

Not Quite Write:
On the Effectiveness of Store-Only Bounds Checking

Adriaan Jacobs, Stijn Volckaert

2

3

5

“Memory unsafety continues to dominate the total percentage of security bugs on Apple’s
platforms.”

Why Haven’t We
Solved This Problem
Yet?

6

Why Haven’t We Solved
This Problem Yet?

● Very frequent checks
● Intrusive instrumentation
● Hard-to-generalize hardware

acceleration
● Compatibility with arcane

programming practices

7

vulnerable code hardened code

Prioritize Security-Critical Code/Data De-prioritize Costly Checks

Partial Bounds Checking

Harden
this
part

E.g., DataShield (AsiaCCS’17), OAT (S&P’20)

Added
Overhead

Security
Benefit

E.g., ASAP (S&P’15), store-only bounds checking

8

● Invalid writes are necessary for many attacks
○ Except pure information disclosure, e.g., Heartbleed

● Memory writes occur far less frequently than reads

Store-Only Bounds Checking

“Store-only checking [...] is
sufficient to prevent all memory

corruption-based security
vulnerabilities.”

- Nagarakatte et al.

9

10

Bounds Checkers Demystified

How to recover intended referent during
dereference?

Propagate it with the
pointer!

Don’t lose it in the
first place??

Associate each pointer
with a reference to the

intended referent

Constrain pointer
arithmetic so pointers

never escape their
intended referent

Idea #1 (pointer-based) Idea #2 (object-based)

void* ptr = malloc(...);

// ...

*ptr = ...;

intended referent

11

Bounds Checkers Demystified

if (ptr < base || ptr > bound)

 exit();

*ptr = ...;

How to recover intended referent during
dereference?

Propagate it with the
pointer!

Don’t lose it in the
first place??

Associate each pointer
with a reference to the

intended referent

Constrain pointer
arithmetic so pointers

never escape their
intended referent

Idea #1 (pointer-based) Idea #2 (object-based)

12

Bounds Checkers Demystified

if (ptr < base || ptr > bound)

 exit();

*ptr = ...;

How to recover intended referent during
dereference?

Propagate it with the
pointer!

Don’t lose it in the
first place??

Associate each pointer
with a reference to the

intended referent

Constrain pointer
arithmetic so pointers

never escape their
intended referent

Idea #1 (pointer-based) Idea #2 (object-based)

13

Bounds Checkers Demystified

if (ptr < base || ptr > bound)

 exit();

*ptr = ...;

This is how
SoftBound
worksHow to recover intended referent during

dereference?

Propagate it with the
pointer!

Don’t lose it in the
first place??

Associate each pointer
with a reference to the

intended referent

Constrain pointer
arithmetic so pointers

never escape their
intended referent

Idea #1 (pointer-based) Idea #2 (object-based)

14

Bounds Checkers Demystified

ptr += offset;

if (ptr < base || ptr > bound)

 exit();

How to recover intended referent during
dereference?

Propagate it with the
pointer!

Don’t lose it in the
first place??

Associate each pointer
with a reference to the

intended referent

Constrain pointer
arithmetic so pointers

never escape their
intended referent

Idea #1 (pointer-based) Idea #2 (object-based)

15

Bounds Checkers Demystified

ptr += offset;

if (ptr < base || ptr > bound)

 exit();

How to recover intended referent during
dereference?

Propagate it with the
pointer!

Don’t lose it in the
first place??

Associate each pointer
with a reference to the

intended referent

Constrain pointer
arithmetic so pointers

never escape their
intended referent

Idea #1 (pointer-based) Idea #2 (object-based)

Store-Only Bounds Checking

+ assert_valid(&user_ages[i], user_ages_referent);

+ referent = *lookup_for(&user_ages[i]);

 int* user_age = user_ages[i];

+ assert_valid(user_age, referent);

 *user_age = input();

16

Store-Only Bounds Checking

- assert_valid(&user_ages[i], user_ages_referent);

+ referent = *lookup_for(&user_ages[i]);

 int* user_age = user_ages[i];

+ assert_valid(user_age, referent);

 *user_age = input();

17

0x7ffffdead

referent return address?
bounds table?

18

This Is Not a Design or Implementation Issue

Arbitrary Code Execution

Who Needs Invalid Writes?

19

“Store-only checking provides
much better safety than control-

flow integrity with similar
performance overheads.”

- Nagarakatte et al.

Arbitrary Code Execution Memory “Corruption”

Discovery through invalid reads

Crafting in accessible locations

Who Needs Invalid Writes?

20

21

Real-World Feasibility Study on 1,000 GitHub repos

Unsafe funcptr load

ptr = array[i];

// ...

ptr(...);

Unsafe data pointer load

ptr = array[i];

// ...

*ptr = ...;

22

Recap: Why Store-Only Bounds Checking Fails

Invalid writes are necessary for expressive/severe exploitation

Store-only bounds checking protects against invalid writes

● Some pointer bits must typically be
immutable to prevent bypass

○ “Relative” overwrites via pointer
arithmetic: ptrA= ptrB + (ptrA-ptrB)

● OGs: constrain pointer arithmetic

23

Looking Ahead: Promising Bounds Checking Trend

offset &= MASK;

ptr += offset;

● Some pointer bits must typically be
immutable to prevent bypass

○ “Relative” overwrites via pointer
arithmetic: ptrA= ptrB + (ptrA-ptrB)

● New Age: cryptographic immutability

24

Looking Ahead: Promising Bounds Checking Trend

- offset &= MASK;

ptr += offset;

● Lack of pointer arithmetic constraints
introduces implicit pointer secrecy
requirement

● Breached by store-only bounds
checkers

Breaching Pointer Confidentiality

25

PACMem (CCS’22)

C³ (MICRO’21)

● Lack of pointer arithmetic constraints
introduces implicit pointer secrecy
requirement

● Breached by store-only bounds
checkers

Breaching Pointer Confidentiality

26

PACMem (CCS’22)

C³ (MICRO’21)

● WIT (S&P’08) computes
intended referents statically

● Store-only testing/fuzzing
is still fine!

● Watch out for bounds
checking optimizations,
selective bounds checking,
…

27

But I Still Want Store-Only Protection!

Not Quite Write:
On the Effectiveness of Store-Only Bounds Checking

Stijn Volckaert
DistriNet, KU Leuven

Adriaan Jacobs
DistriNet, KU Leuven

Questions?
Check out the
experiments!

Read the paper!

