://github.com/endrazine/wcc
License: MIT/BSD-2
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The ability to turn ELF 
executables into libraries 
will allow us to create 
partial proofs of 
vulnerabilities in the form 
of WSH test scripts.
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