Vector Guo Li, University of California, San Diego; Matthew Dunn, Northeastern University; Paul Pearce, Georgia Tech; Damon McCoy, New York University; Geoffrey M. Voelker and Stefan Savage, University of California, San Diego; Kirill Levchenko, University of Illinois Urbana-Champaign
The term "threat intelligence" has swiftly become a staple buzzword in the computer security industry. The entirely reasonable premise is that, by compiling up-to-date information about known threats (i.e., IP addresses, domain names, file hashes, etc.), recipients of such information may be able to better defend their systems from future attacks. Thus, today a wide array of public and commercial sources distribute threat intelligence data feeds to support this purpose. However, our understanding of this data, its characterization and the extent to which it can meaningfully support its intended uses, is still quite limited. In this paper, we address these gaps by formally defining a set of metrics for characterizing threat intelligence data feeds and using these measures to systematically characterize a broad range of public and commercial sources. Further, we ground our quantitative assessments using external measurements to qualitatively investigate issues of coverage and accuracy. Unfortunately, our measurement results suggest that there are significant limitations and challenges in using existing threat intelligence data for its purported goals.
USENIX Security '19 Open Access Videos Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Vector Guo Li and Matthew Dunn and Paul Pearce and Damon McCoy and Geoffrey M. Voelker and Stefan Savage},
title = {Reading the Tea leaves: A Comparative Analysis of Threat Intelligence},
booktitle = {28th USENIX Security Symposium (USENIX Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {851--867},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/li},
publisher = {USENIX Association},
month = aug
}