You are here
Needles in a Haystack: Mining Information from Public Dynamic Analysis Sandboxes for Malware Intelligence
Mariano Graziano and Davide Canali, Eurecom; Leyla Bilge, Symantec Research Labs; Andrea Lanzi, Universitá degli Studi di Milano; Davide Balzarotti, Eurecom
Malware sandboxes are automated dynamic analysis systems that execute programs in a controlled environment. Within the large volumes of samples submitted every day to these services, some submissions appear to be different from others, and show interesting characteristics. For example, we observed that malware samples involved in famous targeted attacks – like the Regin APT framework or the recently disclosed malwares from the Equation Group – were submitted to our sandbox months or even years before they were detected in the wild. In other cases, the malware developers themselves interact with public sandboxes to test their creations or to develop a new evasion technique. We refer to similar cases as malware developments.
In this paper, we propose a novel methodology to automatically identify malware development cases from the samples submitted to a malware analysis sandbox. The results of our experiments show that, by combining dynamic and static analysis with features based on the file submission, it is possible to achieve a good accuracy in automatically identifying cases of malware development. Our goal is to raise awareness on this problem and on the importance of looking at these samples from an intelligence and threat prevention point of view.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Mariano Graziano and Davide Canali and Leyla Bilge and Andrea Lanzi and Davide Balzarotti},
title = {Needles in a Haystack: Mining Information from Public Dynamic Analysis Sandboxes for Malware Intelligence},
booktitle = {24th USENIX Security Symposium (USENIX Security 15)},
year = {2015},
isbn = {978-1-939133-11-3},
address = {Washington, D.C.},
pages = {1057--1072},
url = {https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/graziano},
publisher = {USENIX Association},
month = aug
}
connect with us