
1

Introduction to
Procedural

Debugging through
Binary Libification

August 2024Pr. Jonathan Brossard

WOOT'24

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

2

Motivation
Problem Statement
Introduction to Libification
Libification Process
Automation
Validation
Conclusion & Future Work

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

3

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

4

Software Bill of Materials are becoming mandatory

Software Bill of Materials (SBOMs) contain lists
of CPEs or Package URLS (purl) describing all
the components of a given Software.

They allow to perform vulnerability
assessments by comparing the CPEs to the
dictionaries published by the NIST for each CVE.

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

5

Software Bill of Materials are becoming mandatory

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

6
6

SBOMs provide possible CVES.
For each vulnerability : is it true ?

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

7

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

8

Industry standard to Prove exploitability : Write an exploit

This bar is too high.

If we decompose an exploit into 3 problems:
- Reach the vulnerable function
- Trigger the vulnerability
- Achieve code execution/Weaponize

The first step alone is already undecidable ("reachability problem").

Undecidable

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

9

Let's do only step 2:

If we decompose an exploit into 3 problems:
- Reach the vulnerable function
- Trigger the vulnerability
- Achieve code execution/Weaponize

This a reasonable heuristic to determine vulnerability of the application.

We'd like to be able to call the vulnerable function directly.
Problem : How to do this out of context ?
Proposal : Let's turn the vulnerable application into a shared library !

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

10

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

11

Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

12

Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor
Executables

Object Files (.o)

Disassembly

Shared Libraries

Undecidable

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

13

Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

Decompilation

Undecidable

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

14

Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

Libification
(wld)

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

Same headers, same segments, same
sections. They mostly differ through
their metadata (various ELF headers)

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

Same headers, same segments, same
sections. They mostly differ through
their metadata (various ELF headers)

Modify the various ELF headers to
turn an Executable into a Shared
Library

The work to be done:

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

17

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

Libification Oracle

Let's modify a test binary
(ls) until we manage to
load it in memory...

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

typedef struct elf64_hdr {
unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */
Elf64_Half e_type; = ET_DYN
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */
Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;

} Elf64_Ehdr;

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

Modify the ELF type from ET_EXEC
to ET_DYN in the ELF header.

typedef struct elf64_shdr {
Elf64_Word sh_name; /* Section name, index in string tbl */
Elf64_Word sh_type; SHT_DYNAMIC
Elf64_Xword sh_flags; /* Miscellaneous section attributes */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Size of section in bytes */
Elf64_Word sh_link; /* Index of another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */

}

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

Parse the array of section headers,
identify the section with .dynamic
section with type SHT_DYNAMIC

If section headers are missing,
parsing the array of segments and
identifying the PT_DYNAMIC
segment leads to the same
.dynamic content.

typedef struct {
Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

The .dynamic section contains an
array of Elf64_Dyn entries.

Replace any optional DT_BIND_NOW entry with a d_tag = DT_NULL
entry and a pointer of value d_ptr = –1.

If the binary features a DT_FLAGS_1 entry, remove the flags Remove
DF_1_NOOPEN and DF_1_PIE flags if present:

dyn->d_un.d_val = dyn->d_un.d_val & ~DF_1_NOOPEN;
dyn->d_un.d_val = dyn->d_un.d_val & ~DF_1_PIE;

Optionally ignore constructors and destructors by zeroing the d_val
values associated with DT_INIT_ARRAYSZ, DT_INIT_ARRAY and
DT_FINI_ARRAYSZ, DT_FINI_ARRAY respectively.

22

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

https://zenodo.org/doi/10.5281/
zenodo.11298208

URL: https://github.com/endrazine/wcc
License: MIT/BSD-2

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

24

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

25

Test Repository:
https://github.com/endrazine/wcc-tests

Test Plan:
Libify The 435 binaries of a default Ubuntu 24.04 amd64 LTS distribution

Time taken (total) : 3 seconds

Libification Test Count

Passed 435

Failed 0

https://zenodo.org/doi/10.5281/
zenodo.11301408

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

26

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

27

Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor
Executables

Object Files (.o)

Libification
Decompilation

Disassembly
Shared Libraries

Undecidable

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

28

Source Code Compiler Assembly
Code (.S)

Assembler

Static Link Editor

Shared Libraries

Executables

Object Files (.o)

Unlinking
(wcc)

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA
29

- Libify ELF executables
- Make ELF executables scriptable
- Call arbitrary functions

(procedural debugging)

URL: https://github.com/endrazine/wcc
License: MIT/BSD-2

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA
30

The ability to turn ELF
executables into libraries
will allow us to create
partial proofs of
vulnerabilities in the form
of WSH test scripts.

31

18th USENIX WOOT Conference on Offensive Technologies, August 12-13th 2024 Philadelphia, PA, USA

	Section par défaut
	Diapositive 1
	Diapositive 2 Agenda
	Diapositive 3
	Diapositive 4 Motivation : SBOMs vulnerability assessments don't scale well
	Diapositive 5 Motivation : SBOMs vulnerability assessments don't scale well
	Diapositive 6 Motivation : SBOMs vulnerability assessments don't scale well
	Diapositive 7
	Diapositive 8 Proving Exploitability
	Diapositive 9 Proving Exploitability : Partial Proof of Vulnerability
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17 Libification Process
	Diapositive 18 Libification : From Executable to Shared Library
	Diapositive 19 Libification : From Executable to Shared Library
	Diapositive 20 Libification : From Executable to Shared Library
	Diapositive 21 Libification : From Executable to Shared Library
	Diapositive 22
	Diapositive 23 Automated Libification : the Witchcraft Linker
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31

