Chengfei Lv, Zhejiang University and Alibaba Group; Chaoyue Niu, Shanghai Jiao Tong University and Alibaba Group; Renjie Gu, Xiaotang Jiang, Zhaode Wang, Bin Liu, Ziqi Wu, Qiulin Yao, Congyu Huang, Panos Huang, Tao Huang, Hui Shu, Jinde Song, Bin Zou, Peng Lan, and Guohuan Xu, Alibaba Group; Fei Wu, Zhejiang University; Shaojie Tang, University of Texas at Dallas; Fan Wu and Guihai Chen, Shanghai Jiao Tong University
To break the bottlenecks of mainstream cloud-based machine learning (ML) paradigm, we adopt device-cloud collaborative ML and build the first end-to-end and general-purpose system, called Walle, as the foundation. Walle consists of a deployment platform, distributing ML tasks to billion-scale devices in time; a data pipeline, efficiently preparing task input; and a compute container, providing a cross-platform and high-performance execution environment, while facilitating daily task iteration. Specifically, the compute container is based on Mobile Neural Network (MNN), a tensor compute engine along with the data processing and model execution libraries, which are exposed through a refined Python thread-level virtual machine (VM) to support diverse ML tasks and concurrent task execution. The core of MNN is the novel mechanisms of operator decomposition and semi-auto search, sharply reducing the workload in manually optimizing hundreds of operators for tens of hardware backends and further quickly identifying the best backend with runtime optimization for a computation graph. The data pipeline introduces an on-device stream processing framework to enable processing user behavior data at source. The deployment platform releases ML tasks with an efficient push-then-pull method and supports multi-granularity deployment policies. We evaluate Walle in practical e-commerce application scenarios to demonstrate its effectiveness, efficiency, and scalability. Extensive micro-benchmarks also highlight the superior performance of MNN and the Python thread-level VM. Walle has been in large-scale production use in Alibaba, while MNN has been open source with a broad impact in the community.
OSDI '22 Open Access Sponsored by NetApp
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Chengfei Lv and Chaoyue Niu and Renjie Gu and Xiaotang Jiang and Zhaode Wang and Bin Liu and Ziqi Wu and Qiulin Yao and Congyu Huang and Panos Huang and Tao Huang and Hui Shu and Jinde Song and Bin Zou and Peng Lan and Guohuan Xu and Fei Wu and Shaojie Tang and Fan Wu and Guihai Chen},
title = {Walle: An {End-to-End}, {General-Purpose}, and {Large-Scale} Production System for {Device-Cloud} Collaborative Machine Learning},
booktitle = {16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)},
year = {2022},
isbn = {978-1-939133-28-1},
address = {Carlsbad, CA},
pages = {249--265},
url = {https://www.usenix.org/conference/osdi22/presentation/lv},
publisher = {USENIX Association},
month = jul
}