High Precision Detection of Business Email Compromise

Authors: 

Asaf Cidon, Barracuda Networks and Columbia University; Lior Gavish, Itay Bleier, Nadia Korshun, Marco Schweighauser, and Alexey Tsitkin, Barracuda Networks

Abstract: 

Business email compromise (BEC) and employee impersonation have become one of the most costly cyber-security threats, causing over $12 billion in reported losses. Impersonation emails take several forms: for example, some ask for a wire transfer to the attacker’s account, while others lead the recipient to following a link, which compromises their credentials. Email security systems are not effective in detecting these attacks, because the attacks do not contain a clearly malicious payload, and are personalized to the recipient.

We present BEC-Guard, a detector used at Barracuda Networks that prevents business email compromise attacks in real-time using supervised learning. BEC-Guard has been in production since July 2017, and is part of the Barracuda Sentinel email security product. BEC-Guard detects attacks by relying on statistics about the historical email patterns that can be accessed via cloud email provider APIs. The two main challenges when designing BEC-Guard are the need to label millions of emails to train its classifiers, and to properly train the classifiers when the occurrence of employee impersonation emails is very rare, which can bias the classification. Our key insight is to split the classification problem into two parts, one analyzing the header of the email, and the second applying natural language processing to detect phrases associated with BEC or suspicious links in the email body. BEC-Guard utilizes the public APIs of cloud email providers both to automatically learn the historical communication patterns of each organization, and to quarantine emails in real-time. We evaluated BEC-Guard on a commercial dataset containing more than 4,000 attacks, and show it achieves a precision of 98.2% and a false positive rate of less than one in five million emails.

USENIX Security '19 Open Access Videos Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {236226,
author = {Asaf Cidon and Lior Gavish and Itay Bleier and Nadia Korshun and Marco Schweighauser and Alexey Tsitkin},
title = {High Precision Detection of Business Email Compromise},
booktitle = {28th USENIX Security Symposium (USENIX Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1291--1307},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/cidon},
publisher = {USENIX Association},
month = aug
}

Presentation Video