From IP ID to Device ID and KASLR Bypass

Authors: 

Amit Klein and Benny Pinkas, Bar Ilan University

Abstract: 

IP headers include a 16-bit ID field. Our work examines the generation of this field in Windows (versions 8 and higher), Linux and Android, and shows that the IP ID field enables remote servers to assign a unique ID to each device and thus be able to identify subsequent transmissions sent from that device. This identification works across all browsers and over network changes. In modern Linux and Android versions, this field leaks a kernel address, thus we also break KASLR.

Our work includes reverse-engineering of the Windows IP ID generation code, and a cryptanalysis of this code and of the Linux kernel IP ID generation code. It provides practical techniques to partially extract the key used by each of these algorithms, overcoming different implementation issues, and observing that this key can identify individual devices. We deployed a demo (for Windows) showing that key extraction and machine fingerprinting works in the wild, and tested it from networks around the world.

USENIX Security '19 Open Access Videos Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {236262,
author = {Amit Klein and Benny Pinkas},
title = {From {IP} {ID} to Device {ID} and {KASLR} Bypass},
booktitle = {28th USENIX Security Symposium (USENIX Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1063--1080},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/klein},
publisher = {USENIX Association},
month = aug
}

Presentation Video