Sarah Tollman, Stanford University; Seo Jin Park, MIT CSAIL; John Ousterhout, Stanford University
This paper re-evaluates the performance of the EPaxos consensus protocol for geo-replication and proposes an enhancement that uses synchronized clocks to reduce operation latency. The benchmarking approach used for the original EPaxos evaluation does not trigger or measure the full impact of conflict behavior on system performance. Our re-evaluation confirms the original claim that EPaxos provides optimal median commit latency in a WAN, but it shows much worse tail latency than previously reported (more than 4x worse than Multi-Paxos). Furthermore, performance is highly sensitive to application workloads, particularly at the tail.
In addition, we show how synchronized clocks can be used to reduce conflicts in geo-replication. By imposing intentional delays on message processing, we can achieve roughly in-order deliveries to multiple replicas. When applied to EPaxos, this technique reduced conflicts by at least 50% without introducing additional overhead, decreasing mean latency by up to 7.5%.
NSDI '21 Open Access Sponsored by NetApp
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Sarah Tollman and Seo Jin Park and John Ousterhout},
title = {{EPaxos} Revisited},
booktitle = {18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21)},
year = {2021},
isbn = {978-1-939133-21-2},
pages = {613--632},
url = {https://www.usenix.org/conference/nsdi21/presentation/tollman},
publisher = {USENIX Association},
month = apr
}