Application-Informed Kernel Synchronization Primitives

Authors: 

Sujin Park, Georgia Tech; Diyu Zhou and Yuchen Qian, EPFL; Irina Calciu, Graft; Taesoo Kim, Georgia Tech; Sanidhya Kashyap, EPFL

Abstract: 

Kernel synchronization primitives are the backbone of any OS design. Kernel locks, for instance, are crucial for both application performance and correctness. However, unlike application locks, kernel locks are far from the reach of application developers, who have minimal interpolation of the kernel's behavior and cannot control or influence the policies that govern kernel synchronization behavior. This disconnect between the kernel and applications can lead to pathological scenarios in which optimizing the kernel synchronization primitives under one context, such as high contention, leads to adversarial effects under a context with no lock contention. In addition, rapid-evolving heterogeneous hardware makes kernel lock development too slow for modern applications with stringent performance requirements and frequent deployment timelines.

This paper addresses the above issues with application-informed kernel synchronization primitives. We allow application developers to deploy workload-specific and hardware-aware kernel lock policies to boost application performance, resolve pathological usage of kernel locks, and even enable dynamic profiling of locks of interest. To showcase this idea, we design SynCord, a framework to modify kernel locks without recompiling or rebooting the kernel. SynCord abstracts key behaviors of kernel locks and exposes them as APIs for designing user-defined kernel locks. SynCord provides the mechanisms to customize kernel locks safely and correctly from the user space. We design five lock policies specialized for new heterogeneous hardware and specific software requirements. Our evaluation shows that SynCord incurs minimal runtime overhead and generates kernel locks with performance comparable to that of the state-of-the-art locks.

OSDI '22 Open Access Sponsored by NetApp

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {280886,
author = {Sujin Park and Diyu Zhou and Yuchen Qian and Irina Calciu and Taesoo Kim and Sanidhya Kashyap},
title = {{Application-Informed} Kernel Synchronization Primitives},
booktitle = {16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)},
year = {2022},
isbn = {978-1-939133-28-1},
address = {Carlsbad, CA},
pages = {667--682},
url = {https://www.usenix.org/conference/osdi22/presentation/park},
publisher = {USENIX Association},
month = jul
}

Presentation Video