ROTE: Rollback Protection for Trusted Execution

Authors: 

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, and Arthur Gervais, ETH Zurich; Ari Juels, Cornell Tech; Srdjan Capkun, ETH Zurich

Abstract: 

Security architectures such as Intel SGX need protection against rollback attacks, where the adversary violates the integrity of a protected application state by replaying old persistently stored data or by starting multiple application instances. Successful rollback attacks have serious consequences on applications such as financial services. In this paper, we propose a new approach for rollback protection on SGX. The intuition behind our approach is simple. A single platform cannot efficiently prevent rollback, but in many practical scenarios, multiple processors can be enrolled to assist each other. We design and implement a rollback protection system called ROTE that realizes integrity protection as a distributed system. We construct a model that captures adversarial ability to schedule enclave execution and show that our solution achieves a strong security property: the only way to violate integrity is to reset all participating platforms to their initial state. We implement ROTE and demonstrate that distributed rollback protection can provide significantly better performance than previously known solutions based on local non-volatile memory.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {203712,
author = {Sinisa Matetic and Mansoor Ahmed and Kari Kostiainen and Aritra Dhar and David Sommer and Arthur Gervais and Ari Juels and Srdjan Capkun},
title = {{ROTE}: Rollback Protection for Trusted Execution},
booktitle = {26th USENIX Security Symposium (USENIX Security 17)},
year = {2017},
isbn = {978-1-931971-40-9},
address = {Vancouver, BC},
pages = {1289-1306},
url = {https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic},
publisher = {USENIX Association},
month = aug
}

Presentation Video