Can Applications Recover from fsync Failures?

Authors: 

Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin - Madison

Abstract: 

We analyze how file systems and modern data-intensive applications react to fsync failures. First, we characterize how three Linux file systems (ext4, XFS, Btrfs) behave in the presence of failures. We find commonalities across file systems (pages are always marked clean, certain block writes always lead to unavailability), as well as differences (page content and failure reporting is varied). Next, we study how five widely used applications (PostgreSQL, LMDB, LevelDB, SQLite, Redis) handle fsync failures. Our findings show that although applications use many failure-handling strategies, none are sufficient: fsync failures can cause catastrophic outcomes such as data loss and corruption. Our findings have strong implications for the design of file systems and applications that intend to provide strong durability guarantees.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {254424,
author = {Anthony Rebello and Yuvraj Patel and Ramnatthan Alagappan and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau},
title = {Can Applications Recover from fsync Failures?},
booktitle = {2020 USENIX Annual Technical Conference (USENIX ATC 20)},
year = {2020},
isbn = {978-1-939133-14-4},
pages = {753--767},
url = {https://www.usenix.org/conference/atc20/presentation/rebello},
publisher = {USENIX Association},
month = jul
}

Presentation Video