
Breaking Espressif’s ESP32 V3:
Program Counter Control with

Computed Values using Fault Injection

Jeroen Delvaux, Cristofaro Mune, Mario Romero, Niek Timmers
all contributed equally

Usenix WOOT 2024, Philadelphia, USA

Our Target: ESP32 V3
ESP32 V1 [2016] ESP32 V3 [2020]

Broken by multiple fault injection (FI)
attacks from multiple research teams.

Hardened:
• The ROM code is

protected against FI by
introducing redundancies

• Cryptographic overhaul of
secure boot: from
symmetric-key crypto to
public-key crypto

• The ESP32 is a widely popular
system-on-chip (SoC) with
WiFi and Bluetooth.

• The CPU of the V1 chip
implements the Xtensa
instruction set (not RISC-V).

• Security features: Secure Boot
and Flash Encryption.

• Left, a development board
from Espressif is shown.

We defeat all security features with a single
electromagnetic (EM) glitch. Findings were
responsibly disclosed:
• Security Advisory AR2023-005
• CVE-2023-35818.

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 02/13

Secure Boot and Flash Encryption

Xtensa CPU

ROM SRAM
Fuses

Crypto
accelerators

Metal shield
removed

Original
dev board

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 03/13

ESP32 V3 SoC

ROM code

Bootloader

Application

Chain of trust:

verifies

verifies
Flash chip

• bootloader (and application) code

• AES key

Encrypted by AES

• RSA public key & signature

• Hash of RSA
public key

Program Counter Control using EM-FI

Xtensa CPU

ROM SRAM Fuses

Crypto
accelerators

Program
Counter (PC)

General-purpose
(GP) registers

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 04/13

ROM code

Bootloader

Application

Chain of trust:

verifies

verifies

PC control
happens here
and cannot be
precluded by a
software patch

ESP32 V3 SoC

Flash Encrypted

bootloader

signature block (1) Mathematical vulnerability:
Modify ciphertext to insert an arbitrary
32-bit plaintext pointer into GP registers.

(2) Physical vulnerability:
EM-FI corrupts instructions and
transfers the pointer to the PC.

Valid bootloader, printing “Hello, World!”

We manipulate ciphertext such that a CRC32 checksum
over the signature block fails and prints our pointer

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 05/13

Serial (UART)

Pointer Practical use

0xdeadbeef None; hexpeak

0x80006864 A print statement in ROM, kindly letting
us know that PC control is successful

0x80008ceb ROM entry point for Download Mode.
Here, the entire Flash contents can be
decrypted.

Pointer Insertion via CRC32 Checksum

Ciphertext (Flash) Plaintext (CPU)

Stored sum

CRC32

Calculated sum

Both printed via UART

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 06/13

128b 128b

Enabling factors:
• CRC32 is an affine/linear function
• Checksums are printed via UART
• AES operates on 128-bit blocks independently

+ error_sum_1

0

1

73

74

2

+ error_sum_2

By solving a system of 32
linear equations, the
calculated checksum can
be set to any 32-bit value

… …

Replace by random value R1

Replace by random value R2

+ error_plain_1

Public key, signature, …

+ error_plain_2

+ error_sum_32

…

32b 32b

Pointer Transfer to Program Counter

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 07/13

• The pointer passes
through several GP
registers.

• EM-FI corrupts CPU
instructions, thereby
potentially transferring
the pointer to the PC
register.

• Overwriting register a0,
which stores a function’s
return address, is a likely
pathway.

Espressif published the
ROM code as an *.elf file,
which allows for reverse
engineering in Ghidra.

Riscure EM-FI Setup

• The surface of the ESP32 V3 chip is partially blocked by the Flash chip.
• Displacing the Flash chip is not needed to succeed.

XYZ stage, Spider, breadboard ESP32 V3, probe

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 08/13

Rough Timing of
the Glitch

reset

CE

Timing reference: chip-enable (CE) signal of
the Flash chip:
• Five large blocks where data is copied.
• The glitch is injected shortly after block 5.

1 2 3 4 5

1 2 3 4 5

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 09/13

GNU Debugger (GDB) execution trace

CRC
Success

CRC
Failure

Fine Timing of
the Glitch

Nominal
Crash
Calculated sum is altered

Deformed checksum string
Using FI as a virtual oscilloscope.

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 10/13

Larger window Smaller window

Stored sum is altered
Calculated and stored sums are both altered

PC control

Scan Results
nominal
crash
PC control

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 11/13

Speed: 3.4 glitches per second. A few days sufficed to find the first ‘red’ dot.

A large fraction of the ESP
chip surface is vulnerable.

At least two places in the ROM
code are vulnerable.

Download Mode

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 12/13

Request:

Reply:

Ciphertext (Flash) Plaintext (CPU)

• Download Mode is used by developers and is disabled in the field by burning a fuse.
• Nevertheless, we enter Download Mode by taking PC Control.
• Upon entering, we send and receive packets via UART to decrypt the Flash contents.

c0000a0400000000000010403fc0 Read 32 bits at virtual address 0x3f401000.

The requested 32-bit word is 0x100203e9.c0010a0400e903021000000000c0

Concluding Remarks
• Main lesson: avoid printing plaintext data,

or results from a plaintext computation.

• We thank Espressif for establishing a
smooth vulnerability disclosure process.

• Espressif indicated that the attack does not
apply to ESP32-S2, ESP32-C3, ESP32-S3,
and future chips.

• Taking PC control by inserting pointers in a
computation is a generic methodology for
attacks, possibly affecting manufacturers
other than Espressif.

• Thank you for attending!

Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection Slide 13/13

	Slide 1: Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection
	Slide 2: Our Target: ESP32 V3
	Slide 3: Secure Boot and Flash Encryption
	Slide 4: Program Counter Control using EM-FI
	Slide 5: Serial (UART)
	Slide 6: Pointer Insertion via CRC32 Checksum
	Slide 7: Pointer Transfer to Program Counter
	Slide 8: Riscure EM-FI Setup
	Slide 9: Rough Timing of the Glitch
	Slide 10: Fine Timing of the Glitch
	Slide 11: Scan Results
	Slide 12: Download Mode
	Slide 13: Concluding Remarks

