TaintPipe: Pipelined Symbolic Taint Analysis
Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu, The Pennsylvania State University
Taint analysis has a wide variety of compelling applications in security tasks, from software attack detection to data lifetime analysis. Static taint analysis propagates taint values following all possible paths with no need for concrete execution, but is generally less accurate than dynamic analysis. Unfortunately, the high performance penalty incurred by dynamic taint analyses makes its deployment impractical in production systems. To ameliorate this performance bottleneck, recent research efforts aim to decouple data flow tracking logic from program execution. We continue this line of research in this paper and propose pipelined symbolic taint analysis, a novel technique for parallelizing and pipelining taint analysis to take advantage of ubiquitous multi-core platforms. We have developed a prototype system called TaintPipe. TaintPipe performs very lightweight runtime logging to produce compact control flow profiles, and spawns multiple threads as different stages of a pipeline to carry out symbolic taint analysis in parallel. Our experiments show that TaintPipe imposes low overhead on application runtime performance and accelerates taint analysis significantly. Compared to a state-of-the-art inlined dynamic data flow tracking tool, TaintPipe achieves 2:38 times speedup for taint analysis on SPEC 2006 and 2:43 times for a set of common utilities, respectively. In addition, we demonstrate the strength of TaintPipe such as natural support of multi-tag taint analysis with several security applications.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Jiang Ming and Dinghao Wu and Gaoyao Xiao and Jun Wang and Peng Liu},
title = {{TaintPipe}: Pipelined Symbolic Taint Analysis},
booktitle = {24th USENIX Security Symposium (USENIX Security 15)},
year = {2015},
isbn = {978-1-931971-232},
address = {Washington, D.C.},
pages = {65--80},
url = {https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ming},
publisher = {USENIX Association},
month = aug
}
connect with us