- Security '12 Home
- Registration Information
- Registration Discounts
- Organizers
- At a Glance
- Calendar
- Technical Sessions
- Workshops
- Hotel & Travel Information
- Poster Session
- Rump Session
- Birds-of-a-Feather Sessions
- Sponsors
- Activities
- Students
- Questions?
- For Participants
- Help Promote
- Call for Papers
- Past Proceedings
sponsors
usenix conference policies
On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces
Ivan Martinovic, University of Oxford; Doug Davies, Mario Frank, and Daniele Perito, University of California, Berkeley; Tomas Ros, University of Geneva; Dawn Song, University of California, Berkeley
Brain computer interfaces (BCI) are becoming increasingly popular in the gaming and entertainment industries. Consumer-grade BCI devices are available for a few hundred dollars and are used in a variety of applications, such as video games, hands-free keyboards, or as an assistant in relaxation training. There are application stores similar to the ones used for smart phones, where application developers have access to an API to collect data from the BCI devices.
The security risks involved in using consumer-grade BCI devices have never been studied and the impact of malicious software with access to the device is unexplored. We take a first step in studying the security implications of such devices and demonstrate that this upcoming technology could be turned against users to reveal their private and secret information. We use inexpensive electroencephalography (EEG) based BCI devices to test the feasibility of simple, yet effective, attacks. The captured EEG signal could reveal the user’s private informa- tion about, e.g., bank cards, PIN numbers, area of living, the knowledge of the known persons. This is the first attempt to study the security implications of consumer-grade BCI devices. We show that the entropy of the private information is decreased on the average by approximately 15 % - 40 % compared to random guessing attacks.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Ivan Martinovic and Doug Davies and Mario Frank and Daniele Perito and Tomas Ros and Dawn Song},
title = {On the Feasibility of {Side-Channel} Attacks with {Brain-Computer} Interfaces},
booktitle = {21st USENIX Security Symposium (USENIX Security 12)},
year = {2012},
isbn = {978-931971-95-9},
address = {Bellevue, WA},
pages = {143--158},
url = {https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/martinovic},
publisher = {USENIX Association},
month = aug
}
connect with us