sponsors
usenix conference policies
ZØ: An Optimizing Distributing Zero-Knowledge Compiler
Matthew Fredrikson, University of Wisconsin—Madison; Benjamin Livshits, Microsoft Research
Traditionally, confidentiality and integrity have been two desirable design goals that are have been dicult to combine. Zero-Knowledge Proofs of Knowledge (ZKPK) offer a rigorous set of cryptographic mechanisms to balance these concerns. However, published uses of ZKPK have been dicult for regular developers to integrate into their code and, on top of that, have not been demonstrated to scale as required by most realistic applications.
This paper presents ZØ (pronounced “zee-not”), a compiler that consumes applications written in C# into code that automatically produces scalable zeroknowledge proofs of knowledge, while automatically splitting applications into distributed multi-tier code. ZØ builds detailed cost models and uses two existing zeroknowledge back-ends with varying performance characteristics to select the most ecient translation. Our case studies have been directly inspired by existing sophisticated widely-deployed commercial products that require both privacy and integrity. The performance delivered by ZØ is as much as 40 faster across six complex applications. We find that when applications are scaled to real-world settings, existing zero-knowledge compilers often produce code that fails to run or even compile in a reasonable amount of time. In these cases, ZØ is the only solution we know about that is able to provide an application that works at scale.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Matthew Fredrikson and Benjamin Livshits},
title = {{Z{\O}}: An Optimizing Distributing {Zero-Knowledge} Compiler},
booktitle = {23rd USENIX Security Symposium (USENIX Security 14)},
year = {2014},
isbn = {978-1-931971-15-7},
address = {San Diego, CA},
pages = {909--924},
url = {https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson},
publisher = {USENIX Association},
month = aug
}
connect with us